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Project Description 
 

This class asked us to implement a video game system on a Xilinx Virtex 2 Pro 
FPGA prototyping board.  The requirements for the design were as follows: must have 
video display, must have sound effects, must take in user input from an external device, 
must support multiple concurrent players, must have a scoring mechanism, and most 
importantly, must be fun.  Other than that, the direction and design of the project were up 
to us. 

 
We decided to implement a version of the original home gaming system, the 

Nintendo Entertainment System (NES).  Though challenging, the system would definitely 
meet the requirements.  Because so many games already existed for it, we would be able 
to devote all our time to the hardware rather than trying to create both a hardware system 
and impressive demo software.  Finally, the NES has a very closed specification- either it 
works as the original did, or it doesn’t work- and is far better documented than any other 
gaming console. 

 
The following sections contain details on all the parts of our design,  an overview 

of our methodology, what we learned from the attempt, and individual comments by all 
group members. 
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The NES 2A03: 
Part 1a: The NMOS 6502 (spkelly) 
 
 The NMOS 6502 is a relatively simple 8-bit processor.  It has a total of 56 
instructions spanning the loading/storing any of its 3 general-purpose registers, basic 
control flow, basic stack management, and roughly 14 arithmetic/logical operations.  It is 
run on a master clock at just over 21Mhz, but divides this by 12 to clock its own 
operation.  What complicates the 6502’s implementation is the fact that over half of its 
instructions can use many or most of 11 different addressing modes to index a 16-bit 
address space, and achieving correct execution cycle count for many instructions requires 
a highly combinational datapath capable of retrieving and using data from memory in the 
same cycle its address becomes available.  Our 6502 implementation is not a true 6502, 
but rather a clone which meets all critical parts of the 6502 spec and is greatly facilitated 
by the use of a functional Verilog control loop. 
 
 A real 6502 utilizes a simple ALU with 8-bit addition-with-carry, subtraction-
with-carry, AND, OR, and XOR functionality, as well as basic 
incrementers/decrementers and a shift register.  Our 6502 rolls all this into a single 8-bit 
12-function ALU which can take both real data inputs and a selection of hardcoded 
values.  While this increases the bitwidth of the ALU control input, it greatly decreases 
the number of distinct modules we need and the number of separate values we need to set 
in each state of our FSM. 
 

 
6502 wiring diagram (see appendix A for details) 
 
 As stated, the first difficulty with the 6502 is that many instructions can use any 
of numerous addressing modes, and instruction execution time will vary by the mode 
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used.  The original 6502 uses a microcode instruction set to specify operations cycle by 
cycle.  Our implementation uses a 40-state FSM containing two fetch/decode states 
followed optionally by any of 18 different multi-state execution loops, which together are 
suitable to match all documented 6502 functionality and a moderate subset of 
undocumented opcodes achieved by replacing the last (dead) microcode cycle of certain 
read-modify-write instructions with a different computational cycle.  Two additional 
states were added to our 6502 late in the project to handle sprite Direct Memory Access- 
whenever the register at $4014 is written to, the 6502 pauses its normal execution, instead 
devoting its cycles to an automated read/write loop to transfer all the data between $xx00 
and $xxFF, where xx is the value written to $4014, to $2004, effectively updating all 
sprite data in the PPU’s memory space. 
 
 The second difficulty with the 6502 is that to achieve the 2-cycle execution time 
for certain instructions and help decrease the execution time of numerous others, memory 
values have to be accessible during the same cycle as their addresses are generated.  This 
posed the biggest challenge to implementation since traditional Verilog FSM-based 
processors set the processor’s internal registers as a direct function of FSM state, setting 
address lines on one cycle and reading/writing data on the next.  To account for the 
necessity of a combinational datapath with direct access to memory lines, we decided to 
use a combinational datapath with direct access to memory lines.  Our FSM, then, 
controlled not the actual internal registers but the select line values for over 10 different 
mulitplexor trees.   
 

In order to allow the required memory timing, an additional hack was needed.  In 
the first version of our 6502, we configured the datapath and memory address on the 
positive edge of the clock but latch actual values to their destination registers on the 
negative edge of the clock, with memory running on a faster clock than the CPU and 
consequently taking/delivering data cleanly, if multiple times, between the positive and 
negative edges of the CPU clock.  There is a chance that this is how the real 6502 
operates, if inferences can be made off the fact that the real 6502’s internal clock runs at 
1/12 the speed of the NES master clock and has a very explicit 15/24 duty cycle- enough 
to allow slow value propagation after the posedge before latching on the negedge.  
However, once we noticed that some PPU and controller registers change the system state 
even on a read, we could no longer overclock the memory/peripheral system and presume 
reads to be harmless.  In the second version of our 6502, the datapath is configured on the 
positive edge of the clock, memory access happens on the negative edge, and values are 
latched to internal registers at the following positive edge.  The hope was that register 
latching would happen enough faster than datapath reconfiguration that we would 
reliably get only the values from the previous cycle into the registers.  This turned out not 
to be the case, so a third timing variant was developed which used a skewed clock to 
latch registers once and only once between the negative edge and positive edge of the 
CPU clock.  Matters were complicated here by the fact that, unlike the real 2A03, our 
6502 took in [master clock / 12] rather than taking in [master clock] and producing 
[master clock / 12].  After multiple petitions for a real skewed clock, Sean was able to rig 
a reliable hack which generated an appropriately skewed clock from a combination of the 
CPU clock, PPU clock, and a shift register. 
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 The only things our 6502 is presently not designed to handle identically to a real 
6502 are a small collection of undocumented opcodes and cycle-exact timing of 
NMI/IRQ interrupt handling.  The undocumented opcodes not currently handled by our 
6502 (or rather, handled by treatment as 2-byte NOPs) mostly create an output by driving 
multiple values to the data bus at once and letting the bus hardware determine what the 
actual value is.  This would be difficult or impossible to capture digitally in Verilog.  
IRQs and NMIs are handled by our 6502 in 2 fewer cycles than on a real 6502.  This 
should not be an issue for most games, but could be remedied by the addition of another 
dead state to our FSM. 
 
 Our 6502 currently synthesizes and was tested on all addressing modes, and on at 
least one variant of each arithmetic/logical operation.  While its performance on real 
cartridge code is ambiguous, each individual instruction appears to be operating correctly 
to the extent visible in ChipScope, and Sean is reasonably convinced that any remaining 
bugs are either due to typos in one or two individual states, or else resultant from a 
fundamental difference between the real 6502 spec and the spec Sean worked out over 
the course of the semester.  The former would be difficult to catch without a test, tedious 
to write and perhaps more difficult to plan, of every instruction in every addressing mode.  
The latter would need to be checked by further research and disassembly of commercial 
ROMs for comparison with the instructions seen/executed by our 6502. 
 

Part 1b: The Arithmetic Logic Unit (rrajan, spkelly) 
The ALU implements various basic instructions that would support the 11 

addressing modes of 6502.  Each of the instructions affect some flag bit. The ALU only 
gets data in the form of 2 operands from the CPU and will have to perform the operations 
as required. They do not distinguish between the various addressing modes. 

 

 
ALU functional diagram 
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The flags are indicated as 
N – Negative ( set if the result of the instruction is negative in signed representation) 
Z – Zero (set if the result of the instruction results in a zero) 
C – Carry (set if the result of the instruction results in a carry) 
I – Interrupts (set if the instruction generates an interrupt) 
D – Decimal (set if the result of the instruction is in the decimal format) 
V – Overflow (set if the result of the instruction creates an overflow condition) 
 
OP1 – Operand 1 
OP2 – Operand 2 
RES – Result register 
− indicates no change 
X  indicates a change in the value 
 
The instructions implemented by the ALU are 
 

1. ADD 
Add 2 operands       N  Z  C  I  D  V 

OP1 + OP2 -> C,  RES      X  X  X -   -   X 
 

2. ADC   
Add 2 Operands with Carry     N  Z  C  I  D  V 

OP1 + OP2 + C -> C,  RES      X  X  X -  -    X 
 

3. ASL     
Arithmetic Shift Left      N  Z  C  I  D  V 
C  <- OP1 <- 0      X  X  X  -  -  X 

 C  <-  b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0|  <- 0       
 

4. BIT 
Bit Test Operands      N  Z  C  I  D  V 
OP1 ^ OP2 -> RES      X  X  -  -  -    X 

 
5. CLC 

Clear Carry        N  Z  C  I  D  V 
0 -> C                                   -   -   X  -   -   -  

 
6. CLD 

Clear Decimal       N  Z  C  I  D  V 
0 -> D                                                                                     -   -   -   -  X   -  
 

7. CLV  
Clear Overflow      N  Z  C  I  D  V 
0 - > V                                                                                    -   -   -   -   -   X 

 
8. CMP 
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Compare 2 operands      N  Z  C  I  D  V  
OP1 – OP2 = RES       X  X  X -   -   - 

 
9. DEC 

Decrement the number     N  Z  C  I  D  V 
OP1 – 1 -> RES      X  X  -   -   -   - 

 
10. EOR 

Exor the 2 operands       N  Z  C  I  D  V 
OP1 ^ OP2 -> RES      X  X  -  -   -    - 

 
11. INC 

Increment the number      N  Z  C  I  D  V 
OP1 + 1 -> RES      X  X  -   -  -    - 

 
12. LSR 

Logical Shift Right       N  Z  C  I  D  V 
0 -> b7 | b6 | b5 | b4| b3 | b2 | b1  ->  b0   X  X  -   -  -    - 

 
13. ORA 

OR the operand with the second    N  Z  C  I  D  V 
OP1 | OP2 -> RES      X   X   -   -  -  - 

 
14. ROL 

Rotate left by one bit       N  Z  C  I  D  V 
C <- b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 <- 0   X  X  X -   -   - 

 
15. ROR 

Rotate right by one bit    N  Z  C  I  D  V 
0 -> b7 | b6 | b5 | b4 | b3 | b2 | b1 | b0 -> C   X  X  X  -  -   - 

 
16. SBC 

Subtract one operand from other with carry    N  Z  C  I  D  V 
OP1 – OP2 -> RES      X  X  X -   -   X 

 
 
 
Part 2: The pAPU (rrajan, rsinnott) 
 

The pAPU section is the emulation of the 2A03 processor which is basically the 
6502 processor but without the decimal mode that 6502 supports.  
 

We basically implemented only the square channel of the pAPU unit, which 
essentially has 5 channels, 2 square channels, 1 triangle wave, noise channel and the 
DMC. 
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The pAPU needs the values at memory addresses $4000 to $4017 mainly to 
function, which is provided by the 6502. The 6502 provides various addressing modes 
that enable the values at these addresses to be retrieved and fed into the pAPU unit. 
 

The signal that serves as the clock to the pAPU is the 1.79 MHz clock which is 
the main system clock divided by 12, and this is what clocks each unit of the pAPU. 
 
 
 
The audio processing unit consists of 5 channels. 
• Square Channel 1 
• Square Channel 2 
• Triangular Channel 
• Noise Channel 
• Delta Modulation Channel 
 
We were successful in getting one of the Square channels working. 
 
The square channel essentially has the below given units. 
• Envelop Generator 
• Sweep Unit 
• Timer 
• Sequencer 
• Length Counter 
• DAC 
 
The pAPU is clocked by 1.79 Mhz clock, which is the master clcok(21.48 Mhz) divided 
by 12. 
The registers which control the square channel (chl 1 and chl 2)are  
 
$4000/$4004 :  ddle nnnn  : duty, disable length , envelop disable, envelop period 
$4001/$4005 :  eppp nsss  : enable sweep, period, negate, shift 
$4002/$4006 :  pppp pppp : period low 
$4003/$4007 :  llll lppp     :  length index, period low 
 

Envelop Generator:  
This is used to generate a constant volume. The channel's first register controls the 
volume. The unit is made up of a divider and a counter. The divider's period is set to n 
+1. The divider is clocked at each of the clock signal that it receives, except for when 
there has been a write to the 4th register since the last clock, then the divider is reset to 0 
an counter is set to 15. 
 
Each clock that the divider outputs, the counter is decremented. Only in cases where the 
loop is set, and counter is 0, then it is set to 15. 
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The channel's volume is the value in the counter. If the disable is set then the volume 
would be 'n'. 
 
In our case, we had set it to a constant value of 1111(n) and envelope was disabled. 
 
 

Sweep Unit: 
This is used to constantly change the frequency of the square channel. This is controlled 
by the 2nd register of the channel. This contains a divider and a shifter. 
 
The period of the divider is p. The shifter calculates a result from the channel's period 
registers(4002 and 4003). This value is shifted right by s bits. If the negate bit is set, then 
the shifted value is inverted. The shifted and inverted value is then added to the current 
period which yields the final period. This is continuously updated on each clock. 
 
If the sweep unit is enabled and the output of the shifter is non zero, when the divider 
outputs a clock and the period high and period low registers are updated with the new 
value. If the channel's period is less than 8 or shifter's value greater than 7ff then the 
output is a 0. 
 

Timer: 
The timer consists of a divider whose period is got from the period high and period low 
values of the channel. The divider's period will be p+1, which is an 11 bit value. 
 
This is continuously updated by the sweep unit. 
 
 

Sequencer: 
This is the unit which generates some low frequency signals 60 Hz, 120 Hz, 240 Hz, 48 
Hz, 96 Hz, 192 Hz. The 240 Hz clock is generated by dividing the 1.79 MHz clock by 
7458 and the 120 Hz, and 60 Hz can be generated from th 240 Hz signal. The 192 Hz 
clock is generated by dividing the 1.79 MHz clock by 9323.  
 
The bit 7 of $4017 controls the mode .  
 
If mode is 0, then the 4 step sequence is generated(60,120 and 240) and if the mode is 1, 
the 5 step sequence is generated(48,96 and 192). 
 
 

Length Counter: 
This allows duration control of the channel. The 'halt' bit which is the 5th bit in the 
channel's first register is the one that controls the counter. If the halt bit is set, the 
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counting can be halted. The counter is loaded with a value indexed from a table using the 
higher 5 bits of the channel's 4th register. 
 
    iiii i---       length index 
     
    bits      bit 3 
    7-4      0        1 
        ------- 
    0        $0A    $FE 
    1      $14     $02 
    2        $28     $04 
    3        $50     $06 
    4        $A0    $08 
    5        $3C    $0A 
    6        $0E    $0C 
    7      $1A     $0E 
    8      $0C     $10 
    9      $18      $12 
    A     $30      $14 
    B     $60      $16 
    C     $C0     $18 
    D     $48     $1A 
    E      $10     $1C 
    F      $20     $1E 
The counter can be cleared by clearing the appropriate bit in the status register, which 
clears the counter. When this is clocked, if the counter value is non zero and the halt flag 
is clear, the counter is decremented. 
The bits 7 and 6 of the channel's first register also controls the duty cycle of the waves.  
00 : 12.5% 
01 : 25% 
10 : 50% 
11 : ~12.5% or 75% (with low first). 
Sweep unit controls the period and hence updates the period high and period low 
registers. This decides the divider value in the timer and in turn controls the sequencer. 
On the sequencer, length and envelop being enabled and clocked, it is fed to the DAC. 
  Sweep   ------>    Timer/2  -------> Sequencer 
   Sequencer + Length + Envelop ------> DAC 
 
The square channels in combination with the other channels would be ideally required to 
produce the correct NES audio characteristics. Presently it can generate only monotones. 
The output was connected to a speaker and tested. Finally when the project was put 
together, it generated a beep as a part of the scoring mechanism. 

2C02 Picture Processing Unit (PPU) (rng, rsinnott) 
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2C02 Picture Processing Unit (PPU) 
 
 

 
 The 2C02 was Nintendo’s custom graphics processor.  The PPU can address up to 
16KB of memory, but only has 2KB of physical RAM.  The PPU is controlled by the 
CPU via registers $2000-$2007.  Registers $2006 and $2007 are used to write to VRAM.  
Interestingly, a double write to $2006 is required to assemble the address to write to.  
This is because the address space is 14-bits, but the register is only 8 bits wide.  
Additionally, the PPU had 256 bytes of separate memory for sprites.  The VRAM was 
also located off the PPU chip, and usually a memory mapper on the cartridges determined 
if a particular VRAM access accessed the cartridges RAM and ROM, or if it accessed the 
onboard VRAM instead.   
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PPU Memory Map 

 
It takes two cycles for every memory access to the VRAM.  During the first 

phase, ALE is set, and the lower 8 bits of the address are latched to an external latch, and 
during the next cycle, either read or write is set to determine its behavior.  This was done 
in order to save pins on the original NES, allowing the AD bus to be used for both 
addressing and data I/O. 
 
The Following Table describes the functionality of each register: 
 
Register Bits Description 
$2000  

7 
PPU Control Register #1 (writable) 
Enable NMI on VBLANK if 1 

6 PPU Master/Slave Select (not used, there’s only 1 PPU) 
5 Sprite Size:  0: 8x8, 1: 8x16 
4 Background Pattern Bitmap Table Select 
3 Sprite Pattern Bitmap Table Select 
2 PPU Address Increment:  Increment by 32 if 1, by 1 if 0 

1-0 Name Table Address Select 
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$2001  
7-5 

PPU Control Register #2 (writable) 
Background color when $2001.0 is 1? Intensity on 0  
(This register does some weird stuff with the intensity levels on NTSC 
TVs, we’re not sure exactly what type of behavior this is supposed to 
have) 

4 Sprite Enable: Render Sprites on 1 
3 Background Enable: Render Background on 1 
2 Sprite Clipping: 

           1: No clipping 
           0: No sprites displayed in left 8-pixel column 

1 Background Clipping 
           1: No clipping 
           0: Background not displayed in left 8-pixel column 

0 Display Type 
           1: Mono (Black and White) display 
           0: Color display 

$2002  
7 

PPU Status Register (read only) 
VBlank Flag- Gets set to 1 when entering VBLANK 
Reading from Register $2002 clears this flag 

6 Sprite #0 Drawn Flag (cleared on VBLANK) 
5 More Than 8 Sprites On Current Scanline Flag  
4 VRAM Write Flag – 1 if currently writing to VRAM 

Writes to VRAM are ignored while this flag is high 
 3-0 Not used? 
$2003  Sprite RAM Address Register (writable) 

Holds the 8 bit address used to access Sprite RAM 
$2004  Sprite RAM Data Register (writable) 

Used to Read and Write Data from the Sprite RAM 
Increments $2003 by 1 when accessed 

$2005  Scroll Offset Register (16 Bit Register) 
Used to scroll the background 
Accessing this register toggles whether the high byte or low byte is 
accessed next (Reading from $2002 resets the toggle bit) 

$2006  VRAM Address Register (16 Bit Register) 
Specifies the 16 bit address used to access VRAM by access through 
$2007 
Same Behavior for access as $2005 
Note: Shares the same toggle bit with $2005, accessing $2005 or $2006 
will set the toggle 

$2007  VRAM Data Register 
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Used to Read and Write from VRAM 
Increments $2006 on access, increment amount determined by $2000.1 
If reading, the data read will be data from the previous address* 
$2007 acts as a read and write buffer between the CPU and VRAM 
*Doesn’t do this when accessing addresses $3Fxx since this accesses 
the internal Palette RAM instead of the VRAM 

 
 

Screen Rendering Overview 
In order to render a frame onto the screen, the PPU goes through a series of steps 

depending on the status of the current scanline.  The basic operations of a frame are as 
follows.  The first 20 scanlines is referred to as the VINT period.  This starts when 
VBLANK goes high, and stays in this state for 20 scanlines.  In this state, the PPU does 
not do any image processing, and is time allocated for the CPU to set the control 
registers, and write information to the sprite RAM and VRAM.  After this period is over, 
there is a special scanline(scanline 20) that is used to prime the pipeline.  This scanline 
behaves just like the rest of the scanlines that will be described below, except it will not 
render anything to the screen.  After this, for the next 240 scanlines, it will perform the 
rendering operations that will be described in detail below.  After which, it will rest for 
one more scanline, and then raise VBLANK and reenter the VINT period. 
 
Each scanline can be broken down into 4 stages, which behave as follows: 
 
 
Stage 1:  This is where all the rendering takes place.  One pixel is drawn every clock 

cycle here.  This stage lasts 256 clock cycles out of the 340/341 clock cycles of 
each scanline. 

 During this stage, the background renderer is making full use of VRAM, and 
will fetch the Name Tables, Attribute Tables, and the Pattern Bitmap data for 
the tiles to be drawn. 

 The sprite buffers are also all active during this time, and the data from the 
background and sprites is passed to the priority mux to determine what the 
outputted pixel is. 

 The Range Evaluator is also running at this time, to determine which sprites will 
be drawn in the next scanline 

 
 
Stage 2:  This is when the PPU enters it’s HBLANK stage, where it can no longer render 

pixels while waiting for the gun to return to the beginning of the next scanline.  
This phase lasts 64 clock cycles 

 The background renderer lets go of control of the VRAM during this stage, and 
allows the sprite renderer access. 

 The sprite renderer fetches the appropriate bitmaps from the VRAM during this 
phase and loads its sprite buffers for processing of the next phase 
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Stage 3:  This stage lasts 16 clock cycles 
 Control of the VRAM returns to the background renderer.  This is the period 

where the background renderer prefetches the first two tiles to be drawn for the 
next scanline, and loads them into the appropriate shift registers. 

 The sprite renderer doesn’t do anything during this stage. 
 
Stage 4:  This is the final stage.  This stage lasts either 4 or 5 cycles 
 During this stage, the PPU retrieves two name table entries, but we are unsure 

of why this takes place.  It doesn’t seem to be used and seems to be wasted 
cycles.   
The last cycle here, (cycle 341), is a rest cycle, which during every odd scanline 
20 is skipped, in order to do some phase adjusting for the color burst related to 
NTSC. 

 
 
 

Sprite Rendering 
The NES is capable of drawing 64 different sprites in a single frame, but because 

of the limitations of time to access the VRAM, the sprite renderer is only capable of 
rendering 8 sprites per scanline.  Sprite Information is stored in two places: the various 
attributes of the sprites are stored in Sprite RAM, and the pixel data is stored on the 
memory mapped pattern bitmap determined by $2000.3.  For each sprite, 4 bytes of data 
is used to store the various information, and is laid out as follows: 
 

Byte 0: Y Position of the Top Left Corner -1 
Byte 1: Tile Index Address 
Byte 2: Attribute Information 
  Bits 1, 0: Palette Select Bits 
  Bit 2-4:   Not Used? 
  Bit 5:   Sprite Priority Bit 
  Bit 6:   Horizontal Inversion Bit 
  Bit 7:   Vertical Inversion Bit 
Byte 3: X position of Top Left Corner 

 
 The first step in drawing a sprite is determining which sprites are in range to be 
drawn for the next scanline, which is then all stored in a temporary sprite memory to be 
used to load the data to be rendered when it is allotted time to use the VRAM.  This sprite 
temporary memory contains 24 bits of data:  8 bits for the Tile Index Address, 8 bits for 
the X coordinate position, 4 bits of attribute data, bits 6, 5, 1, and 0 of the attribute 
information (The vertical inversion bit isn’t stored because vertical inversion is already 
applied by this step), and the 4 bit range that was calculated.  Because of such limited 
time allotted for retrieving this data, the PPU only has time to retrieve data for 8 sprites 
per scanline.  If it is an 8x8 sprite, the information stored works as expected, using the 
appropriate pattern bitmap selected from $2000.3, the tile index, and the lower 3 bits of 
the range to determine the address to be used.  Thus, the address used is: 
 

Sprite Address = {0,Pattern Table Select, Tile Index, High_bit, Range[2:0]} 
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 The High_bit determines if we’re retrieving the upper or the lower bit of the tile 
from the attribute table, the range determines which row in the 8x8 tile to fetch. 
If it is an 8x16 sprite, the pattern select bit from $2000.3 is ignored; the LSB of the tile 
index is instead used to determine which pattern table to use and the MSB of the range 
becomes the LSB of the tile index.  The lower bits function as normal.  The sprite address 
in this case looks like this: 

Sprite Address = {0, Tile Index[0], Tile Index[7:1], Range[3], High_bit, Range[2:0]} 
 This data is loaded into shift registers that will be used to draw the sprites for the 
next scanline.  The X coordinate is also loaded into a register that decrements as every 
pixel is rendered, and the associated shift registers for that sprite will start shifting when 
this reaches 0.  This allowed the sprite to start drawing at the appropriate time on the 
scanline, instead of at the beginning of the screen.  All this information is passed through 
a priority mux that determines which pixel is to be drawn.  The data for the PPU is 
arranged in such a way that the priority of the sprites is determined by their order, with 
sprite 0 being the most important, and sprite 64 being the least.  The mux basically 
checks the eight sprite buffers in order, and if a sprite is transparent, it looks at the next 
buffer, until it sees a non-transparent sprite, which it then outputs, or reaches the end, 
where it will just output an all zero transparent sprite.  Also passed along with the two 
pattern bitmap bits to the priority mux is the priority of the sprite, the two palette select 
bits, and whether this sprite is sprite #0 (important for sprite #0 hit detection).  Note that 
this is why it’s important to have a scanline that doesn’t render to the screen in order to 
preload the sprites into these sprite buffers to be drawn.   
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Background Rendering 

 
 

Background Rendering involves accessing data stored on the VRAM.  The 
information is stored in three separate tables, and was an optimization that the NES used 
to overcome its severe memory limitations.  Thus it takes four reads from memory to 
drawn a single tile, which is 8 pixels long.  The first read is to the name table which 
determines which pattern bitmap to use, the second is to the attribute table, which 
contains the information about the tile accessed by the name table.  This table contains 
the upper two bits of the background color.  The last two reads are to the pattern bitmap, 
and contain the actual 8x8 tile that the name table is referring to.  The first read 
determines the lower bit, the second the upper bit. 
 

The NES has four name tables, at addresses $2000, $2400, $2800, and $2C00, 
and an attribute table associated with each name table.  Each name table contains tile 
indices to 8x8 tiles stored in the pattern bitmap.  The name table stores 32x30 tiles, each a 
byte long.  Though it has four name tables, the NES only has enough physical memory 
for two tables, and the other two are typically mirrored by the memory controller.  The 
types of mirroring are determined by the memory controller on the cartridges, but in 
effect, two of the tables just point to the other two tables used.  The name tables basically 
serve as pointers to tiles that would be stored in ROM on the cartridges, lowering the 
required number of writes to the PPU by the CPU during the limited VINT period that the 
CPU has access to write to memory, and also served to help save memory, since a name 
table needed to only store 1 byte per tile, instead of the 16 bytes a pattern bitmap tile 
takes up.   
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Image taken from Jeremy Chadwick’s nestech document found on nesdev: 
        Name                       NT#0   NT#1   NT#2   NT#3   Flags 
      +--------------------------+------+------+------+------+-------+ 
      | Horizontal               | $000 | $000 | $400 | $400 |       |  
      | Vertical                 | $000 | $400 | $000 | $400 |       |  
      | Four-screen              | $000 | $400 | $800 | $C00 | F     |  
      | Single-screen            |      |      |      |      |  S    |  
      | CHR-ROM mirroring        |      |      |      |      |   C   | 
      +--------------------------+------+------+------+------+-------+ 

 
 
 

Along with each name table, it has an attribute table.  This is probably the hardest 
to understand table that is stored in memory.  Each byte of data contains data for a 4x4 
tile block, with two bits of color for each tile.  This was another of the Nintendo’s 
methods to save on memory.  Because the upper two bits of the four bits needed to get 16 
colors are stored in this attribute table instead, you only needed to write 2 bits to the 
pattern bitmaps stored on the ROMs, cutting the amount of memory required on the 
cartridge for tiles in half.   
 
Information copied from Jeremy Chadwick’s nestech document found on nesdev: 
    It's quite confusing; two graphical diagrams may help: 
 
      +------------+------------+ 
      |  Square 0  |  Square 1  |  #0-F represents an 8x8 tile 
      |   #0  #1   |   #4  #5   | 
      |   #2  #3   |   #6  #7   |  Square [x] represents four (4) 8x8 tiles 
      +------------+------------+   (i.e. a 16x16 pixel grid) 
      |  Square 2  |  Square 3  | 
      |   #8  #9   |   #C  #D   | 
      |   #A  #B   |   #E  #F   | 
      +------------+------------+ 
 
    The actual format of the attribute byte is the following (and corris- 
    ponds to the above example): 
 
       Attribute Byte 
         (Square #) 
      ---------------- 
          33221100 
          ||||||+--- Upper two (2) colour bits for Square 0 (Tiles #0,1,2,3) 
          ||||+----- Upper two (2) colour bits for Square 1 (Tiles #4,5,6,7) 
          ||+------- Upper two (2) colour bits for Square 2 (Tiles #8,9,A,B) 
          +--------- Upper two (2) colour bits for Square 3 (Tiles #C,D,E,F) 

 
Because of the unique way that the attribute bits are mapped to various tiles, one 

byte is able to contain enough data for 256 pixels or the 64 tiles, as opposed to the 1 
Kbyte needed if these top two bits of color were stored the same way as the lower two 
bits are stored in the pattern bitmap tables.  On the other hand, this also limited the 
amount of colors that could be represented for tiles, since four tiles shared the same two 
bits of color. 
 

The Pattern Bitmap Tables as far as we can tell are usually stored on the ROMs, 
and start at addresses $0000 and $1000.  There are two tables, one is typically used for 
the sprites and one for the background, though if the sprites used are 8x16 sprites, then 
both tables are used for sprites, and the background still uses its one table.  The tile index 
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number will point to a specific tile on the pattern bitmap tables.  A tile is 8x8 pixels, and 
since the pattern bitmap stores two bits of this, this takes up 16 bytes per tile.  The lower 
8 bytes contain the information for the lower bit, and the upper 8 bytes contain 
information for the upper 8 bytes.  The fine vertical offset is used to determine which two 
bytes get retrieved for a particular memory access. 
 
Image taken from Jeremy Chadwick’s nestech document found on nesdev: 
       VRAM    Contents of                     Colour  
       Addr   Pattern Table                    Result 
      ------ ---------------                  -------- 
      $0000: %00010000 = $10 --+              ...1.... Periods are used to 
        ..   %00000000 = $00   |              ..2.2... represent colour 0. 
        ..   %01000100 = $44   |              .3...3.. Numbers represent 
        ..   %00000000 = $00   +-- Bit 0      2.....2. the actual palette 
        ..   %11111110 = $FE   |              1111111. colour #. 
        ..   %00000000 = $00   |              2.....2. 
        ..   %10000010 = $82   |              3.....3. 
      $0007: %00000000 = $00 --+              ........ 
 
      $0008: %00000000 = $00 --+ 
        ..   %00101000 = $28   | 
        ..   %01000100 = $44   | 
        ..   %10000010 = $82   +-- Bit 1 
        ..   %00000000 = $00   | 
        ..   %10000010 = $82   | 
        ..   %10000010 = $82   | 
      $000F: %00000000 = $00 --+ 
 
    The result of the above Pattern Table is the character 'A', as shown 
    in the "Colour Result" section in the upper right. 

 
A bit in $2000 determines which pattern bitmap backgrounds use, the name table 

determines which particular address gets accessed, 1 bit is used to determine if we’re 
accessing the low or high byte, and the fine vertical offset determined which of the 8 
bytes is accessed, so the memory access to the pattern bitmap looked something like this: 
 

Pattern Bitmap Address = {0, Select bit, Tile Index(8 bits), High_bit, Fine Vertical Offset(3 bits)} 
 
 

Register $2005 is used to determine the starting offsets in the name tables to use, 
in order to handle scrolling.  The values of this register are loaded into several registers, 
which increment at various times to determine the next name table address to be fetched.  
The counter for the horizontal scroll increments once every 8 clock cycles (after all the 
information for the current tile is accessed), and will flip the lower bit of the name table 
select when it reaches 32, and reset to 0.  The vertical offset is daisy chained to the fine 
vertical offset, which is used to determine which row in the tile to access.  The fine 
vertical offset increments once every HBLANK.  The vertical offset counter only counts 
to 30, and resets to 0 when it reaches 30, and flips the upper bit of the name table select 
when it reaches 30.  It does this because a name table is only 32x30 tiles. 
The pattern bitmap information retrieved is loaded into the upper 8 bits of a 16 bit shift 
register every 8 clock cycles during rendering.  This register also shifts every clock cycle 
during rendering.  The attribute table data is loaded serially into an 8 bit shift register, 
with the bit loaded serially to be determined by which tile of the 16 tiles that the attribute 
table refers to is currently in use.  Note that this means that the same two bits are always 
loaded for every 8 pixels, limiting the amount of colors that can be drawn to the same 4 
colors every 8 pixels.  The fine horizontal offset is used to determine where in the shift 
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register to sample the pixel data.  This data is passed to the pixel mux to be processed 
along with the sprite data. 
 
 
 

Pixel “Multiplexer” (Mux) 
 
 The Pixel "Multiplexer" decides which color is displayed for each pixel on the 
screen.  Data arrives from the Background Renderer (4 bits -background_pixel), Sprite 
Renderer (5 bits - sprite_pixel) and the registers ($2001.3 - $2001.7).  The Sprite Data is 
passed into the Mux if the Sprite Enable bit ($2001.4) is set.  The Background Data is 
passed into the Mux if the Background Enable bit ($2001.3) is set.  If the Background 
Enable bit is not set, the Default Background ($2001.5-$2005.7) is passed to the Mux.  
We’re not sure if this was the correct behavior, since different documentations had 
conflicting information on the purpose of these three bits on $2001.  The data that gets 
passed from the priority mux becomes the address to a lookup table in the palette ram, to 
determine what color is used.  This color was then passed out of the chip to the TV, or in 
our case, to our VGA framebuffer, to be converted by a VGA lookup table. 
 

Inside the Mux, if the Sprite Pixel is transparent, the background is selected for 
that pixel.  If the Sprite is non-transparent and has high priority, then the Sprite is 
selected.  If the Sprite has low priority, then it selects the Background.  If the sprite drawn 
is sprite #0 and has a collision with the background (both are nontransparent for that 
pixel), then the sprite #0 hit flag is raised.  Transparency was determined by seeing if the 
two bits that were obtained from the palette bitmaps were zero.  Because of this logic for 
determining colors, sprites were only able to have 3 colors each, and backgrounds could 
have three unique colors, and one that was the default background color, which is located 
in the palette ram address $3F00.  Because of this mapping, the background and sprites 
weren’t able to access all 16 colors that are technically addressable on the palette.  Sprites 
were only able to access 12 colors, since any address with the lower two bits as 00 would 
be regarded as transparent, so addresses $10, $14, $18, and $1C could never be reached.  
Backgrounds were able to use 13 colors, since $00 was reached, and served as the default 
background color, but any access to $04, $08, $0C was considered transparent and 
mapped to $00 if a sprite wasn’t getting drawn on top of it. 
 

Debugging the PPU 
 

One of the biggest problems with the PPU was figuring out how we were going to 
debug it.  The PPU, while well documented, is well documented by fans, and Nintendo 
never released any official information on it.  Because of this, information is all from 
hearsay and tests of the actual system, to guess what was inside the PPU.  This leads to a 
lot of parts that no one is what they actually did, and a lot of conflicting information.  
This made figuring out the actual functionality of the PPU in order to try to debug it very 
difficult, so we relied a lot on trying to figure out which information made the most 



20 

sense, and was the most universally agreed on to determine which functionality was the 
proper one, while hoping that once we got it fully working, we could determine what the 
appropriate behaviors were, and fix the glitches that happened from things that we 
interpreted badly.  Unfortunately we never got to the point where we could run an actual 
cartridge to find and fix most of these glitches.   
 

Very few of the modules themselves were very complicated, and the individual 
modules were easily debugged, but a large part of the PPU could not be debugged 
without the entire PPU attached and fully functional, since most of it’s functionality 
depended on our FSMs.  Even with it fully connected, we still quickly ran into a problem 
of how to send it enough test data that we could get appropriate output, and how we 
would even judge that what we were seeing was correct.  In the end we decided we would 
simulate a black box CPU through an FSM and send in data through the registers on the 
PPU.  This also served as a good stress test of the previously tested register file.  We also 
decided that the easiest way to catch and fix bugs would be to get our NES to VGA 
conversion working properly and to use visual verification first.  Because of various 
timing issues, we ended up having to use ModelSim extensively to find all the various 
timing problems that were causing the glitches and improper display on the screen.  This 
proved to be a very time consuming process with all the signals that needed to be 
observed, and the fact that it took close to 100,000 clock cycles to render a single frame.  
Deciding to get our VGA working first, and using visual verification first proved to be a 
very good idea for preliminary debugging, because with it, we were able to narrow down 
where problems were and had a better idea of what to look for in order to find all our 
bugs.  The bugs that proved the hardest to track down were the ones that worked 
perfectly in simulation but because of synthesizing it with XST into Xilinx primitives, the 
wrong behaviors were assumed by their primitives, leading to different behavior.  Using 
the post synthesis verilog files that ISE generated, and comparing it with our simulation 
version, we were able to finally track down some of the more elusive bugs, such as that 
even though the synthesis tool tells you that some of our memory modules should be 
converted to synchronous reading memory modules instead of a 
synchronous reads, and hinted that it wasn’t using available block RAM, which we were 
fine with, since the blocks they were referring to were small, and would’ve worked fine 
as just an array of flip-flops.  We eventually realized that even despite the warning that 
we weren’t making use of the faster block RAMs, it converted those modules into block 
RAMs anyway, and was using synchronous reads, which completely threw off our timing 
on some of our more timing sensitive modules.  Once that was fixed, we were able to 
quickly find and fix most of the other glitches that we saw and found.  In the end, visual 
verification was the most valuable tool we had to find and help debug most of the glitches 
that we encountered on the PPU. 
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Support Modules 
NES Cartridge Interface (rsinnott) 

To enable the use of original NES cartridges on the system, we integrated a 
cartridge interface into the FPGA.  We acquired a NES to Famicom 72-pin to 60 pin 
adapter to build the interface off of.  Using two IDE cables, each of the 72 pins on the 
NES side of the adapter were soldered to.  This cable was then plugged into the Left and 
Right expansion ports of the FPGA board.  This provided a connection between the 
FPGA and any original NES cartridge which we plug into the adapter. 
 

After construction of the adapter and appropriate additions to the Xilinx UCF file 
were made, we were able to successfully read data off both the PRG (program ROM) and 
CHR (character ROM) busses of the cartridge. 

NES Controller Interface (rng, rsinnott) 
We integrated controllers from the original NES into the FPGA board for user 

input.  We obtained (2) Yobo Super 8 gamepads, as well as 1 authentic Nintendo 
controller.  These were wired in on the Breadboard we had plugged into the High Speed 
Expansion port of the FPGA board. 
 

The NES controller connects to the FPGA via 5 wires.  They are Power, Ground, 
Latch, Clock (also referred to as ‘Pulse’), and Data.  Power and ground are tied to +5 
volts and ground, respectively.  To read user input, the controller first receives a single 
pulse from the system on the ‘Latch’ line, which latches the state of the 8 buttons into a 
shift register in the controller.  The state of the buttons is then returned serially as the 
‘Clock’ line is pulsed. 
 

 
(image from http://seb.riot.org/nescontr/) 

 
As a design decision, we decided to poll the controllers at a static rate of 60 times 

per second in hardware.  An FSM is used to read the data from the controller.  The FSM 
sends a pulse to the  
 

When the CPU requests data from the controllers, it expects to receive the data 
serially.  Since we chose to read the controllers at a static rate, we hold the controllers’ 
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data in registers, which are re-serialized when the CPU makes a request to the 
controllers’ memory location. 
 

Clock Generation (rng, rsinnott) 
Designing the timing of the system was a challenge, as we had to fit within many 

different constraints.  The original NES was clocked entirely off of the NTSC crystal 
inside the NES.  The NTSC crystal provided a 21.48 MHz clock, which the CPU divided 
by 12 to obtain its clock speed of 1.79 MHz.  The PPU divided the 21.48 MHz clock by 4 
to obtain its clock speed of 5.37 MHz, three times faster than the CPU.   
 

The timing scheme of the system was driven by the constraints imposed by the 
components of the Xilinx board.  First, the Xilinx board’s sole clock source is its 100 
MHz system clock.  Additionally, since we opted to utilize Xilinx’s DCMs (Digital Clock 
Managers), we were subject to the restrictions imposed by them.  The first major 
limitation of the Xilinx DCMs is they have a minimum input frequency of 24 MHz.  
Additionally, Xilinx DCMs can only divide a frequency by integers up to 16, and half-
integers up to 7.5. 
 

Given these constraints, we had to establish a series of clock multiplications and 
divisions to get the appropriate frequencies.  Multiplying the 100 MHz clock by 2 with a 
DCM gives a 200 MHz clock.  Dividing the 200 MHz clock by 7.5 with another DCM 
yields a 26.666 MHz clock, which becomes the VGA Pixel Clock.   Using two more 
DCMs, the 26.666 MHz clock is divided by 5 and 15 yield 5.333 MHz and 1.777 MHz 
clocks, respectively.  These become our CPU and PPU clocks. 
 

VGA Adapter & Framebuffer (rng, rsinnott) 
After discovering integrating the hardware for an NTSC display into the FPGA 

would have been a large headache, mostly due to timing issues, we decided to write a 
module that would translate the output from the NES to display on a VGA monitor. 
 

Our system uses two framebuffers which are continually swapped between the 
NES and the VGA module.  When a pixel is rendered by the NES, it is stored as the 6-bit 
NES color code in a framebuffer until the NES has finished rendering an entire frame.  
When the NES completes a frame, it switches which framebuffer it is writing to and 
begins the process of filling the framebuffer over again. 
 

The VGA module reads each pixel the NES has written to the framebuffer and, in 
real-time, converts the NES color values to VGA color values for the monitor (see 
appendix B for VGA lookup table).  The VGA module renders each pixel twice on each 
scanline and renders each scanline twice.  This translates each NES pixel to 4 pixels on 
the VGA monitor, thereby producing a 512x480 image.  Since VGA has a resolution of 
640x480, the additional 128 pixels are split into 2 black bars which frame the NES 
image. 
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Pixel and Scanline Doubling   VGA output with black bars 

 
When the VGA module finishes rendering a screen, it checks to see which 

framebuffer the NES is writing into.  The framebuffer the NES is not writing into will 
contain the most recent, complete frame.  The VGA module switches to the appropriate 
framebuffer, and begins rendering a screen all over again.  By ensuring the VGA and 
NES are never reading and writing the same region of the same framebuffer, we 
eliminate visual artifacts and image tearing on the screen. 
 

The Memory Mapper (spkelly) 
 We wrote a separate module to tie all the various components together.  Not to be 
confused with on-cartridge memory mappers which determine which banks of cartridge 
ROM/RAM are connected to the cartridge address and data lines, our mapper module 
handles the assembly of all memories and peripherals into the address space seen by the 
6502.  The mapper module has ports for address, data and access-enable lines to the 
6502, cartridge PRG, onboard RAM, and PPU, as well as inputs for the current 
continuously-polled status of both controllers, and an internal register file for registers 
$4000-$401F, many of which are output directly to the pAPU.  Operation is fairly 
straightforward, with address-based multiplexor logic determining which lines to route to 
and from the 6502.  Registers $4016 and $4017 are a little more difficult due to their 
multi-function nature.  Reading from $4016 returns the current status of one button on the 
Player 1 controller and advances that controller’s shift register to the next button to 
return.   Reading from $4017 does the same thing for Player 2’s controller.  Writing to 
$4016 sends a strobe signal to both controllers to reset their internal shift registers, and 
writing to $4017 affects flags in the pAPU.  Initially the logic regarding $4016 and $4017 
was hellish, and likely incorrect.  Once controller access was relegated to a separate, 
continuously-polling module and the mapper no longer needed to interface directly with 
the NES controller pins, however, the logic fell into place far more cleanly. 
 
 The limitations of our current mapper are mainly in how it handles on-cartridge 
memory mappers which extend the valid 6502-accessible cartridge address space.  We 
could find no solid documentation on how the real NES handles, for instance, $600x 
writes to on-cartridge save RAM.  $600x is well outside the $8000-$FFFF range mapped 
to cartridge PRG, and there are only 15 dedicated cartridge PRG address lines.  There is a 
pin which takes the NAND of a 16th address line and the CPU clock, and possibly some 

NES VGA 
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other logic, but we could not find any conclusive documentation on how it actually 
affected what was visible on the data lines.  As such, we only anticipate “mapper 0” (one 
or two banks of CHR and PRG wired directly to the cartridge address and data lines) 
games will work with our design. 
 Note: we were able to read data from a Super Mario Bros. / Duck Hunt cartridge, 
which does use a custom mapper, as well as a couple “mapper 1” games, but because 
“mapper 0”cartridges weren’t even running cleanly, it is difficult to tell whether these 
non-0 mappers were being handled correctly, or whether we were only seeing 
instructions from a PRG region not relying on any mapper functionality. 
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Methodology 
 The NES is inherently a hardware system, so we planned for a dominantly 
Verilog implementation, with possible emulation on the PowerPC processors if 
necessary.  The design tools available and their varying degrees of usability (namely 
Xilinx ISE being far less complex and more reliable than EDK) pushed us all the way 
over to hardware.  The NMOS 6502 base CPU, the PPU graphics chip and the pAPU 
audio component of the CPU were seen as the biggest modules required, so we planned 
to implement them individually to spec over the course of the semester, and wire them 
together at the end.  The PPU in particular ended up involving nontrivial independent 
clock generation and VGA encoding modules.  We saw the need for, but put off until last, 
an interconnect module to do address manipulation and construct the actual NES memory 
map from the various memories, coprocessors and peripherals. 
 
 From the very beginning we took a hint from previous NES attempts and 
dedicated the strongest members of our group to the PPU for the whole semester.  The 
other half was assigned the CPU and, time permitting, the pAPU.  Modules were written 
in Verilog, simulated with NC Verilog, Verilog XL, and the ModelSim design simulator, 
and implemented on a Xilinx University Program Virtex II Pro FPGA board.  Each 
module was tested independently in simulation as far as possible using nonsynthesizable 
functional Verilog testbenches, then adjusted for synthesis and run on the board alongside 
mock-ups of any other hardware needed (e.g. a mock 6502 to send a fixed string of 
instructions to the PPU to display an image).  Finally, the plan was to assemble all 
completed components on the board and iron out interfacing bugs.  In reality, the PPU 
and CPU subteams approached a fully unified design from their own directions, and each 
wound up with a unified design that supported their own components perfectly, and the 
others in a theoretically sound but relatively untested fashion. 
 
 The PPU, CPU and memory-mapper interfacing modules were all completed and 
operating independently by late November.  By December 7th, a top-level module 
integrating the CPU, PPU, pAPU and memories was completed, and even executed code 
from a real cartridge, however the top-level module designed by the PPU subteam, 
containing a mock CPU, PPU, pAPU and controller interfacing was decidedly more 
impressive on-screen due to as-of-yet unidentified discrepancies between a real NES and 
our design which caused real cartridge execution to derail before any image could be 
drawn.  The most likely candidates for these discrepancies are cumulative minor 6502 
bugs (execution looked good, but routinely ended up in questionable areas of PRG) and 
erroneous/absent NMI masking (NMI was always enabled, even when some carts cleared 
$2000, and execution frequently derailed at the end of NMI routines with non-RTI return 
methods).  In order to run a simple commercial game, our 6502 would need to be double-
checked for adherence to the original 6502 specification, and the PPU would need to 
have its wiring double-checked to ensure it could see and use a real cartridge CHR bank 
and respect all flags (interrupt masking, sprite/background enable/disable, color 
adjustment modes).  While not strictly necessary, the pAPU could also be substantially 
improved from the most recently tested version. 
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Conclusions & Lessons 
 In the words of group leader Randy, the NES is “a fun project, but hard as hell!” 
 

It was ultimately a good decision to partition the design as we did, and given the 
effort we all put into our respective portions, we would recommend future attempts take 
the same approach.  However, do not rely on all the documents you find on the NES 
being in agreement, or being thorough from a hardware standpoint.  Much of what is out 
there on the NES, even on Nesdev, is targeted at emulator authoring and ROM hacking 
rather than the nitty-gritty of hardware implementation.  We wrote all of our component 
modules as clones of what functional specification we could find, which worked out well 
enough and probably gave us each a deeper understanding of our respective components 
than simply copying hardware diagrams would have. 

 
We went in expecting all Xilinx software/hardware to be thoroughly documented 

and bug-free.  This, as most groups found, was terribly naïve.  Do not expect 
development hardware/software to work the way you expect all the time, and particularly 
do not expect to get any answers to specific problems out of any official Xilinx help 
system. 

 
Our scheduling was a little lax, involving some completion goals, but no formal 

plan for what to do once things really did start coming together.  The 6502 in particular 
was a week behind our initial schedule but with promising outlook at mid-semester, but 
once it simulated successfully, the CPU/pAPU subteam never quite committed to either 
taking the CPU into serious synthesis work or trying to develop the pAPU in a reduced-
from-initial-plan timeframe, and ultimately split to do less efficient work in both 
directions at once.  Our advice to future teams is set goals for yourselves, including 
bailout points for dropping particular components and coming to a group consensus on 
whether to finish the whole design or aim for a safer partial demo that will better fit your 
remaining timeframe.  A few more pointers: eliminate impediments to synthesis of 
individual modules as early as possible, leave at least 2 weeks for combination of 
individually synthesized components, and budget as much time to deal with the 
combination of clock generation, peripheral interfacing, memory mapping, and memory 
generation/preloading as you would for any other major Verilog component- controller 
interfacing and preloading Xilinx memories without impeding the rest of a design are 
particularly nontrivial. 

 
 In all, building a working hardware NES in FPGA logic in a semester may not be 
an unreachable goal, however it wouldn’t be an easy one.  We would not advise 
attempting it without at least four thoroughly committed group members, all with at least 
a year or two of formal Verilog training, and all taking no more than one other course 
requiring significant effort.  Our PPU subteam made phenomenal progress, but worked 
many 10+ hour days in lab to achieve a working demo.  Our CPU subteam was impeded 
at the start of the project as Reshmi learned a semester of hardware design methodology 
in a 3-week team-assisted crash course while Sean worked solo to complete the bulk of 
the 6502, and then the whole design got resultantly stalled late in the semester when 
Sean, the only member with a working knowledge of the 6502, got bogged down by a 
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wave of other classwork just when the CPU needed to be synthesized.  By the end of the 
semester, Randy and Ray, who had pushed for a NES most strongly at the start, were 
putting in seriously unhealthy amounts of time in a panic to get a 100% working NES, 
Sean had given up hope of anything better than a concept tech demo and was routinely 
bailing on NES lab sessions after 6-7 hours in order to cut his losses in two other 
programming courses, and Reshmi was increasingly alienated, having dedicated most of 
her time to the pAPU, which was deemed questionable in early November and more or 
less dropped by December in the attempt to get the CPU and PPU to meet up.  This 
snowballing from initial functional roadblocks to rising group tension stemming from 
different project goals, different amounts of available time, looming deadlines, and lack 
of sleep is what ultimately made a real FPGA NES impossible for us, as close as we came 
in many respects.  If a future team can learn from our mistakes and start in with the 
knowledge we only gained from experience, they may just be able to pull it off.   
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Last Words 
Sean Kelly 
 Alright.  Agreeing to a full NES in a semester alongside two programming labs 
may not have been the best choice if I was aiming to hold or raise my ~3.5 GPA.  I think 
(fingers crossed) I managed to pull it off, but it did hurt my time commitment to 18-545 
individually. 
 The original plan was for Reshmi and I to do the 6502 and the pAPU, but since 
Reshmi was still learning Verilog for much of the semester, I wound up writing all of the 
6502 proper, and doing coaching/cleanup on the 6502 ALU for as long as it would have 
taken me to write it myself (although I don’t begrudge Reshmi the learning experience).  
I also wrote the memory mapper to tie all parts of the design together, and indeed we only 
got everything wired together at the end because I got exasperated at Ray’s contentedness 
to sit in lab for an hour falling asleep while waiting for Randy to show up and pulled 
everything we had together through my mapper into a single project. 
 That said, if I averaged 12 hours a week in this course it was only because I pulled 
~6 lab hours every other day since Thanksgiving, and a 22 hour stint the day before final 
presentations, which I am well aware pales in comparison to what Randy and Ray 
contributed.  The 6502 took about a month to research/write, in 2-3 hour sittings every 
few days plus a couple 6-hour debugging sessions in the cluster and a few 1-hour e-mail 
compositions to Reshmi over the ALU.  It took one few-hour sitting in lab to get 
synthesizing, and 3-ish few-hour revisions to find a timing scheme that worked.  The 
memory mapper was drafted in a single ~3 hour sitting, tested in simulation for a few 
hours, and took another few hours in lab to get synthesizing.  The self-preloading BRAM 
memories to connect to the memory mapper in lieu of real cartridge data in and of 
themselves took 2 attempts and a total of ~10 hours.  One such memory remains in the 
final design as onboard RAM. 
 As far as project time not spent on hardware, I sunk easily 10 hours into 
attempting to track down 9-pin “pirate” Famicom controllers, and then finding a site at 
which I could buy both a cartridge adaptor and a pair of controllers without having to buy 
a complete Famiclone system.  I also did the entire proposal report and compiled the final 
report. 
 As far as course improvements, I mentioned this in my FCE, but it would be nice, 
potentially, to have a “member trade day” some time shortly after project proposals.  
While there are certainly some things AwesomeNES as a whole, and myself in particular 
could have done or not done to have made better progress over the semester, it did hurt us 
that we were doing a hardware-only project with a member who had never done any 
hardware development, both in that we had to devote time to teaching and taking on extra 
work, and in that at the end we had fewer people who knew any given module well 
enough to even use it, let alone debug it.  If projects can be brainstormed on the basis of 
what resources groups have, but groups can be adjusted after it becomes obvious what 
resources projects actually need, I think all groups might have a better chance at meeting 
their goal. 
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Ray Ng 
What I worked on for the project was the Picture Processing Unit of the NES.  

What I found trickiest about working on this part of the project was figuring out what the 
actual unit did.  All the documentation on it was hard to understand, and often contained 
conflicting information.  Randy and I spent the first month just trying to figure out and 
translate the documentation to an actual architecture.  I would say at this point in the 
project, we spent approximately 10-14 hours a week going through sites trying to find 
more detailed information, drawing out possible datapaths, realizing that we completely 
misinterpreted things quite a few times, and having to start over with trying to figure out 
how things worked.  The way that the NES handled backgrounds was particularly 
confusing, with all the clever tricks they used in order to save on memory, to maximize 
what they could do with the technology they had available to them, and a lot of the 
documentation seemed to assume that we had a firm understanding of how to program an 
NES game, so had more of an understanding of how it worked than we actually did.  
Figuring out all this was certainly a learning experience, and we learned to appreciate just 
how clever a piece of hardware the PPU really was.   

 
By the time it came to starting to put everything together and synthesizing and 

testing on the FPGA board, the amount of time that we spent on this grew dramatically.  
Randy and I spent at least 10 hours a day in here starting at the beginning of November, 
and my estimates was we worked approximately 40-60 hours a week for the first few 
weeks of November.  I also spent all of Thanksgiving Break here debugging the PPU.  By 
the week of DR3, we were spending even more time in here, and I would guess we were 
spending 70-80 hours a week in here until the day of the public demo. 

 
 I had a lot of fun on this project, and I found the project to be very interesting.  
My biggest regret was that we were never able to get it fully working by the time of the 
public demo, despite getting so close. 

Reshmi Rajan 
I have had a very good learning experience with this project and hope to 

keep the process going. And learning Verilog was the first step towards the 
project that I took. I believe that I have improved considerably over the 3 months 
that we were working on the project. 

First, I had been assigned the work of implementing the ALU.  Once that 
was done, I started work on th pAPU. The documentation given on the net was of 
immense 
help. Initially, our plan was to finish the entire sound module. But, later decided 
that we would try and finish the square channel first and then if time permits, get 
the others done.  And by the project demo we had that square channel working. 
 
My team mates Randy, Ray and Sean helped me a lot in improving my Verilog, 
using the simulator, and they were really patient enough to double check what I 
had done. I also got to learn certain nuances of the Xilinx ISE. 
 

We hope to keep the working going on the project and try and get the 
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entire NES emulator together. 
 
 

Randy Sinnott 
This project had many obstacles we had to overcome.  First, the PPU has never 

been fully documented, so we had to reconcile many documents and take educated 
guesses in places.  Secondly, we ran into issues with the Xilinx tools synthesizing our 
hardware with different functionality than the Verilog we had coded.  Third, as the only 
purely hardware project in the class, much of our learning had to be done on our own, as 
many members of the course had not seen the issues we were encountering. 
 

The components of the project I contributed to were: the PPU, the VGA module, 
the framebuffer module, the controller peripherals, the cartridge peripheral, and clock 
generation module.  I also assisted Reshmi with debugging the pAPU’s square wave 
module, which was the on. 
 

In round numbers, I spent about 10 hours per week during the months of 
September and October on the project.  In November, we started working with the actual 
board, as opposed to purely simulation.  From the beginning of November until the week 
of DR3, I would estimate I worked 30 to 60 hours per week.  For the last two weeks of 
the project, I spent about 70 hours on the project each week. 
 

I think this class was a good experience, and introduced me to some new areas I 
had not yet explored (using an FPGA, concepts computer architecture).  On the 
downside, this project took more hours then we ever would have imagined. 
 

One of the biggest improvements I can suggest would be a greater variety of labs.  
We wound up having to do a lot of learning about how to use Xilinx tools we were not 
exposed to in lab since we were doing a purely hardware implementation.  Labs that 
demo using ISE instead of EDK, UCF files, and interfacing peripherals would have been 
helpful.  We wound up reverse engineering many tools provided by other universities 
using the same board to learning how to do many of the things we did. 
 
 
 
 
 
 
 
 
 
 
 
 
 



31 

 
 
 

Appendix A: 6502 State Info 
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6502 State Function Summary 

Key 
($xxxx) = value at address 
$xx  = value 
 
PC = program counter 
PCL = lobyte of PC 
PCH = hibyte of PC 
IR = instruction reg 
M = temp register (generic) 
ND = temp register (usually for indirect addressing) 
L = temp register (usually for low byte of 16-bit address) 
DMA_hi = temp register storing the last value written to $4014 
DMA_lo = temp counter register- goes from 00 to FF in DMA loop 
Data = data inout bus 
[comp] = result of IR-dependent computation on any 2 of X, Y, A, data 
N/C/Z/V/D/I/B = individual status flags from ALU flag outputs 
Flags = any or all flags from ALU flag outputs, dependent on IR 
Status = entire status flag register to/from ALU data in/out 
 
State Function 
Fetch 1 ((PC) -> IR, PC++) or (set internal flags and enter NMI/IRQ) or (enter DMA loop)
Fetch 2 [comp] -> (M or X or Y or L or SP)/flags, PC++ if necessary 
ZP-absolute [comp] -> (M or X or Y or ND or data)/flags, PC++ 
ZP-abs/X M+X->M 
ZP-abs/Y M+Y->M 
Absolute 1 M+0->L 
Absolute/X M+X->L, PC++ 
Absolute/Y M+Y->L, PC++ 
Absolute 2 (if L[8] then M+L->M/L else [comp]->(M or X or Y or ND or data)/flags), PC++ 
Indirect/X 1 M+X->ND 
Indirect/X 2 (ND)+0->L 
Indirect/X 3 (ND+1)+0->M 
Indirect/Y 1 (M)+Y->L 
Indirect/Y 2 (M+1)+0->M 
Branch 1 L+0->PCL 
Branch 2 (PCH)+1->PCH 
Push SP-1->SP 
PLP (SP)+0->status 
PLA (SP)+0->A/flags 
BRK 1 PCL+0->(SP), SP-- 
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BRK 2 PCH+0->(SP), SP-- 
BRK 3 status+0->(SP), SP-- 
BRK 4 (($FFFE) or ($FFFA))+0->PCL 
BRK 5 (($FFFF) or ($FFFB))+0->PCH, hack: clears internal interrupt flags 
JSR 3 (PC)+0->M, PC++ 
JSR 4 PC={M,L} 
RTI 1 (SP)+0->status, SP++ 
RTI 2 (SP)+0->PCH, SP++ 
RTI 3 (SP)+0->PCL, clears internal in-interrupt flags 
RTS 3 PC++ 
JMP absolute (PC)+0->M, PC={data,L} 
JMP indirect 1 (PC)+0->M 
JMP indirect 2 ({M,L})+0->PCL 
JMP indirect 3 ({M,L}+1)+0->PCH 
StoreND ND+0->((M) or ({M,L})) 
Undoc [comp usually involving ((M) or ({M,L}))]->(X or A or ((M) or ({M,L}))) 
Dead  
Reset 1 ($FFFC)+0->PCL 
Reset 2 ($FFFD)+0->PCH 
DMA read ({DMA_hi,DMA_lo})->M 
DMA write M->($2004), DMA_lo->DMA_lo+1 
 

6502 Datapath Configuration Values: 
 
Address Sources  Instruction Sources SP Sources PC 
PC 
{M,L[7:0]}+1 
DMA 
Hard $2004 
Hard $FFFA 
Hard $FFFB 
Hard $FFFC 
Hard $FFFD 
Hard $FFFE 
Hard $FFFF 
{8’h00,M} 
{M,L[7:0]} 
{8’h00,M+1} 
{8’h00,ND} 
{8’h00,ND+1} 
{8’h01,SP} 

ALU 
Instr (hold) 
 

SP+1 
SP-1 
SP (hold) 
ALU 
 

Hold 
RST 
PC+1(PC_1) 
{M,L[7:0} 
ALU 
{data,L[7:0]} 
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* Not an actual latch.  When LATCH_MEM is specified, ALU output is routed to the 
data lines and read-enable is lowered so that next memory access, ALU output will be 
written to memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

M Reg Sources ALU Inputs ALU Ops ALU Output Latch-To 
ALU 
Data 
 

Hard 8’h00 
Hard 8’h01 
X 
Y 
A 
Status 
M 
L 
ND 
PC (lo and hi)
SP 
Data 
Hard 8’hFF 
 

ADD 
CMP 
ORA 
AND 
EOR 
ADC 
SBC 
ASL 
ROL 
LSR 
ROR 
 

NONE 
X 
Y 
A 
Status 
M 
L 
ND 
PC (lo) 
PC (hi) 
SP 
Instr 
Memory* 
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Appendix B – NES to VGA color conversion 
 

 
 
All Values are in Hexadecimal 
NES 
Color 

VGA 
Red 

VGA 
Green 

VGA 
Blue  

NES 
Color 

VGA 
Red 

VGA 
Green 

VGA 
Blue 

00 80 80 80  20 FF FF FF
01 00 00 BB  21 00 95 FF
02 37 00 BF  22 6F 84 FF
03 84 00 A6  23 D5 6F FF
04 BB 00 6A  24 FF 77 CC
05 B7 00 1E  25 FF 6F 99
06 B3 00 00  26 FF 7B 59
07 91 26 00  27 FF 91 5F
08 7B 2B 00  28 FF A2 33
09 00 3E 00  29 A6 BF 00
0A 00 48 0D  2A 51 D9 6A
0B 00 3C 22  2B 4D D5 AE
0C 00 2F 66  2C 00 D9 FF
0D 00 00 00  2D 66 66 66
0E 05 05 05  2E 0D 0D 0D
0F 05 05 05  2F 0D 0D 0D
10 C8 C8 C8  30 FF FF FF
11 00 59 FF  31 84 BF FF
12 44 3C FF  32 BB BB FF
13 B7 33 CC  33 D0 BB FF
14 FF 33 AA  34 FF BF EA
15 FF 37 5E  35 FF BF CC
16 FF 37 1A  36 FF C4 B7
17 D5 4B 00  37 FF CC AE
18 C4 62 00  38 FF D9 A2
19 3C 7B 00  39 CC E1 99
1A 1E 84 15  3A AE EE B7
1B 00 95 66  3B AA F7 EE
1C 00 84 C4  3C B3 EE FF
1D 11 11 11  3D DD DD DD
1E 09 09 09  3E 11 11 11
1F 09 09 09  3F 11 11 11

 


