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Dear Professor Mai and Professor Marculescu: 
 
 
Accompanying this letter is Fuggle’s formal report, “18-545 Advanced Digital Design 
Project: Virtual Reality PacMan.”  This report examines the design and implementation 
of a first-person, eat-em-up, virtual reality game. 
 
 
This report describes the process of designing the hardware, software, and interfacing of 
a new version of a retro game.  It describes the process beginning with the system level 
architecture and proceeding to the hardware and software architectures.  Included is the 
methodology for verification, techniques used to improve the design, and an analysis of 
the project as a whole. 
 
 
If you have any questions or comments regarding this report, please contact us via e-mail 
at tzb@andrew.cmu.edu. 
 
Sincerely, 
 
 
 
 
Travis Brier, Astav Sacheti, and Julio Segundo 
 
 
 
 
 
 
 
 
 
 
 
enclosure: paper entitled “18-545 Advanced Digital Design Project: Virtual Reality PacMan” 
On-line Copy: http://www.andrew.cmu.edu/user/jsegundo/PacMan/ 
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Abstract 
 
 This report describes a virtual reality Pacman game designed and implemented for 
18-545, Advanced Digital Design Project.  The report begins with an introduction that 
describes the game and the features implemented.  Following that, there are more detailed 
explanations for each of the parts for the game.  Then, the report examines the problems 
encountered and possible improvements in future iterations. 
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Introduction 
 At the beginning of the semester, we decided to implement to take the 1980’s 
classic PacMan game and change it into a ramped up first-person virtual reality game. 
 The original concept of PacMan was a game of tag within a maze; the way to end 
the game was to reach every point within the maze without being tagged.  This concept 
was implemented by four different colored ghosts and “PacMan,” a large yellow ball that 
could eat small pellets.  The game player would control PacMan to run around the game 
board and avoid getting eaten by the four ghosts.  In addition to avoiding being eaten by 
the four ghosts, the game player had to maneuver PacMan to eat every pellet placed out 
on the board.  Once every pellet had been eaten by PacMan, the level was completed and 
the user would progress into harder and harder scenarios, more complex mazes, faster 
ghosts, and fewer lives.   
 Fuggle took this original concept and introduced a 21st century twist: first-person 
playing.  The original PacMan was an omniscient two-dimensioned view from overhead, 
Fuggle built an entire virtual world of mazes, ghosts, and of course PacMan.  The player 
no longer looks at the entire maze from overhead; this new implementation simulates an 
environment that allows the player to search around the world for pellets or ghosts as if 
he or she were actually running around the maze grabbing up pellets. 
 
High-Level Architecture 
  Below is a drawing of the system level architecture: 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

 
 The guts of the system are at the hardware level.  Contained within the Verilog 
code is logic that keeps track of the entire state of the game.  The Verilog uses a direction 
input from the user, which tells the absolute direction that PacMan’s facing, to keep track 
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of where PacMan is in the maze and which spot is the next he’s moving to.  The Verilog 
keeps track of PacMan’s position, each of the four ghosts (and the Artificial Intelligence 
which they use to chase PacMan down), and also ensures that the pellets and power 
pellets disappear from the game state when PacMan runs them down. 
 All this information is written into the BRAM, the interface between the 
generated Verilog logic and the software on the PowerPC Core (PPC).  Both the PPC and 
the hardware have write access to the BRAM and consequently it is the primary method 
of communication between the two different devices on the board. 
 The PPC core, while handling communication with the Verilog Logic, also 
handles communication with the workstation running the OpenGL, the direction input 
from the chair. Essentially, it’s the hub of communication between every device and it 
routes the signals to the appropriate devices. 
 The initial loading phase of the game is done by the PPC. It reads the map parses 
it and sends it off to the openGL workstation. Then it waits for the hardware to set up its 
data, and finally waits for the user to press the start key.  
 The game player input, coming from the chair in the diagram below, is also 
handled by the PPC.  The VR helmet motion sensor is hooked up directly to the OpenGL 
workstation, which is the only part of the design that needs it input. The VR helmet has a 
direction tracker that allows the game player to change the viewing direction simply by 
changing the direction that their head is facing. The chair input is a PS/2 mouse input that 
is used to represent the direction which PacMan is facing.  This is fed into the PPC and 
written to the BRAM for hardware access to the data, and then sent to the workstation as 
well. 
 

 
 The workstation is a large OpenGL engine for the entire game.  The PPC 
constantly transmits the game state to the workstation and the workstation runs OpenGL 
code that translates the game state into the virtual world being viewed by the game 
player.  The workstation is given the initial board state so the updates it is sent are only 
the objects that change from the initial state or previous transmission, this makes our 
UDP transmissions small but numerous to maintain a constant flow of data from the 
hardware to the OpenGL.  The workstation’s output goes back to the VR helmet and the 
virtual world is displayed for the game player. 
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Lower Level Architectures  
 
PPC Architecture- 
 The PPC cores are responsible for many of the major functions of the game: 
initial map load up, interface to input controllers, and network connection to the 
workstation.  The PPC handles the very beginning of the game initialization: the initial 
memory load-up. 

When the game starts up, the Power PC processor runs a routine that loads a map 
configuration file into the BRAM. The PPC also handles one of the two inputs to the 
game system.  There are two input controllers in our design of the game, the first is the 
Chair interface. The shaft of the chair is attached to a PS/2 mouse, which is polled by the 
board to get information about the direction of the chair. This direction is stored in a 2-bit 
register as an absolute direction [N=00, E=01, S=10, W=11]. 
 
Network Connection to the Workstation- 

The system uses a pseudo-UDP protocol for communication between the board 
and the workstation. The header used for a data-packet will be as shown below: 
 

+  Bits 0 - 7  15-Aug 16 - 23  24 – 31 
0 Source address 

32 Destination address 
64 Source Port  Destination Port 
96 Length  Type 

128 Data 
 

The network connection sends out the map configuration at the start of the game, 
and after that it sends only the updates to the five entities (pac-man, and four ghosts) to 
the board. 
 
Workstation Architecture- 
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The role of the workstation is to act like a giant multimedia card. For this reason, 
the workstation handles Ethernet, OpenGL commands, audio commands and the motion 
sensor on the VR helmet. The Ethernet works as a form of communication between the 
workstation and the FPGA board controlling the game. The OpenGL is then used to draw 
the graphics of the game according to the received data. 

Our team has decided to use a pseudo UDP stack over the Ethernet port for 
communication between the FPGA board and workstation. The reason for it being pseudo 
is due to our removal of the CRC check, and addition of an extra parameter. Since we 
only use a crossover cable between the board and workstation, we are assuming that no 
errors will occur between packets sent, which explains our removal of the CRC check. 
However, in order to better match the architecture of our game, we decided to add a type 
parameter, which will be used to define what the packet data should be used for. The 
information sent over our UDP will be a game status, initial map, map changes, pacman 
and ghost positions and rates of movement, and score. 

After the Ethernet forms a connection with the FPGA board and begins reading 
data, the workstation then knows where, what, and when to display splash screens, 
ghosts, pellets, power pellets, edges, walls, and floor tiles, and the score. This is all done 
by displaying the data received over Ethernet on the screen with OpenGL. 

The map is sent initially before the game starts to the workstation from the FPGA 
board and stored in memory, as well as other game state variables. The map consists of 
currently, a 28 by 31 large grid, where each block is represented by one byte. The 
workstation then identifies each byte, and draws a 3 by 3 block containing that pellet, 

Player Interaction 
-Draw Game Graphics 

For Player 
-Play Background Music 

and Sound Effects 

Ethernet Communication
-Receive Map,  
Game Status, 

Sound Initializations, 
Object Positions  
and Movements 

Serial Communication
-Speak to Virtual  
Reality Helmet 

-Receive Player  
Viewing Angle 
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power pellet, edge, solid wall and/or floor, defined by that byte. When the game begins, 
and Pacman begins to eat pellets, the map then changes as the eaten pellets disappear. 
However, the entire map is not resent for every pellet that disappears, instead, we only 
receive changes from the initial map, every instance that a pellet disappears. This way the 
map scanner reads the most updated map available from the board, while saving 
bandwidth over the UDP. 
 A possible initial map file is shown here (this is the classic PacMan board): 

EEEEEEEEEEEEEEEEEEEEEEEEEEEE 
EPPPPPPPPPPPPSSPPPPPPPPPPPPE 
EPSSSSPSSSSSPSSPSSSSSPSSSSPE 
EpSSSSPSSSSSPSSPSSSSSPSSSSpE 
EPSSSSPSSSSSPSSPSSSSSPSSSSPE 
EPPPPPPPPPPPPPPPPPPPPPPPPPPE 
EEEEEEEEEEEEEEEEEEEEEEEEEEEE 

. 

. 

. 
 

In the standard two-dimensional omniscient view, this board would be mapped to 
this: 

 
 

Pacman and ghost positions are sent separately from the map. Initial points are 
sent when first beginning the software for initial home and variable declarations, while 
current and destination points are then submitted while playing the game to keep Pacman 
and ghosts moving around the map. The OpenGL considers both Pacman and the ghost to 
be separate instances from the map, and will move independent of the map during regular 
game play. 
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While time limits the amount of optimization we can do for the game, one method 

used is building lists. This means that instead of recreating each object (ghost, solid wall, 
edge, etc.), a list allows us to create each object once at the initialization of the game, and 
we simply re-display the same object at different locations. Doing this reduces the 
amount of processing necessary for each frame of the game.  Shown below are several of 
the objects that we have included for redisplaying rather than redrawing: 
 

 
Ghost Pellet and Floor Solid Wall Edge 

 
 Shown below is a screenshot of the virtual world that is generated by the bit map 
written above: 

TCP/IP 

Render() 

Init() loadMap()
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The second controller is the motion sensor on the VR Helmet. This motion sensor 

is also polled by the workstation and returns a 16-bit number with the direction the 
person wearing the helmet’s head is facing.  

The audio interfacing between the user and the game is also handled by the 
workstation. All audio files are stored on the system in PCM Stereo 48kHz WAV files, 
standard format for our implementation. There is a software routine that reads an 8-bit 
register for audio output as shown below: 

 

 
 

The above acronyms are as follows: 
• PP BAK: Background Music when in “power” mode 
• P: Just ate a pellet 
• PP: Just ate a power pellet 
• PM Eat Ghost: Pac-Man just ate a ghost 
• Ghost Eat PM: A Ghost just ate a Pac-Man 
• End: Game over 
• Start: Game beginning 

 
These bits are toggled by the hardware on the board, and sent to the workstation by 

the PPC core as an indication for the workstation to play the appropriate WAV file.  The 
background music for the game plays continuously all the time (except when the PP 
BAK) is set to high. 
 
Hardware Architecture-  
 Shown below a high level view of the hardware architecture: 
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 Each of the modules above are instantiated within the Verilog code and written to 
the FPGA board to maintain the game state of the system.  The forefront of the hardware 
would be the memory interface.  The memory interface takes the communications from 
the individual modules who wish to know the state of a block of memory on the board 
and gets that information from the BRAM and transmits it back.  It is the hub of all 
memory communications for the board.   

The original plan for the BRAM was to have a large memory interfaced with the 
PPC and the user logic.  However, due to the bus width, the problems associated with 
creating a large memory that could be used by both the PPC and the verilog would have 
been very difficult.  As it ended up, the board was hardcoded into a BRAM accessed only 
by the verilog.  There was a small, 32x4byte memory accessible by both the PPC and the 
user logic, this was the primary communication between the two.   

Ideally, if the memory block were able to be created, it would have been 
instantiated as shown above and functionally would have worked slightly different.  
When the Memory Interface gets a request to perform an operation on memory it receives 
the request in a multiple bit form.  The bit encoding are as follows: 
 

• 3:0-device ID, the device that wishes to access memory, memory interface has a 
map of what each device ID is associated with 

• 13:4-block of board that the device wishes to access, the internal numbering 
scheme goes from 0-438 blocks, or if we have a larger board, it could potentially 
go up to 2^11-1, the internal modules only know this numbering scheme, the 
memory interface translates that number into the physical memory address 
associated within the BRAM 

• 14-one bit indicating whether to read or write the data 
• 36:15-Memory to be written (or 32’x if memory is meant to be read) 

 
The memory interface then returns a success bit and if memory was read, it 

returns the data of the block.  The memory interface consists of a synchronous FSM 
accessing the BRAM at a set clock rate and an asynchronous dual port FIFO.  This allows 
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for multiple devices to shoot commands at the memory interface and their data will be 
returned in the order in which it was received.  This eliminates many complex timing 
issues that would have otherwise been associated with controlling multiple devices and 
allows for many devices to access memory at once without requests being forgotten. 

 The Game FSM controls all the modules involved with the game.  It sits still until 
the software has written all the initial game board data to the BRAM. At that point, it 
communicates to the Ghost AI to perform the Zoned Offense algorithm, described later in 
this paper.  Once the Ghost AI has performed all the pre-emptive calculations, the Game 
FSM tells the software that everything at the hardware level is prepared to start.  Upon 
receiving a start command, the FSM goes into the play state and keeps track of the 
number of lives of the user.  When the number of lives reaches zero, the game FSM 
freezes the hardware logic and tells the software that the player has lost.  The Game FSM 
then goes back to the awaiting start state.  All communication between the Game FSM 
and the software is done through an eight bit BRAM logic block.  The Memory Interface 
maintains memory of the address of this for the Game FSM communication. 

 The Ghost AI block provides each of the ghosts with the direction which they 
should go when they are chasing PacMan.  Fuggle designed a simple algorithm which 
sets up a series of vectors that the ghosts travel along throughout the game play.  The 
board is initially divided up into eight zones, as shown below: 

 

 
 
 Each of the ghosts has access to what zone pacman is in, this data is stored within 
the PacTrack Module.  Depending upon what zone each of the ghosts themselves are in, 
they send a request to the Ghost AI to provide them with a direction to go.  This is fairly 
straightforward except recognizing the paths to different zones can be calculation 
intensive and utilize a lot of hardware.  To eliminate many of these time expensive 
calculations, a vector system was implemented.  During the pre-loading phase, the Ghost 
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AI parses the board memory and determines where each “node” is within the board and 
which nodes connect to each other. 

 
 
 Shown above is an example of what the hardware determines.  Each of the yellow 
lines represents a vector from node to node.  When the ghost reaches a decision point, the 
module requests the AI to tell it which direction to turn.  Based upon where PacMan is 
compared to the ghosts position, the AI has a pre-determined vector map that spits out a 
decision which will turn the ghost in the direction of the next closest zone to PacMan.  If 
the ghost and Pacman are in the same zone, the ghost will make random movements until 
it either hits pacman or pacman moves out the zone and the ghost follows him to the next.  
If the intelligence of the ghosts need to be increased, the size of the zones can simply be 
made smaller.  In the current implementation, the size of the zones are fixed, but in future 
iterations, the possibility of increases the ghosts intelligence using this system is a very 
plausible solution.  The vector maps and use a dynamic parsing algorithm of the entire 
map to store it into the ghost AI memory block. 
 This AI algorithm did not get fully implemented into fuggle’s hardware due to 
time constraints.  There were three backup algorithms implemented that were used during 
actual gameplay.  The first was a “practice mode” algorithm where the ghosts were held 
steady within their initial starting locations.  The second is “random mode” where each of 
the ghosts slightly favor a different direction and based on a variable input decides 
whether or not to turn at particular nodes.  This was the algorithm used during the public 
demo session, it was efficient for allowing players to have an enjoyable experience 
without getting frustrated by constantly attacking ghosts.  The final algorithm fully 
implemented was one simply for fun where ghosts had the ability to go through any walls 
and would constantly take the Manhattan distance towards pacman. 
 The PacMan and each of the four ghost modules all perform similar functions.  
The purpose of the modules is to maintain the exact position of PacMan and each of the 
ghosts, respectively.  The standard the system uses for position calculation is fairly 
simple.  Each module knows the initial position and the destination position of the object.   
To enhance the smoothness of the game, a timer is used to count in-between the block 
movements, thus providing a percentage of the way from initial to destination for each 
object.  To speed up or slow down pacman or the ghosts, the only change that needs to be 
made is to increase or decrease the amount of time in-between each block. 
 The basic collision detection system used to determine if pacman is touching a 
ghost, a pellet, or a power pellet is mathematical and very straightforward.  The system 
uses parameters and determines based upon the percentage through each of the blocks 
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that the objects are, or if it’s a pellet or power pellet they are fixed, and if the outside radii 
touch each other, a flag is thrown to either remove a pellet, kill pacman, kill a ghost, or 
remove a power pellet. 
 The power play timer determines how long PacMan can eat ghosts.  During this 
time, if pacman and a ghost touch each other, the ghost PacMan collision detection alerts 
the memory to remove the ghost and rewrite it to its initial starting position.  The PPC 
took care of the ghost position resets.  This made it easier to reboot the game through the 
software reset.   

 
Experimental Methods 
 Much of the experimental methodology was simply through trial and error.  The 
Xilinx boards had a lot of quirks in them that weren’t found until actual implementation 
of the different sections of our project.  Much of the hardware was tested beforehand 
using ModelSim, however when actually loaded onto the board Xilinx seemed to use 
some sort of non-deterministic algorithm and odd optimization methods that caused 
multiple errors. 
 
Problems 
 The biggest problem we had with designing the project was finishing all that we 
wanted to get accomplished in the amount of time available to us.  By the time that we 
were able to efficiently use the capabilities of the board, much of the course was nearing 
completion. 
 Another problem we had was with the overall architecture of our system.  We 
utilized the hardware to solve many problems that required a lot of logic to implement 
and debug, but when written in software would be just a few lines of code.  
Consequently, much of our hardware debugging time was wasted on small problems that 
we should have implemented on the PPC and we weren’t able to fully implement some 
features that we were aspiring for (specifically really good ghost AI).  Ideally, if we were 
to build this project again, the only features implemented in hardware would be pacman’s 
position and each of the ghosts individual AI.  The software would take care of the 
pellets, score, powerUp, and all the collisions. 
 All in all, better time management would have improved the project as a whole 
along with some more overhead in the initial planning phases. 
 
Analysis and Conclusions 

By the time for the public demo, the virtual reality pacman game took on the form 
that Fuggle had originally hoped for, a reasonable implementation that would suffice as a 
prototype for future iterations.  The class as a whole was a good experience for having 
freedom and the resources to implement a really fun game.  In the future it would be good 
to have one of the lab’s to be implementing some sort of memory interface between 
software and hardware, that was one of the biggest bottlenecks when it came down to 
actual implementation of the project.
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Sources Used 
http://www.google.com 
http://nehe.gamedev.net 
Peter Nelson’s Brain 
Xilinx documentation 
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Individual Reports – Astav Sacheti 
 
We split up our design into three major components – Hardware on FPGA, Software on 
FPGA, and Software on the Workstation. Subsequently, we broke up our major tasks also 
according to the three components, but also helped each other with minor parts of the 
other components. The software on the FPGA (PPC Core) was the component that I took 
up and was responsible for. In addition to that I helped with the audio on the workstation, 
a few modules in verilog for the hardware on the board, interfacing with the motion 
sensor on the workstation, and few random things in the software on the workstation 
(mainly searching MSDN for windows versions of popular unix functions). 
 
The software on the Power PC Core had the following main components :- 

• UDP communication with Workstation 
This required finding documentation on how UDP protocol works, a lot of 
trial and error to see if the correct packets are being transmitted, but relatively 
easy code in the end. Majority of the time was spent trying to get the code to 
behave nicely with EDK and Xilinx. The checksums for the UDP packets was 
hardcoded in the code for the various packet sizes that we were going to use. 

• Polling the PS/2 mouse on the shaft of the chair 
Again, this required trying to find documentation on PS/2 protocols and how 
to initialize the mouse to talk to it. After finding the documentation and 
playing with it a little bit, the code was simple and short. PS/2 protocol allows 
a polled mode for the mouse which is exactly what we wanted. 

• Syncing the hardware on the board with the software on the workstation 
This was probably our biggest hurdle after having a working implementation 
of the game. Even though everything worked nicely individually it didn’t 
work nicely together. There were little hacks that were written to glue the 
hardware and software to sync properly. 
 
 

I also helped write the code for playing audio on the workstation. This involved searching 
for functions to create threads (for background music), Play wav files on windows PCs 
using Visual C++, and finally testing that it all works nicely together. 
 
The third component, also had a few modules that I wrote. There was amux, a clock 
divider, and the main one was the ghost AI to move around the board (written with 
Travis).  
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Individual Reports – Julio Segundo 
 
My primary role was to handle the OpenGL that resided on the workstation external to 
the board, as well as any other logic that handled that OpenGL. Some of those other items 
would be connecting to and reading serial data received by the head tracker worn by the 
player of the game and receiving game status data and transmitting, over Ethernet, 
acknowledgement packets back to the FPGA board. 
 
To do these tasks I had to start by learning OpenGL using in-class books and the 
Gamedev website mentioned in the references. This took up a large amount of time, at 
least 12 hours a week for a few weeks after we finished the mandatory labs. I then used 
knowledge from 18-345, which I was taking at the time, to implement use of the Ethernet 
port on the external workstation. After instantiating that, the serial port was relatively 
new to me, I thus used the Windows API to learn how to receive access to the Serial port 
and talk to the Head Tracker to learn in which direction the player was viewing when 
playing the game. 
 
The IDE used on the workstation was Visual Studio 2002. 
 
One way to possibly improve the class is making more labs optional so that students can 
more appropriately use the labs that will benefit their particular project. Labs that would 
have helped our group in particular would have been hardware oriented and Ethernet 
oriented labs. Other than that, I loved the class! 
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Individual Reports – Travis Brier 
 

My primary areas of focus were the hardware and the physical setup of the entire 
game.  That being said, whenever anybody in our group ran into any problems within 
their particular areas, the other two group members would provide their eyes and talent to 
help solve the problem. 
 For the first portion of the project, I worked in conjunction with Astav to set up 
the interfacing between the hardware and software.  Together, we figured out all the 
registers set up between the PPC and the hardware and the specific bootup sequence. 
 The first big part of the project was making the chair setup for pacman.  While it 
wasn’t really an ECE problem, it was an interesting engineering problem nontheless and 
a fair amount of time went into the math behind it.  The biggest problem was making 
something that would allow us to be moved into lab, but also not be a cramped fit.  I 
ended up designing the chair to expand as it did for the final demo so that everybody’s 
legs would clear when turning around in the circle.  The optical decoder used for 
determining the direction of pacman was plotted in AutoCAD and used in conjunction 
with a normal mouse being decoded on the PPC (yes, I did originally want to be an 
architect) 
 However, the vast majority of the project was spent writing the hardware code for 
the pacman board.  Essentially, the hardware took care and kept track of everything. 
 Pacman - The pacman portion of the board kept track of pacman’s position, 
direction, and time between blocks.  One of the more difficult parts of this to implement 
was the timing for the turning.  Due to the discrepencies between the openGL output and 
the hardware state, it was decided that pacman would only turn directly on top of every 
block, this just added in more timing issues. 
 Memory – The memory module consisted of building a BRAM out of verilog 
logic.  The memory was used to provide the rest of the hardware with data on what was 
in which position at what time. 
 Interfacing memory – This was used between the PPC and the user logic verilog.  
It provided the communication for the resets and signals which instantiated the main 
FSM to allow the logic to reset and the ghosts and pacman to move about. 
 Ghosts AI – The ghosts AI is talked about in the above paper.  While the vector 
logic was written, it never fully worked on the board and consequently we had to use the 
dumbed down random pattern generator implemented at the last minute in order to get a 
game that had ghosts moving without going through walls. 
 FSM’s – Several large FSM’s were written to control the state of the gameboard, 
during the initial software loading phase, the hardware loading phases and the signals 
required to sync the hardware and software the FSM’s were utilized to maintain that 
everything on the hardware side was controlled synchroneously. 
 
 All in all, it was a wonderful class, I think future improvements to the class would 
be to do a lab involving connecting the PPC to a module of verilog. 


