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What We Built 
 
Game Description 
 
 

Overall Implementation 
 Our original plan of action was to implement the game of Worms that utilized a 
customized Physics Processing Unit (PPU) built on the FPGA.  We had planned to run 
the game on the Workstation, send objects back and forth to a shared bank of memory on 
the board, and update the objects’ state using the PPU.  However, we came to realize that 
Worms would not fully show off our main feature of the project, which is the PPU.  
Therefore, we decided to create a “demo” which basically consisted of a bunch of squares 
interacting with each other, wind resistance and gravity within a confined area.  We then 
took it to the next level and implemented a simple 2-player shooter game.  The object of 
the game is for each player to destroy all of their squares, either blue or square, before 
their opponent.  Each person has unlimited regular ammo along with 2 “nuclear bombs,” 
which destroy all of the bombs within a certain radius. 
 

Physics Processing Unit (PPU) 
We designed a specialized CPU (A PPU) that operates on structs representing 2 

dimensional objects (position, velocity, acceleration, orientation, etc.). It modeled various 
particle effects, such as 
 

• Model collisions between particles and elastic/inelastic collisions  
• Effects of Gravity 
• Wind Resistance 

 
The accelerator sits in a basic iteration loop that applies each of the various effects 

on all the particles in memory, updating their positions, velocities, etc. based on physics. 
The CPU creates and destroys objects in the PPU’s loop, and reads the positions and 
orientations of the objects for use in the game. All updates are to the shared memory 
(BRAMs). 
 
 
Hardware Description 
 
 

PPU Pipeline / Overall Architecture 
We recently realized that there are some duplicate signals going through the 

pipeline.  Namely, the pending values and the operational values are both originally taken 
from the pending data out of memory, and they are the same for several stages.  I have 
not changed it yet, but those will be run down the pipeline only once until the point where 
they divide.  Also, Charles is working on the overlap amount unit and the acceleration 
calculator (its continuation) as one superpipelined unit, so there will be one fewer major 
stages, and the stage resulting from the merge will have more minor stages in it.  Also in 
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the current verilog code, the next address generator is not finished.  Since the object array 
is null terminated, we know to loop A and B around to the base address when they get a 
null in their Object ID field.  We want to know about this as soon as possible, and give 
the memory the correct wrapped around address in time, so the address generator must be 
a mealy machine.  Its current implementation will be changed shortly.  The rest of the 
pipeline still works like in the diagram. 
 
 In the first major stage, we generate an address to put on the memory read port 
and on the next cycle we get the entire object out and run it through the breakdown 
module to separate it into the various values associated with the object.  Having this 
module makes it very easy to change our word size or the memory ordering without 
affecting the rest of the PPU.  Here we also generate a NOP signal based on whether or 
not the memory data is ready, and A or B address is wrapping around, etc. 
 
 The second and third major stages are now being combined into one larger stage.  
Here we have a superpipelined acceleration calculator which takes in the positions and 
orientations of A and B along with other properties and outputs the resulting 
accelerations on A (a fixed number of cycles later).  In parallel with this, we have the 
global acceleration calculator, which calculates accelerations resulting from gravity, 
wind, and wind viscosity.  On the final iteration of A, once it has been compared to all 
over objects, the global accelerations will be applied instead. 
 
 In the next stage, we have out accumulation units.  This consists of the 
acceleration accumulator and the overstress detector.  The acceleration accumulator 
keeps a running sum of all the accelerations on A as a result of any collisions it has with 
any of the other objects.  The overstress detector keeps track of whether or not any of the 
collisions have overstressed the object, causing it to eventually be destroyed.  These units 
are tricky in stalls and changes in A because they are state full (using pipeline registers), 
so we had to run some additional signals to make sure they stay correct in these 
situations.   
 
 In the next stage we compute all the time dependent updates.  Basically, we 
update the position based on the velocity and elapsed time, and update the velocity based 
on the acceleration and elapsed time.  In order to obtain the elapsed time, we include a 
timestamp (measured in cycles) with each objects data.  In this stages, we get the new 
cycles count and do a subtraction to get the elapsed number of cycles from the last time A 
was updated.  We also keep this time to writeback as A's new timestamp. 
 
 In the final stage we put all the properties of A back into one word and write it 
back to the memory.  Although it is not shown on the diagram, the pipeline must actually 
stall when there is a write, because there is normally a read on every cycle, and the PPU 
is only getting one port of the dual ported memory controller.  This is ok, however, 
because writes will happen an insignificant percentage of the time (once about every n 
cycles, where n is the number of objects in the array).  This is the issue that the memory 
can only have one port that has the ability to write.  In the instance that the PPU is writing 
and the PPC (ethernet code) is trying to write at the same time, the PPU gets priority and 
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a write failure signal is sent to the PPC.  This is done because it is easier to handle a 
failed write in software than in the PPU architecture. 
 

Overlap Amount Calculator 
In this module of the pipeline, 2 objects will be tested for a collision.  We have 

decided to treat all objects as squares.  The objects have x and y coordinates along with 
the length of their sides (all are equal since they are squares).  The overall goal of this 
module will be to output the total area of overlap between the two objects, 
horizontal/vertical distances between the centers of the two objects, and the projected 
direction of horizontal/vertical acceleration.  This is done explicitly through several 
subtractors and adders with some extra compare and absolute value logic based on 
custom bit manipulation. 
 

Collision Acceleration Calculator 
The collision acceleration calculator is a bigger module that relies on the overlap 

amount calculator.  This module takes in the outputs from the overlap amount calculator 
along with the object’s mass (this is inverted to eliminate the need for a division) and 
positional/size properties.  There are three outputs that this module creates: acceleration 
of the object in the x direction, acceleration of the object in the y direction, and angular or 
theta acceleration of the object.  We are using Newton’s F=m*a formula to calculate 
acceleration.  Therefore, in calculating the 3 different accelerations, we use a=F*m-1.  We 
therefore need to determine the “force” for each component. 
 
 The force for the x and y components are going to be modeled by 
Fx=a*b*dx*[elas_A+elas_B] and Fy=a*b*dy*[elas_A+elas_B], where a and b are 
dimensions of the overlap rectangle, elas_A and elas_B are constant properties of the 
objects that are given, and dx and dy are the horizontal and vertical distances between the 
center of the two objects.  The angular force will be based on the same principles.  
However, now we will take Ftheta to be the greater of Fx and Fy.  The only difference 
will be the direction.  The angular acceleration must be negated due to convention.  One 
last issue is saturation.  Due to the multiplication of several numbers which are up to 16-
bits long, the final values must be saturated.  Therefore, in the end, the minimum 
acceleration will be -32,768 units and the maximum will be 32,767.  These values will be 
interpreted and scaled appropriately by the game.  At this point, the final outputs of this 
module should be ready to be passed on to the next stage of the pipeline. 
 

Acceleration Accumulator 
This module determines the new overall acceleration of the object based on it's 

"old" acceleration and the new acceleration based on a particular object/force. This is 
done through 3 parallel 16-bit adders and 3 parallel 16-bit muxes.  Essentially the muxes 
are there so that junk data is not written into the accumulator when the next stage does 
not contain valid data. 
 

Time-Dependent Update 
The time independent update module takes the computations computed previously 

in the pipeline and actually applies it to the object.  The “next state” of the object, most 
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specifically the next position and velocity, will be updated.  A simple subtraction is used 
to compute the total amount of cycles elapsed.  This value is then multiplied by the 
velocity and acceleration components to achieve the next state position and velocity 
components, respectively.  Once again, there is some custom bit manipulation that is 
done to assure the proper values are computed. 
 

Global Effects Calculator 
 Along with the collision acceleration calculator, there is the global acceleration 
calculator which takes into account gravity, wind, and wind viscosity and sums them to 
create an overall acceleration due to natural elements.  Linear acceleration (acc_x and 
acc_y) are created through simple computations with adding acceleration due to gravity (-
9.8) and due to its current wind velocity.  The acceleration due to the wind velocity will 
be scaled according to the wind viscosity and the height or width of the object (depending 
on which component of the acceleration is being calculated).  All of these calculations 
will be done using several adders and 2 multipliers.  The global angular acceleration will 
be calculated by summing all of the acceleration vectors and computing a very simple 
angle that will be one of 8 orientations.  This will be done with 2 adders and a 8:1 demux. 
 

Memory Controller 
 The memory module is implemented to allow communication between the 
Ethernet connection with the desktop workstation and the PPU. It is a fairly simple dual-
port RAM with enables on each port to allow reading and writing. The word size is kept 
relatively large (256 bits) to allow all relevant data about an object to be read or written 
in a single clock cycle. Despite the large width, the memory is able to remain somewhat 
deep as well (~8000 words). Although this is a dual-port memory, due to technological 
limitations, only one port can write at a time, so an error is generated if the Ethernet and 
PPU both try to write at once. In these collision cases, the PPU is given priority. The 
memory is implemented in BRAMs; these block primitives allow very rapid, low latency 
memory accesses from within the FPGA fabric without having to deal with all of the 
issues involved in using the DRAM. As part of the PPU operation, the memory is 
traversed by the pipeline, with each item read, compared to every other item to determine 
collision interactions, and then updated in the memory. During the garbage collection 
phase implemented by the Power PC, the memory is compacted as objects that are 
flagged as destroyed are removed from it. This should allow the game to continually 
generate new objects without fear of overfilling the memory. 
 

Variable Representation 
 The following are the general fixed-point representations of the major variables in 
the physics computational portion of the pipeline: 
 
 Fixed-point Representation Format 
x, y coordinates 8b.8b unsigned 
side length of square 5b unsigned 
a, b (amount overlap) 8b.8b unsigned 
dx, dy (separation distance) 8b.8b unsigned 
elas_A, elas_B, mass 4b.4b unsigned 
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Time (cycles) 32b unsigned 
Velocity 8b.8b 2’s complement 
Acceleration 16b 2’s complement 
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Architecture Diagrams 
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Architecture Diagrams – Stage by Stage 
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Software Description 
 
 

Physics Demo 
  
 The demo starts with four rectangular bounding boxes. The idea of these is to 
force collisions of boxes by forcing them to bounce off 4 walls.  
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 The idea of the demo was the show off everything the physics processors could 
do.  The user had the ability to specify every aspect of the square “molecule”, and add as 
many or as few of the objects as possible. The user could choose to add random objects 
with fixed size and mass (or not) as well as fine tune object creation. The user could 
control : 
  

● Initial Position (X,Y, Theta) 
● Initial Velocity (X,Y, Theta) 
● Mass 
● Elasticity (How “bouncy” the object was) 
● Max stress (how much damage and object could take before it was destroyed) 
● Size (square side size) 

 
 The user could also specify and change on the fly the following “global” params 
 

● Gravity 
● Wind viscosity (the “thickness” of the wind, how much it slow the objects down) 
● Wind velocity (x,y) 

 
 The demo store no data locally, and instead sent add, delete, and request all 
packets to the board.  If the user was not adding anything, the demo would just be 
constantly requesting all the data over Ethernet. It would then display the data it got, and 
ask over and over again. 
 
 Finally, the user could delete all objects, and start and stop the PPU. See the 
website for a video of the demo in action. 
 

Interesting Demo Cases 
 

• Add a bunch of boxes on top of each other. Turn on gravity. Fire one box going 
very fast at the tower of boxes. The boxes will accurately tumble to the ground. 

• Add once large box to the center, and add 100 random boxes at various velocities 
(a one click process). Turn on wind velocity and watch boxes get stuck on the 
center box and try to get pushed past it. 

• Add three boxes that form a canyon. Add a bunch of random boxes and turn on 
gravity. Boxes will get stuck in the canyon and bounce around. Turn on wind 
velocity and watch boxes move back and forth in the canyon. 

• Combine all three of these for more fun and interesting possibilities. 
 

Game modification 
 
 At the end, we converted the demo into a basic game (that ran after clicking 
START GAME) so that our group met all the requirements of the project. The game was 
a 2d box shooter. The objective was to destroy all the boxes that corresponded to your 
crosshair's color. The red player controlled his crosshair with the wasd keys and the blue 
player controlled his crosshair with the arrow keys. Both players had separate fire and 
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giant gun buttons. Collision detection between the crosshair bullets and the squares was 
done in software. On collision detection, a delete packet was sent to the board, and the 
Power PC deleted the object from its buffer so it didn't cause collisions anymore. Once 
all of one players squares had been destroyed, the game ended, and the software runs in 
demo mode again. The game had a laser sound effect that occurred when either player 
fired his weapon, as well as some killer background music. 
 

Ethernet Protocol and Board Server 
 Our original plan was to boot Linux onto the FPGA board and have the game 
completely run from the Linux OS on the board. In the end, we ended up having too 
many problems with linux,  we could not get X11 to work because we could not get 
“make” and “gcc” installed on the board, plus the game uses many external libraries that 
we would also have to install from scratch.. The entire process of sitting and reading 
documentation on how to install compilers and all the required software that we needed 
proved to be too time consuming. To solve these problems, we decided to run the game 
on the workstation and have our game communicate through the Ethernet to our PPU. 
 
 We code a server onto the board using Xilinx sockets API and pass information to 
and from our game on a given socket. Our software team has had reasonable experience 
with network programming and has written servers before, so the transition to this new 
plan was fairly easy. 
 
The basis for our network protocol is very simple.  We arrange all the data that we 
needed into one of four types of packets:  
REQUESTALL, ADD,DELETE and GC garbage collect). The game will assemble the 
data into a packet, tack a header that we specify onto it and send it off to the server. On 
the server side, depending on what the client requests, will perform the desired operation 
on our memory module, which in turn will update our BRAM. 
 

Type ADD DELETE REQUEST-ALL GC 

Size (bytes) 18  2  0 (Req) 
8 (Resp) 

0 

Contents Object ID 
Pos (X, Y, Angle) 
Vel (X, Y, Angle) 
Max Stress 
Elasticity 

Object ID Object ID 
Pos (X, Y, Angle) 
 

 Nothing

 
 
Another key design of the server is that we need it to utilize only the DRAM, because our 
memory module takes up about 90% of the BRAM and the 10% left for our server is not 
enough given that we request information every screen refresh/redraw.  
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How We Built It 
 

Initially our design methodology was to completely diagram the design so that it 
could be easily partitioned and implemented. We divided the design into software and 
hardware portions, and assigned group members to each part. We created a huge top-
level diagram of the pipeline and then slowly filled in detail to the point where each part 
of the design could be easily implemented. The software team looked through the open 
source Worms game and began to pull apart the physics computations in order to 
properly adapt it to the physics hardware. We made the decision to run the game on the 
work station and communicate with the hardware via ethernet, so then the software team 
began to work on the software for that. At this point the hardware team began to 
implement various parts of the physics pipeline, with different parts being assigned to 
each person so that work could proceed in parallel. 
 Once the individual modules in the pipeline were finished, it was time to 
implement them on the Xilinx board. A simple project had already been created in the 
Xilinx Platform Studio to implement the ethernet communication, and this was working 
well. The bus interface was then added along with the memory so that the software 
running on the PowerPC could communicate with it. We though that once this was 
working we would have only to attach the physics pipeline to the memory module and 
everything would work. However, we soon found that the Xilinx synthesizer would not 
properly or completely implement our design modules. At this point our careful design 
methodology fell to pieces and we began to try to debug the design. Since we were 
unaware where the problem was located, members of both the hardware and software 
teams worked on the debugging almost non-stop. A lot of the debugging became a sort of 
guess-and-check black box testing, since we couldn't see what was happening inside the 
board and we didn't know what was implemented and what wasn't. When we learned how 
to use the Chipscope tool this helped us greatly. We found that when certain nets were 
connected to the Chipscope, we would not only be able to see what was happening with 
the hardware, but we could also force the synthesis tool to implement the connected parts 
of the design. We began to add more and more things to the Chipscope in order to be sure 
our design was being implemented the way we wanted. 
 Even with the help of Chipscope, we soon found that the synthesizer was unable 
to deal with much of our design. A wise decision from the software team had given us a 
simple physics demo with which we could easily debug the design, and it showed us that 
our computations were still incorrect. We began to redesign the pipeline, using a much 
simpler design than we had originally used. Although much of the pipeline remained 
unchanged, the modules with the heaviest and most important computations had to be 
replaced with combinational modules that used simpler heuristics rather than the 
complete physical equations we intially planned to implement. Finally after much 
hacking we were able to get the pipeline working pretty well. 
 
 
 
 

What We Learned 
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Most of what we learned in this project revolved around troubleshooting and 

debugging. Initially, we planned to have the entire design planned and diagrammed so 
that we would only have to implement it in Verilog, test it, and then connect it and load it 
onto the board. However, we had a lot of trouble with the Xilinx synthesis tools, so a very 
large part of the project became figuring out how to work with the less than optimal 
Xilinx tools. We even ended up having to greatly reduce the functionality of our design 
and abandon the idea of adapting our open source Worms game to work with our physics 
processor. So instead of learning a lot about digital design theory, we instead learned the 
vast limitations of FPGAs and their software tools. If we had know the difficulties that 
we would face in implementing our design on the FPGA at the beginning of the semester, 
our design would have been very different, and we would perhaps have been a little less 
ambitious in what we hoped to accomplish. 
 Despite the difficulties in implementation, we feel that our design flow was a 
good choice. Even though we ended up abandoning a lot of the initial design, the time we 
spent designing and diagramming helped us to better understand the problem of 
designing the physics processor and understand which parts of the design would require 
the most work. In this way we were able to segment the design fairly well and assign 
different group members to work on different parts of the project. Although at the end it 
came down to all of us working to debug the design, initially we were able to accomplish 
a lot in parallel, which was a good decision. Another good design choice which we made 
was to run the game/demo on the workstation instead of on the board. There is no telling 
how far we would have gotten if we had to debug the game on the PowerPC instead of on 
the workstation. Choosing to just send the data via Ethernet was a good decision. A bad 
decision of ours was probably the decision to try to adapt an existing game to our physics 
pipeline. While the game Worms utilized basic software physics that were easily changed 
to take advantage of our hardware, the very nature of the game itself did not fully utilize 
our physics engine. Perhaps if the Xilinx tools had not given us as much trouble as they 
did, we would have been able to modify the game to properly show off our physics 
hardware, but since debugging placed such a time constraint on us, we had to abandon 
the game. At this point, we made another of our good decisions: implementing a simple 
physics demo with a user interface so that we could add or remove boxes, adjust global 
parameters, etc. This demo proved invaluable in debugging and testing the design since 
we could easily see what effect the changes we were making in the hardware had. We 
were even able to adapt this demo into a simple game by the end of the semester. 
 As far as advice we can offer to future generations, we would mostly advise them 
to avoid the Xilinx tools altogether if possible. They are full of bugs, they are difficult to 
use, and they admittedly have important features missing or broken. It seemed in the class 
that those projects that had more software portions in their design had a better time of it, 
while designs like ours that were more hardware-based had a worse time simply because 
of the poor documentation and poor functionality of the Xilinx FPGAs and their software 
tools. In the future, more of the class should be devoted to familiarizing students with the 
limitations of the equipment so that less time will be spent having to figure it out, or 
perhaps better equipment should be acquired. 
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Team Contributions 
 
Nicholas Bannister 
Individual Contribution: Software Team 
Planning: 10 weeks 
 Worms 

Throughout this phase of the project I was primarily responsible in assisting the 
planning of the game and researching open source games that we could 
potentially use for our project. This task was not particularly easy because there 
are many open source games but only a handful that would even remotely 
demonstrate what we wanted to do with the physics processor. I the end, going 
with worms seemed like the best way to go. 

 Demo 
When we finally came to the realization that worms was not going to work as we 
had planned we stepped into the planning phase of the physics demo. During this 
phase I was primarily responsible for the OpenGL design and coding of the demo, 
and helping the second software engineer (Vinay) in testing and debugging 
OpenGL problems. 
PPU 
For the PPU I assisted in the original design and architecture of the data structure 
that eventually held all of the physics objects. I.E. the array of objects that we 
traverse and compare with each other object, then update each object physics 
properties per cycle. 
Changes 
If I had to do this phase over again I would have not chosen to do and open source 
game and instead written a demo from the beginning and then turned the demon 
into a fully interactive game. I.E. simply have two modes that we had in the end. 

Design/Testing: Till the end 
 Worms 

I was not really involved in the design of worms. It was open source. I looked 
over a small fraction of the worm’s source code but it was a pretty large program. 
I would say I saw and understood about 15% of the entire code base. 
Demo 
For the demo I was responsible for the graphics and in the end the testing of the 
demo. I assisted in the making of the final “game” by coding the functionality to 
target and destroy objects.  
Lastly I helped in the coding of the starter code for the PPU server on the Xilinx 
board. 

 Changes 
Once again I would scrap open source and go directly to demo. Secondly I would 
have like to design a much better game. 

Final Demo: 1 week 
 Demo 

For this I was responsible for the putting the slides together for the poster and 
talking about to anyone who wanted to know. Not many people asked about it 
however. It was more of a show them the demo, then walk away. 



 15

Over All Impressions: A Lifetime 
I enjoyed the class and feel that interaction with a large/long group project will 
better prepare me for further projects now that I know what not to do. For 
improving the class: I don’t know if there is anything, other than going to the 2.0 
version, that can be really done to improve the class, everything is self defined 
and self paced so each group is responsible for their own little project world. 

 
I also created the final website for the course. 
 
Vinay Chaudhary 
 Overall my role for this project was that of a software engineer. I was primarily 
responsible for all software related issues. This included both software running on the 
power pc on the board, and demo code running on the workstation. I also worked on 
modifying worms to work with our physics processor, but abandoned it after I decided it 
would not be a good demo for the physics processor.  
 Besides the software component, I worked with Aaron in the initial design of the 
PPU. Together we came up with the “molecule” data structure and the array structure in 
which to store it. I also decided that we should just use an array for data storage, and once 
the array was filled, delete previously lazily deleted items. This is analogous to some 
managed languages “heap compaction” algorithms. The whole design process took about 
10 hours a week for the first 4/5 weeks. 
 After this my primary role was design and implementation of the game and all the 
software on the board. For a few weeks, I worked on modifying worms to better show off 
our physics processor. The task proved more difficult than previously imagined. I 
actually did manage to factor out some of  the physics, but some of the stuff was too 
hard-coded in software to work. There was another major problem in that there were very 
very few collisions occurring in the game, and our physics processor was primarily based 
on accurately modeling collisions. Worms would have served only to show off the global 
effects. Additionally, I realized that debugging the PPU on the board with only worms 
would be extremely difficult. 
 At this point I abandoned worms (after putting about 50 hours working on it :( ), 
and started working on our physics demo, called “Square molecules in a box”. I was 
responsible for all aspects of the demo except for the graphics. The demo (excluding 
debugging) took about 20-40 hours to make and test. 
 After I had tested the demo without the PPU (with a test server that would take 
the place of the the Power PC), I worked extensively on debugging the Power PC board 
software. The software running on the Power PC was fairly basic. It was just an infinite 
loop that read packets from the ethernet hardware (using the wonderfully buggy xilnet 
software package) and responded. There is a section of this report that explains this in 
more detail. All in all this took about 20 hours. 
 I also worked on converting the demo into a basic game so that our group met all 
the requirements of the project. The game was to be a 2d box shooting demo. Nick did 
the graphics and the user input, and I wrote all the game logic. The objective was to 
destroy all the boxes that corresponded to your crosshair's color. I spent about 24 hours 
doing this. I also added some background music and laser sounds. It was a real hit with 
Professors Marculescu's children, who recommended our group receive an A :). 
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 Finally I spent the last two weeks in lab working with Aaron debugging the 
hardware implementation on the board. I basically looked over the Verilog to make sure 
that changes he made made some sense. I also modified the Power PC /demo in order to 
better test changes to the PPU. All in a heavily sleep deprived and caffeinated two weeks. 
During this period of time I probably spent 10 hours a day in lab for 5/7 days in each 
week. 
 
Aaron Hoy 

For this project, I designed and implemented the architecture for the physics 
processing unit.  The first challenge was the address generator for the memory read stage 
of the pipeline.  Figuring out which address to read next may seem easy, but it was 
actually one of the more difficult parts of the PPU implementation.  There needed to be 
two registers in the unit, one to store the most recent object A address, and another to 
hold the current object B address.  In a normal case, the object A address stays the same, 
and the object B address is incremented.  However there are special cases, such as when 
one of the addresses wraps around from the end to the beginning of the array, or when 
object B had made it all the way around the array and it is time to change A.  For each 
normal special case there are also abnormal special cases such as more than one 
happening at once, or a stall in the read stage due to a write back happening at the same 
time.  Once I debugged the address generator I implemented the rest of the pipeline 
architecture, putting dummy modules in place of the computational units.  Once I got all 
the timing and special cases in the pipeline debugged, I improved the dummy modules to 
actually do something so I could test that objects bounced off of each other.  After getting 
all that done I began meeting in the lab with the rest of the group so we could put all our 
parts of the project together.  The Xilinx software turned out to be a nightmare and I 
spent hours and hours helping to debug the bus interface between the PPC core and the 
PPU verilog modules.  I also added data ready signals to the memory controller 
(previously it had no way of letting the other modules know if they had a successful 
read).  The unit accurate computational units that we had unfortunately could not be 
synthesized properly by Xilinx.  It kept trying to optimize things out of the design and it 
ended up breaking the calculations.  To get around this I gradually improved my dummy 
computational units until they actually did legitimate physics calculations.  Getting the 
masses and elasticities normalized to reasonable numbers was quite tricky because of the 
Xilinx “optimizations” so I was only able to shift the fixed points on those number so be 
barely in range of normal masses and elasticities, so the objects all behave a little more 
like beach balls on a rubber sheet than solid blocks on the ground.  However for the given 
values, the physics are still realistic.  I also eventually implemented wind viscosity, wind 
velocities, and got conservation of energy to work properly in the other computational 
units.  To show off these features I made some cool demos where a moving block is sent 
in from the side to knock over a vertical set of blocks that have settled out in a stack.  The 
stack topples over and then the objects settle upright on the ground.  During most of the 
semester I spend a reasonable amount of time simulating the architecture.  I would say I 
spent about 12 to 15 hours a week at that time.  Once we started working with the board 
and trying to combine all our parts of the project, I ended up spending a lot more time.  
For the last 3 weeks of the project, I literally spend every waking our in the lab dealing 
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with the Xilinx synthesizer aside from 3 hours of sleep some nights and a few exams and 
lab demos for other classes that I had to go to. 
 
Charles Norman 
 I started off, like most of the other members in the group, by helping brainstorm 
ideas on what project we should do and how to implement it.  I helped Aaron and Jeremy 
in creating the overall architecture for the hardware design.  Most of my work was with 
the hardware design and implementation of the amount overlap and collision acceleration 
calculator along with the time independent update.  I spent a lot of time trying to take 
realistic physics calculations and turn them into logic in hardware while still keeping as 
much accuracy as possible.  In the end, most of my modules were not used due to 
complications with the Xilinx board, mainly because a lot of the computations were 
synthesized out.  An example of this was when I needed to negate something twice for 
precision, but Xilinx insisted on leaving it positive the whole time.  Despite these 
setbacks, we were able to use the general calculations that I computed earlier on and 
create simpler computations that were able to synthesize correctly on the Xilinx board.  
As far as time spent, in the beginning, I did not have a lot of work to do (generally less 
than 10 hours a week) due to the fact that I had to wait to see exactly how the software 
was going to interact with the board.  Also, since I did not have a lot of architecture 
experience, my input with the overall hardware architecture was limited.  Most of my 
contribution came in the last weeks when our hardware architecture was complete and the 
software implementation was close to complete as well.  This is when I finally coded the 
necessary Verilog for the physics processor.  In addition to coding the Verilog modules, I 
worked on a floating point  fixed-point  floating point converter in C.  However, we 
saw that this was unnecessary and did not implement it.  Instead, we used the built-in 
casting function in C since edge cases were not present.  I would say that my weekly 
contribution during this period was greater than 15 hours per week. 
 
 As far as my opinion for the course, I believe it is a more laid back course 
compared to other capstones.  Compared to my first capstone, 18-525, there was a lot less 
structure.  In my opinion, this is good and bad.  It allows for more flexibility in the type 
of projects created.  However, there is the possibility of less work getting accomplished.  
Also, in any given project, there is a high probability that at least one person’s expertise 
will probably not be used.  In our project, I was not fluent enough in software design for 
work on the game.  Also, I have not taken any networking courses, so I was no help in 
communicating with the board.  Most of my expertise came in digital hardware design.  
However, that was not used really at all in this project since only basic hardware design 
was needed.  By the time my hardware modules were complete, there wasn’t much I 
could do with helping debug the project on the board due to the fact that Aaron and 
Jeremy were so far along with that portion. 
 
Jeremy Weagley 

Initially, most of my work on the project was in the design. I worked with Aaron 
and Charles to plan out how the hardware would function. Then I began working on the 
memory module for the design. I initially planned to use the Core Generator to create the 
memory out of BRAMs, but apparently the version of Core Generator that we had was 
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unable to create “large” memories. After finally discovering this and also finding that I 
was unable to update the Core Generator, I began to implement the memory module by 
hand. Once it was completed, I began to work on a way to interface our hardware with 
the Xilinx PowerPC. Initially, I was the one with the most experience with Xilinx boards 
in the group, given that I had worked with them the previous summer. I eventually 
managed to create a bus interface to allow the PowerPC to access the physics hardware 
via the Processor Logic Bus. Data could be sent or received through software addressable 
registers, so it looked like everything would be working fine once the physics hardware 
was finished. 
 It was at this point that most of my work on the project began. Even though 
everything had been simulated and looked like it would work correctly, nothing seemed 
to work. After we had spent many hours debugging, we learned that the Xilinx synthesis 
tools were not synthesizing vast portions of the design. I probably spent twice as much 
time in the last two weeks of the project as I did in the entire rest of the project. For an 
entire week I spent about 6-8 hours a night in the lab with other members of the group 
trying to debug the design and figure out ways to get things to work. Eventually we 
figured out ways to force the synthesizer to implement our design and after re-tooling the 
physics pipeline, we were finally able to get the physics processor working reasonably 
well. 
 As far as my impressions of the course, I thought it went pretty well. As I 
mentioned before, it seemed like the project started slowly but then picked up way too 
much toward the end. While this is partly due to the fact that I was putting off some of 
the project work, it was also due to the fact that we did not know the difficulty we would 
face in using the Xilinx tools. My recommendation for the course would be to include 
more instruction about FPGA design at the beginning of the course, and also to introduce 
Chipscope earlier, since that seemed to be the only useful debugging tool. 
 

Project Website 
 
Our project website can be found at: www.andrew.cmu.edu/user/nbannist/index.htm 


