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1) INTRODUCTION 
 

OpenGL (Open Graphics Library) is the industry standard for high performance graphics which 

enables rendering of 3D and 2D computer graphics. It is widely used in the production of video 

games, as well as in other visualization purposes. It defines a specification from which hardware 

makers implement their designs to perform OpenGL routines through hardware acceleration. 

There are over 250 different function calls which process primitives such as points, lines, and 

polygons into pixels for display.  

 

In this project, we designed a simple graphics pipeline from scratch and implemented it on a 

Xilinx XC2VP30 FPGA. We designed the overall architecture of the pipeline and implemented 

all the functional units in Verilog. We focused on the following modules in the pipeline: Fetch 

and Decode unit, Coordinate Transformation unit, Rasterization unit, and the frame buffer. 

Instruction and data are sent from a connecting workstation to the FPGA board using TCP/IP. 

The output from the FPGA is displayed on a Sony 640x480 VGA. Figure 1 shows the high-level 

system diagram of our design. 

 

 
 

Figure 1: High-level System Diagram 

 

This report details the hardware design and specification that we implemented in one semester. 
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2) OPENGL 

 

2.1 OpenGL Library 

 

Our OpenGL Library is adapted from GLSim, an OpenGL simulator from Stanford University 

(http://graphics.stanford.edu/courses/cs448a-01-fall/glsim.html).  

 

GLSim was chosen because it already has a well defined framework to parse OpenGL functions. 

This library compiles into libGL.so which replaces the default Mesa OpenGL library. We 

replaced the software implementation of the graphics pipeline in the simulator with skeleton 

functions for every OpenGL routine. These functions map the OpenGL calls into our GPU’s ISA. 

The byte code will then be reordered if necessary and sent to the FPGA board through TCP/IP. 

 

2.2 Supported OpenGL Functions 

 

Due to time and resource constraints, only the following subset of the OpenGL specification is 

supported. 

 

Primitives 

void glBegin (GLenum mode) 

void glEnd (void) 

void glVertex (TYPE x, TYPE y, TYPE z, TYPE w) 

void glColor (TYPE red, TYPE green, TYPE blue, TYPE alpha) 

 

Transform 

void glLoadIdentity (void) 

void glLoadMatrix (const TYPE *m) 

void glMatrixMode (GLenum mode) 

void glMultMatrix (const TYPE *m) 

void glPopMatrix (void) 

void glPushMatrix (void) 

void glRotate (TYPE angle, TYPE x, TYPE y, TYPE z) 

void glScale (TYPE x, TYPE y, TYPE z) 

void glTranslate (TYPE x, TYPE y, TYPE z) 

void glViewport (GLint x, GLint y, GLsizei width, GLsizei height) 

 

Arrays 

void glVertexPointer (GLint size, GLenum type, GLsizei stride, const GLvoid *pointer) 

 

All OpenGL Arrays routines are expanded by our OpenGL Library into Primitives routines by 

our OpenGL library. This is due to the limitations of the fetch unit to which are detailed in 

Section 4. 
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3) GPU’s INSTRUCTION SET ARCHITECTURE 

 

3.1 ISA Specification 

 

The ISA defines the instruction word to be 16 bits: 

 

Bit Position 15 14-8 7-0 

Content Type Data OpCode 

 

Type Definition 

 

Type Description Data Field 

0 Immediate Immediate value 

1 Data Number of 32-bit data 

 

OpenGL Routine to Instruction Specification 

 

OpenGL Routine Type Data Field Opcode 

Primitives    

 glBegin (GLenum mode) 0 glBegin table 0000 0000 

 glEnd (void) 0 X 0000 0001 

 glVertex (TYPE x, TYPE y, TYPE z, TYPE w) 1 4 1000 0000 

 glColor  

(TYPE red, TYPE green, TYPE blue, TYPE alpha) 

1 4 0100 0000 

    

Transformation    

 glLoadIdentity (void) 0 X 0001 0000 

 glLoadMatrix (const TYPE *m) 1 16 0001 0001 

 glMatrixMode (GLenum mode) 0 glMatrixMode table 0001 0010 

 glMultMatrix (const TYPE *m) 1 16 0001 0011 

 glPopMatrix (void) 0 X 0001 0100 

 glPushMatrix (void) 0 X 0001 0101 

 glRotate (TYPE angle, TYPE x, TYPE y, TYPE z) 1 2 (sin angle, cos angle) 0001 1000 

 glScale (TYPE x, TYPE y, TYPE z) 1 3 0001 1001 

 glTranslate (TYPE x, TYPE y, TYPE z) 1 3 0001 1010 

 glViewport  

(GLint x, GLint y, GLsizei width, GLsizei height) 

1 4 0001 1011 
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glBegin Table 

 

Constants Immediate Value 

TRIANGLES 000000 

 

glMatrixMode Table 

 

Constants Immediate Value 

MODELVIEW 001 

PROJECTION 010 

TEXTURE 100 

 

 

3.2 ISA Discussion 

 

It is obvious that our ISA could be better designed to be more elegant and optimal. However 

most of our efforts were concentrated on designing and implementing the graphics pipeline, 

hence we chose to adopt a straightforward and usable ISA which is easily extensible as we 

progressively extended the functionality of our pipeline. 

 

A 16-bit instruction word size is an excessive design for the number of operations that we need 

to support. For example, our current architecture could easily be based on an 8-bit ISA. There 

are several factors that contribute to this choice: 

 

1. Extensibility 

The OpenGL 2.1 specification defines up to 300+ routines. In addition there are a few 

libraries that our pipeline may want to support such as GLUT and the NV extensions. 

 

2. Fetch unit 

The Instruction BRAM is addressed in 32-bit granularity. This is because we are fetching 

32-bit fixed point data most of the time. Therefore having smaller word size will force us 

to put more effort in the OpenGL library to generate optimized VLIW to avoid wastage 

due to instruction misalignment. 
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3.3 Fixed Point 

 

Our chip uses the following 32-bit fixed point format 

Bit Description 

31 Sign 

30-11 Pre 

10-0 Post 

 

Maximum integer is 2^20-1 

Minimum fraction is 2^-11 

 

We implemented add, multiple, divide and single-precision conversion for our fixed point 

format. The following are the specifications for each of the operations. 

 

Add: 

Asynchronous addition 

LUTs utilization: ~1% 

 

Multiply 

Asynchronous multiply 

LUTs utilization: ~1% 

 

Divide 

8-stage fully pipelined 

LUTs utilization: ~11% 

 

Convert 

Asynchronous conversion from single-precision floating pint 

LUTs utilization: ~1% 

 

Optimization 

Optimizing our floating point operations is very important because the performance of our 

graphics pipeline depends heavily on our fixed point functional units. We focused on improving 

the divider since it is both our largest component and our critical path. One tradeoff that was 

made is to reduce the precision of our divide in order to decrease resource utilization. We also 

had to pipeline the divider in order to meet our self-imposed 25MHz timing constraint. 
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4) FETCH UNIT 

 

Figure 2 shows our fetch unit as part of our whole design. The fetch unit comprise of a server 

running on the PowerPC core, a 5-port read and 1-port write Instruction BRAM and the first two 

stages in the graphics pipeline. 

 

4.1 Server on PowerPC core 

 

This component is based on the Ethernet MAC OneWire sample from 

http://www.xilinx.com/univ/XUPV2P/Reference_Designs/edk_7_1_builds/xup_bsb_emac_one

wire/xup_bsb_emac_onewire.zip which implements a web server on the PowerPC core. 

 

We modified this sample to listen for instructions from the OpenGL library on the workstation. 

Instructions are written to the Instruction BRAM through the OCM bus as long as the pipeline 

does not send an Instruction Halt signal 

 

4.2 Instruction BRAM 

 

 
 

 

The Instruction BRAM is 32-bit width, 4096 entries Block RAM. We choose to have 5 read 

ports and 1 write port. This BRAM simultaneously serves the server, stage 1 and stage 2 of the 

pipeline. The server writes 32-bits into din at address waddr in every cycle. The port addr is used 

by stage 1 and addr2 by the second stage of the pipeline. Four 32-bit fixed point numbers can be 

read from addr2 using ports dout1-4. 
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Stage 1 

 

Register Name Width Description 

Program Counter 12 Current instruction address 

Memory Bound Register 12 Address of the last instruction in the BRAM 

Instruction Halt Register 1 Connected to the OCM Bus to notify the Server on 

the Power PC that the Instruction BRAM is full 

 

The first stage of the pipeline fetches a 32-bit word using the address in PC. The top 16 bits 

stores the current instruction. Depending on the optimization done in the OpenGL library, the 

bottom 16 bits may be junk or could be another instruction. If it is another instruction the PC is 

stalled and the next instruction is buffered to be process in the next cycle. 

 

The decode module is use to set control signals and update registers based on the current 

instruction. 

 

Stage 2 

 

Register Name Width Description 

Data Address Register 12 Contains PC+1. This is use to fetch four 32-bit 

fixed point numbers from the instruction 

BRAM 

Data Count Register 7 Contains the Data field of a Data instruction 

Indicate how many values fetched at address 

DAR are valid 

Used to increment the PC for Data instruction 

type 

Model View Stack Pointer 8 Points to the top row of the first matrix in a 32 

matrices stack 

Projection Stack Pointer 4 Points to the top row of the first matrix in a 2 

matrices stack 

Matrix Mode Register 3 Select the active matrix stack 

Compute Select Register 4 Select code for the shared fixed point array 

shared between the Matrix Stack Update and 

Transform pipeline 

 

This stage retrieves 4 32-bit fixed point numbers for consumption of the subsequent pipeline 

stages.  
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Figure 2: Fetch Unit 
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5) MATRICES & TRANSFORMATIONS 

 

5.1 Matrix Stack Update 

 

Our pipeline implements two matrix stacks (each storing multiple 4x4 matrices) namely the 

Model View and Projection matrix using BRAMs. These stack pointers are initialized to a 

default identity matrix at the bottom of those stacks. Since the transformation pipeline depends 

on the current transformation matrix (determined by glMatrixMode), the matrix stack update 

pipeline will stall all pipeline stages before itself in order to starve the transformation pipeline. 

 

Since the matrix stack update pipeline is designed to update one row of a particular 

transformation matrix at a time, the pipeline is guaranteed to stall 4 cycles for every matrix 

update operation. This could be overcome if we can instantiate enough arithmetic units to 

compute matrix multiplications in one cycle. However, this is a tradeoff issue as we have limited 

resources on the FPGA. 

 

Matrix stack updates are performed using the following OpenGL routines: 

 

These routines involve writing a new 4x4 matrix on to the current matrix stack: 

void glLoadIdentity (void) 

void glLoadMatrix (const TYPE *m) 

 

This routine involves the decrement of the stack pointer: 

void glPopMatrix (void) 

 

This routine involves copying the top matrix on the current matrix stack to position stack pointer 

+ 1 on the stack: 

void glPushMatrix (void) 

 

These routines involve multiplying the top matrix on the current matrix stack with a 4x4 matrix 

(generated based on the routine’s arguments) and overwriting the top matrix with the result of 

the calculation: 

void glMultMatrix (const TYPE *m) 

void glRotate (TYPE angle, TYPE x, TYPE y, TYPE z) 

void glScale (TYPE x, TYPE y, TYPE z) 

void glTranslate (TYPE x, TYPE y, TYPE z) 
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Each matrix update takes 4 clock cycles, updating each row of a matrix in each cycle. This is 

done using the computation structure in Figure 3. 

 

 
 

Figure 3: Row Matrix Computation 

 

The inputs M are obtained from the matrix stack while inputs Data are new data from the 

instruction BRAM. Depending on the current OpenGL routine, the multiplexers will choose the 

appropriate inputs and outputs for the computation. The outputs of the computation are written 

onto the matrix stack.  
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5.2 Coordinate Transformation Pipeline 

 

Coordinate transformations are performed when glVertex is processed. glVertex provides 4 

arguments, i.e. the x, y, z, and w coordinates for each vertex. The transformations performed are 

shown in Figure 4. 

 

 

 
 

Figure 4: Coordinates Transformation 

 

 

Since matrix updates and matrix transforms are performed on different clock cycles, we are able 

to share the computation units in matrix updates described in section 5.1 to perform the 

operations in the Model-View Matrix block in Figure 3.  

 

The detailed block diagram for the coordinate transformation pipeline is shown in Figure 5. 
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Figure 5: Coordinate Transformation Block Diagram 
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6) RASTERIZATION 

 

Since all polygons can be broken down into triangles, our graphics pipeline needs to support 

triangle rasterization. Triangle is the most basic polygon that will enable us to render any 

graphics. We often want to draw a 2D triangle with three 2D points. Therefore, bounding box, 

scanline and edge walking is used to rasterize a triangle. In addition, the algorithm should also 

interpolate color or other properties from values at the vertices. The color information is 

determined using the barycentric coordinates. 

 

4 main components for rasterizing a triangle: 

• Bounding box 

• Edge equation 

• Scanline evaluation 

• Barycentric coordinates 

 

 

6.1 Algorithm 

 

The algorithm (Figure 6) will perform a horizontal scanline within the bounding box (Figure 7) 

instead of the entire screen. This will increase the performance tremendously as we do not need 

to scan the entire frame (640x480). At each pixel, the algorithm will evaluate whether it is above 

the edge equation, on the edge equation or below the edge equation (refer to Figure 8 for a better 

visualization). The barycentric coordinates will normalize the number between +/- 0 and 1. If 

the current pixel satisfies all three equations (Figure 9), the algorithm will then draw the pixel.  

The color interpolation will use the barycentric coordinates: α, β and γ (refer to Figure 7 for the 

calculations). The algorithm will continue evaluating each pixel until y and x hits the max value 

of the bounding box.  

 

 

 

 

  

 

    

  

 

 

 

  

 

 

Figure 6: Simplified Pseudo code for triangle rasterization 

 

 

 

 

xmin  = floor(xi) 
xmax = ceiling(xi) 
ymin = floor(yi) 
ymax = ceiling(yi) 
 
for y = ymin to ymax do 
  for x=xmin to xmax do 
    • = f

12
(x,y)/f

12
(x0,y0) 

    • = f
20
(x,y)/f

20
(x1,y1) 

    • = f
01
(x,y)/f

01
(x2,y2) 

    if(• > 0 and • > 0 and • > 0) 
       c = •c

0
 + •c

1
 + •c

2
 

       drawpixel(x,y) with color c 
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Figure 7: Bounding box 

 

 

 
 

Figure 8: Edge Equation 
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Figure 9: Pixel Evaluation 

 

The algorithm will loop through each scanline and evaluate the pixel in order to determine 

whether it’s positive, negative or on the line. If the pixel evaluates to positive for all three line 

equations, the code will perform color interpolation calculations. From these calculations, it will 

then determine the intensity for each color for the individual color buffers. 



TEAM: Start Button 

18-545 Final Report 

 

 18 

6.2 Color Interpolation 
 

Barycentric coordinates are used in order to determine the color of each pixel. The Barycentric 

coordinates will be multiplied by c0, c1, and c2, which are obtained from the OpenGL 

instruction glColor(). c0 is the color from vertex 0, c1 from vertex 1, and c2 from vertex 2. 

 

Below is the equation to determine the color of each pixel: 

   

c = c0α + c1β + c2γ 

 

After evaluating c, it will then compare with a threshold number to determine whether the color 

will be drawn on the pixel or not. Since we’re using 1 bit for each color (r, g, b) we will only 

compare with one threshold number, either on or off. There are no intensity involve in each 

color as there is only 1 bit representation. We limit the number of bits for color representation as 

there are limited BRAMs for the entire design. Figure 10 is the result of using color interpolation 

with 8 bits representation per color. We would obtain the same results if we use 8 bits per color 

as well.  

 

In addition, we also implemented Gouraud smooth shading with the Barycentric coordinates 

Gourand shading gives a better effect than flat shading. Barycentric coordinates is very useful 

for other implementation as well. If we have the time an opportunity to work on other parts of 

the pipeline, we could use these coordinates for texturing and lighting. 

 

 

 

 

 
 

Figure 10: Color Interpolation 
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Figure 11: Block Diagram for triangle rasterization 
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The block diagram in Figure 11 implements the pseudo code (Figure 6) in Verilog. We did our 

best to reuse as the resources in order to have a smaller design and also to make sure that our 

design is able to fit onto Xilinx board. The major part of the block diagram is computing the 

calculations in order to determine whether the pixel should be drawn or not. The second major 

part of the rasterization pipeline is computing the barycentric coordinates for the color 

interpolation. There are also 2 loops needed for the scanline.  

 

Below is the simulated output without color information: 

 

 
Figure 12: Simulation output  
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7) FRAME BUFFER 

 

The frame buffer provided by Xilinx was mainly meant to be manipulated in a C application 

program that is run on the PowerPC. This meant that all image data that is to be displayed will 

be written into the frame buffer in C. 

 

So the way the Xilinx TFT Controller worked, is with 3 major components, 

o The actual main frame buffer memory 

o An intermediate BRAM memory, big enough to contain a line (640 pixels) 

o The VGA controller itself for generating the horizontal_sync and vertical_sync signals 

for transmitting RGB bit data onto the screen 

 

The way it functions, 

• Your C code would be the one writing into the frame buffer memory anytime it pleases. 

So whenever you wanted to display an image onto the screen, you would write to that 

frame buffer memory. 

• The BRAM, which is large enough to hold a frame line (640 pixels), will retrieve a line 

worth of pixel data from the main memory.  

• So the VGA controller is constantly reading off the BRAM as it traces across the screen, 

meaning it displays that line that is contained by the BRAM. 

 

 
Figure 13: Xilinx TFT Controller IP 

 

• So after that one line is done and completely displayed onto the screen, the BRAM will 

extract the next 640 pixel line from the frame buffer memory, and the VGA controller 

emits the horizontal_sync signal so it shifts one line down and displays the next 640 

pixel line on the monitor. 

 

 

Frame Buffer 

 

(640 x 480  

pixel data) 

LCD Monitor 

BRAM (640 pixel data) 
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Originally, it was our plan to have a complete Verilog driven frame buffer. The advantage would 

be that we would have complete control of the controller, without having to resort to using C 

code.  

 

Additionally, direct access to the frame buffer would eliminate the need for data to go through 

the PLB bus which could take many cycles, thus speeding up the frame update and ultimately 

the frame rate. 

 

It has been defined that the standard method for outputting VGA signals is shown in Figure 14: 

 

 
 

Figure 14: 640 x 480 @ 60Hz Non-interlaced mode timing for Horizontal sync 

 

As can be seen in the Figure 13, there is a blanking interval during which the video signals must 

be low. The time for the blanking interval is 6.60 µs, which is 660 cycles at 100 MHz.  

 

Having a Verilog driven controller is still advantageous to use in that it enables us to write what 

we want, when we want. If we were to use C for writing to the memory, we would have to 

synchronize the outputs of our rasterizer to the C code, so that they would write at the 

appropriate time.  

 

If we were to approach it this way, the process would be as follows: 

o Rasterizer will produce the x and y coordinate to color. 

o From Verilog, the information will go to the C code which will then write it into the 

frame buffer memory through the PLB bus. 

o From the frame buffer, the data will be read by the VGA controller through the PLB bus 

again. 

o Then only finally the VGA controller can generate the signal onto the screen. 

 

Such an approach was deemed somewhat clumsy and unnecessarily long winded. The data has 

to travel from hardware into software then into hardware again. It would be much simpler and 

cleaner to integrate the frame buffer and VGA controller directly to the rasterizer and have 

everything on hardware. 
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However, Xilinx does not provide the Verilog code for the DRAM controller IP for our own use 

as code. It could only be implemented under system assembly and manipulated via C 

instructions. Thus we decided on the implementation of utilizing the BRAM as our frame buffer, 

at the cost of color information.  

 

We also implemented double buffering in order to remove all drawing artifacts during the 

drawing process. Double buffering is accomplished simply by having 2 separate frame buffers, 

one for reading, and one for writing. So, while one buffer is being read, the other buffer is being 

written onto. And after the rasterizer has finished for the current frame, the roles of the buffers 

are then swapped, the one that has finished being written will be read, while the other one will 

be cleared and written into. 

 

 

 
Figure 15a: Double buffering 

 

 

Since double buffering introduced the need for double the amount of data storage, we reduced 

the resolution to 320 x 240. Instead of rewriting the VGA controller to sync for a 320x240 

resolution, we just display each pixel on the 320x240 buffer twice on the display. 

Color information was now represented by 1 bit per RGB color, providing a total of 8 colors on 

screen. 

 

So, we utilized the BRAM to produce a 320x240 resolution, 3-bit color image. 
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Integration between the Rasterizer and the VGA Controller requires careful synchronization to 

ensure that the Rasterizer transmits the right data to the correct frame buffer. The double 

buffering requires that only one frame buffer be open for writing at any given time, while the 

other would be read from. 

 

In order to enable the drawing of more than one triangle at any given time, the rasterizer must be 

allowed to write all desired triangles into the frame buffer before switching buffers for reading 

and writing. So the rasterizer will transmit a done signal to indicate to the VGA to switch buffers 

and read the newly finished rasterized image. 

 

Then, for movement, the old frame buffer must be cleared before writing new triangles 

otherwise it would result in image ‘trails’. The ‘trails’ would simply be the old triangle on the 

buffer that was there because of the prior write session. 

 

Also, the rasterizer must also keep track of the VGA controller’s actions. It cannot be allowed to 

begin raster unless the buffer has completed clearing the screen, otherwise, the clearing may 

clear parts of the newly rastered triangle. So a signal is sent to rasterizer to indicate completion 

of clear. 

 

 
Figure 15b: Clearing to give the impression of triangle movement 
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Figure 16: VGA Timing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#cycles @ 25 MHz 

#cycles @ 25 MHz 
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8) DESIGN APPROACH 

 

8.1 Design Partitioning 

 

We partitioned our design into 4 main parts namely Fetch & Decode, Coordinate 

Transformation, Rasterization, and Frame Buffer. Each part was implemented with limited 

dependency on other parts of the design. To enable better integration, we specified the various 

requirements of each of the 4 parts before dividing up for individual development, such as 

number of clock cycle, whether input-output of a module are latched, control signals, and port 

requirements. Once each part was completed, we combined Fetch & Decode with Coordinate 

Transformation as the front-end, and Rasterization with Frame Buffer as the back-end of our 

design. The front-end and back-end of the design were then integrated to complete the pipeline.  

 

We also identified modules which can be used across parts of our design. These included fixed 

point units and Block RAMs. We developed these modules such that they could be customized 

(port width, memory depth, and number of pipeline stages) to serve the needs of various parts of 

our design while maintaining their inherent functionality. This enabled us to eliminate 

duplicated development efforts. 

 

8.2 Design Methodology 

 

Our design methodology roughly followed the spiral model in software development. The 

methodology is shown here in Figure 17.  

 

 
 

Figure 17: Spiral Model 

http://www.csse.monash.edu.au/~jonmc/CSE2305/Topics/07.13.SWEng1/html/text.html 
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The spiral model emphasizes the iterative development process whereby requirements are 

refined as the development process go along. It is an attempt to combine the advantages of top-

down and bottom-up development methodologies. This model was chosen because of its several 

advantages which fits our project requirement: 

 

Iterative refinement of requirements 

Given that we were beginners in computer graphics, it made sense that questions popped up 

throughout the semester-long development process. By allowing the iterative refinement process, 

we were able to redefine requirements quickly as we learned more about OpenGL and designed 

new prototypes. We were able to estimate more effectively what was doable and what was not as 

we went along. If we used other methodologies which focused on design requirement analysis 

during the planning stage, there is still a higher change that we ended up having to change our 

designs due to the limited level of knowledge that we started with.  

 

Timing closure 

Protracted design planning process is not feasible in this project, due to the limited amount of 

time that we have in a semester. We believe that issues are bound to arise during the 

development process and it was important that we are able to discover them earlier rather than 

later. Therefore, we did not spend too much time on the planning stage in order for work to 

begin earlier.  

 

 

8.3 Testing & Verification Methodology 

 

We tested partitions of our design separately before integrating them for final testing. Given the 

scale of our design, it was easier to identify bugs by testing on smaller modules before 

combining them into big ones. Since we identified the inter-module requirements prior to the 

module development, we were able to come up with possible test vector quickly. We used 

ModelSim as our Verilog simulator for its convenient graphical display of all possible signals in 

our design.  

 

The synthesis and place-and-route reports by Xilinx were useful in determining problems with 

our design which were not visible using simulation. Timing constraint violations were quickly 

identified and fixed, as the critical path is specified clearly in the reports.  

 

We verified our final design output with those produced by OpenGL code in software. By using 

the same inputs and comparing the outputs produced by a software and hardware 

implementation, we were able to easily identify any discrepancies. 
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9) STATUS & FUTURE WORK 

 

Our design is architecturally complete. Currently, the whole pipeline design is not able to fit on 

the board with 103% LUTs utilization. The Rasterization Unit and the Frame Buffer are 

synthesized and they work perfectly to produce the intended output on the VGA. The Fetch & 

Decode Unit and the Transformation Unit simulate correctly and does not have synthesis issues 

if synthesized independently from the back-end of the pipeline.  

 

Moving forward, we need to optimize our design to reduce the amount of resources used. 

Instead of using BRAMs for the Frame Buffer, we should explore the possibility of using 

DRAMs on the board. This will enable us to display more color variation given the color 

interpolation capability of the Rasterization Unit. 

 

It would be nice to add more stages into our pipeline, such as lighting and texturing. These 

features will produce a more realistic look. Since we already have the Barycentric coordinates, 

which are used in this stage, we could add more matrix manipulation for the computation.  

However, currently our design is over mapped on the board. Thus, we will have to optimize the 

current pipeline stages first before adding new stages.  
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10) LESSONS LEARNED 

 

We believe that we would have made much more progress this semester if we had computer 

graphics background before we started this project. By knowing enough about computer 

graphics, we would have been able to carefully plan out our design without the risk of spending 

too much time on it and not getting the results that we wanted.  

 

It would be much easier if we have some exposure on Xilinx board. We would not have to spend 

so much time reading up the manuals and tutorials. By knowing the constraints and limitation of 

the board would also help us designing our project. A better understanding on Xilinx’s 

optimization tool is important to understand the tool’s behavior.   

 

We were very ambitious in the beginning of the semester. We thought we could implement the 

whole graphics pipeline and run a game, FooBillard with our graphics accelerator. Without any 

background in OpenGL and Computer Graphics, it was actually impossible to achieve in a 

limited time frame. Most of the time spent in the earlier part of the semester is to gain 

understanding on both OpenGL and Computer Graphics via the internet and books. We did not 

realize that we have to change our goals until design review 2. Therefore, it was a mistake being 

too ambitious in the beginning. If we realized earlier, we could have been more focus on the 

graphics pipeline instead of the game.   

 

At first, we also implemented most of the graphics pipeline using floating point representation. 

We thought that floating point representation would give us more accuracy and we found some 

open source floating point unit online. Later, we discovered that the floating point unit could not 

synthesize on Xilinx board. Thus, we had changed the floating point unit, so that it would 

synthesize. However, the utilization of the floating point unit is too high. Then, we changed 

everything to fixed point notation instead. Although we’ll loose a bit of precision, fixed point 

notation give us better utilization and performance in general. We would say that we wasted a 

lot of effort and time in deciding which representation is suitable for the notation. We had to 

redesign the whole pipeline when the basic arithmetic unit changes. In brief, we should have 

used fixed point notation earlier and avoid redundant implementation of the pipeline.  

 

In addition, we also tried to implement everything on hardware. For instance, we avoided using 

the PLB bus and the DRAM for the framebuffer. Since most of the pipeline is in hardware, we 

figured that the vga controller should be in hardware as well since the cycles count from the 

BRAM is much less than accessing memory from DRAM. However, by imposing this decision 

we had added more constraints into our design. Since we have limited BRAM, we had to be 

really tedious in allocating the BRAM through out the whole pipeline. As a result, we could only 

afford to represent 1-bit color information for the color interpolation. Thus, our triangle does not 

look as smooth as it should. When we realized this issue, we were running out of time to change 

the direction of our design.  

 

By choosing this project (graphics accelerator), we managed to learn a lot from it. Since we’re 

implementing our design purely in hardware, we learned how to deal with integrating several 

blocks together, synchronizing the timing between different blocks, designing our own 

architecture for the fetch unit and fitting everything on the Xilinx board. Hardware is a lot harder 

than implementing Software at a higher-level. Furthermore, we are exposed to OpenGL and 
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Computer Graphics by choosing this project. Some of us would never have seriously gotten into 

the graphics world if not for this project.  

 

In addition, we also learn how deal with design closure. The initial description of the project has 

to meet a growing list of design constraints and objectives. There are so many constraints that 

we need to take into consideration, such as timing constraints, placement and routing, utilization 

constraints, mapping and logic synthesis. We must be able to design around those constraints.  

 

For those who are interested in embarking on the same project, we strongly advise that you think 

through your decision carefully before doing it if you do not have any computer graphics 

background and if time and manpower is a constraint. It is also important that you make careful 

decisions in the beginning of the project by considering all the options and alternatives that are 

available. It will be much harder to turn around during the later stages of the project.  
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11) INDIVIDUAL COMMENTS 

 

Joomay Tan 

 

The earlier stage of the project, we spent some time determining what kind of project that we’ll 

work on through out the entire semester. There so many possibilities and options available. We 

spent about two weeks defining our project and finally we came up with implemented a graphics 

accelerator. From the onwards, I spend a lot of time digging into OpenGL and Computer 

Graphics. I had no OpenGL or Computer Graphics background at all. Thus, it took me some 

time to grasp the pipeline implementation and obtained a good understand for each stage of the 

pipeline that we are going to focus on.  

 

I started the triangle rasterization pipeline approximately a week before design review 1 and 

completed the initial implementation in around 2 weeks. After the initial implementation, I did a 

lot of testing and verification to make sure that the Verilog is able to render all kinds of triangle.  

Throughout the entire project, I did a lot of modification for the triangle rasterization. Initially 

we implemented everything with floating point, but later we decided to use fixed point 

representation instead. We also changed some modules that triangle rasterization depends on. 

Thus, I had to modify the code in order to fit everything together and make sure it works 

accordingly. 

 

After that, I assist Ken Yu with the integration between the rasterizer and vga framebuffer. 

There were some synchronization issues and we had to do a lot of debugging. We had to make 

sure that the output of the raster fits into the vga controller. We also had to implement double 

buffering for the animation. I also implemented color interpolation into the pipeline. The color 

interpolation is embedded inside triangle rasterizer. With this added feature, we had to change 

the framebuffer to support all three color components, red, green and blue. There was a lot of 

testing, debugging and synthesizing done along the way.  

 

In general, this is a fun class as every team gets to design and implement their own system. We 

learned how to put a huge system together, which is not obtainable from other classes. We also 

experience how to work as a team in this class.  

 

One machine for each group is not enough as we always have to take turns using the machine 

and the board. A lot of time is wasted since the synthesizing process takes quite long especially 

if the utilization of the board is high. 

 

I think everyone in the lab has the responsibility to keep the lab clean. However, this did not 

happen. The lab is constantly dirty and smelly. Moreover, our lab bench is next to the trash bin 

and the awful stench is always there. In addition, there are not enough lab stools for everyone in 

the lab.  
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Ken Yu Lim 

 

Initially, I was involved in designing the interface between the workstation and board. I had 

linux booted onto a laptop, and planned to utilize the SATA connection. However, this idea was 

later dropped as writing a device driver and interconnecting to the SATA interface was too 

cumbersome and time consuming. 

 

For the project, I dealt with mainly the back end of the pipeline. I was to implement the VGA 

controller in hardware. It was difficult at first, as I was now aware of the definitions of the 

required VGA signals for frame buffers in general. I learned a lot about getting data to sync 

correctly with the VGA signals in order to accurately relay pixel data from a frame buffer onto a 

graphics display. A lot of time was wasted trying to understand the intricate details about the 

VGA sync signals and looking at the Xilinx TFT controller IP which was provided in Verilog, 

fortunately. 

 

We started with a 640x480 resolutions. I had all the sync modules and the memory all arranged 

to perform the tasks at that level. However later on, it was discovered that we would be utilizing 

the BRAMs and due to the limited availability, we had to drop the resolution. Hence I would 

have had to redo all the sync signals. So instead, I decided to reuse the same sync for 640x480 

@ 60Hz, but to read each pixel twice onto the screen. Additionally, I also had to implement the 

3-bit color information for the display. 

 

In addition, I also was involved in the integration of the VGA controller to the rasterizer, 

ensuring that the outputs of the rasterizer would correctly write into the frame buffer. I also 

implemented double buffering for the frame buffer, so there was also the synchronization of the 

rasterizer to the appropriate frame buffer during the write, or rasterize period. 

 

In general I learned a great deal about graphics processing and the general graphics pipeline, and 

the details of its workings and mechanics. I learned about the architecture, and how it all comes 

together. I also learned about some rasterization techniques and optimizations. 

 

Overall, it was a very good experience. I learnt the hard way about designing with constraints, 

and about design closure, trying to ensure that the design will ultimately fit on the board and 

meet timing constraints. 

 

It would have been more beneficial if there were clearer or more extensive labs on how to 

manipulate the display other than the C “setPixel” code method. Also, it would be good if there 

were Verilog code for the Xilinx DRAM Memory controller IPs. There are no very clear 

instructions about how to implement your own design modules in the beginning. There should 

be some explanations about the .mhs and .ucf files and how they come together. 
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Kenneth Eng 

 

In this project, I was responsible in the following tasks: 

 

Computer Graphics Knowledge 

Since none of the team members have computer graphics background, I was assigned to gain an 

in-depth understanding of concepts and algorithms in computer graphics to get the team started 

on the project. By reading up books on computer graphics and researching online, I collected the 

necessary information to facilitate the pipeline design. The amount of time spent on this was 

slightly more than a week. However, learning and relearning of computer graphics was done 

throughout the duration of the project in order to refine the requirements of the pipeline. 

 

Coordinate Transformation Unit 

I was responsible to implement to the coordinate transformation module. It mainly involved the 

understanding of matrix multiplications and discovering methods to optimize its performance. 

By studying the mathematics of matrix transforms, I was able to perform 4x4 x 4x4 matrix 

multiplication using the same amount of hardware as a 4x4 x 4x1 matrix multiplication. By 

doing so, we saved some precious amount of resources on the board. The coordinate 

transformation unit also involves the implementation of the modelview and projection stacks 

using Block RAMs. I have to change my design during the later stage of the project in order to 

solve timing constraint problems during synthesis.  

 

Synchronization between Decode and Transformation Unit 

I worked closely with Teck Hua to synchronize the OpenGL instructions and data with the 

transformation pipeline’s operations. Since most of the OpenGL routines directly affect the 

transformation operations, this process took almost 3 weeks before we are able to solve all the 

discovered synchronization problems between the two units.  

 

The difference between what our team is doing compared to other team is that we are not able to 

see “tangible” results every time we got something to work. Most of the time, our level of self-

satisfaction was limited to seeing correct signal behaviors on ModelSim. This had somewhat 

limited the level of enjoyment of the project. We were constantly living under the impression 

that we were not producing results even though we were churning out parts which contributed to 

the final pipeline. There were numerous times when we even doubted our decision in choosing 

the graphics accelerator project, but we pulled through nevertheless.  

 

The labs could have been more instructive by providing more challenges and being better 

organized before the course started. More money should be spent on getting more lab benches 

with boards and other equipments. Having four persons working on a small lab bench is very 

inconvenient, so we tend to use remote desktop from other computer cluster during most of the 

times.  

 

 

 

 

 



TEAM: Start Button 

18-545 Final Report 

 

 34 

Teck Hua Lee 

 

Fixed Point Library 

We made the decision to switch from single-precision floating point to a custom fixed-point 

format around mid-way through the project. This is because we were using a freeware FPU from 

opencores.org, which is difficult to tweak to meet our resource, and timing constrains. I was 

responsible to write the fixed point units used in this project. As mentioned in the Fixed Point 

section, these are the crucial components that determine the size and performance of our GPU. 

There is very little room for error because every change here will require modification to the 

transform and raster pipeline. The first version of the fixed point library resulted in a 7MHz 

GPU. After rewriting the divider several times, we managed to crank up the speed to 60Mhz by 

the end of the project. 

 

OpenGL Library client and PowerPC server 

This is the interface between an OpenGL application and our GPU. The Ethernet plumbing on 

the client side is from the 15-213 Proxy Lab while the server code on the PowerPC is modified 

from the sample OneWire Ethernet project on the Xilinx website. I collaborated with the PPU 

team to iron out some performance issues with the Ethernet. 

 

Fetch and Decode Unit 

I did some research to see if a graphic processor would have implemented these stages 

differently from a general-purpose processor. In the end I modeled it after the typical fetch and 

decode stages in 18-447 RISC pipeline. I worked closely with Kenneth to ensure that the control 

signals asserted by the decode unit matches his transform pipeline specification. A key 

component is the Instruction BRAM which has 5 read ports and 1 write port. This allows the 

following operations to be done in the same cycle 

1. write from the Server on the Power PC 

2. instruction fetch 

3. retrieve up to 4 fixed point data in the decode stage 

 

Overall system integration 

The most difficult part of the entire project is to connect everything together. I wrote the bridge 

between the Transform and Raster pipeline. This glue logic mainly defines the Coordinate and 

Color buffers which feeds the rasterizer. Since transformation is relatively faster than 

rasterization, we have to consider that trade off between using more BRAMs or stalling the 

pipeline very frequently. In order to free up BRAMs, we made a compromise by reducing the 

resolution of the VGA to 320x240. As a result we were also able to do double buffering and 

support up to 3-bits of color. 

 

Comments 

We are frequently being compared to a similiar project at UNC. However I think we faced a 

more challenging path since the UNC team is actually made up of the entire class of a Computer 

Graphics Hardware course. Hence they have a proper structure that guided them along the way 

through relevant lectures throughout the semester. Nevertheless I still enjoyed this class because 

it allow us to trip and fall so many times (redesign, redesign and redesign) and eventually we 

have a very good understanding of the OpenGL pipeline. 
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Complaints 

The scope for the project is very flexible. There is a lot of uncertainty in the beginning of this 

project. Needless to say Prof. Mai was very helpful in helping us define our project. There is a 

big learning curve in the area of computer graphics and GPU architecture. By the time we were 

up to speed, our other classes were also hitting the peak period and time became really scarce. 
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