
CMU 18-447 Introduction to Computer Architecture, Spring 2015

HW 3: Branch Prediction, Out-of-order Execution, SIMD, and GPUs

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Kevin Chang, Albert Cho, Jeremie Kim, Clement Loh

Assigned: Wed., 2/11, 2015
Due: Wed., 2/25, 2015 (Midnight)

Handin: Autolab

1 Hardware vs Software Interlocking [30 points]

Consider two pipelined machines A and B.

Machine I implements interlocking in hardware. On detection of a flow dependence, it stalls the
instruction in the decode stage of the pipeline (blocking fetch/decode of subsequent instructions) until all of
the instruction’s sources are available. Assume internal register file forwarding (an instruction writes into a
register in the first half of a cycle and another instruction can access the same register in the next half of the
cycle). No other data forwarding is implemented. However, there are two execute units with adders, and
independent instructions can be executed in separate execution units and written back out-of-order. There
is one write-back stage per execute unit, so an instruction can write-back as soon as it finishes execution.

Machine II does not implement interlocking in hardware. It assumes all instructions are independent
and relies on the compiler to order instructions such that there is sufficient distance between dependent
instructions. The compiler either moves other independent instructions between two dependent instructions,
if it can find such instructions, or otherwise, inserts NOPs. Assume internal register file forwarding (an
instruction writes into a register in the first half of a cycle and another instruction can access the same
register in the next half of the cycle).

Both machines have the following four pipeline stages and two adders.

• Fetch (one clock cycle)

• Decode (one clock cycle)

• Execute (ADD takes 3 clock cycles. Each ADD unit is not pipelined, but an instruction can be executed
if an unused execute (ADD) unit is available.)

• Write-back (one clock cycle). There is one write-back stage per execute (ADD) unit.

Consider the following 2 code segments.

Code segment A

ADD R5 <- R6, R7
ADD R3 <- R5, R4
ADD R6 <- R3, R8
ADD R9 <- R6, R3

Code segment B

ADD R3 <- R1, R2
ADD R8 <- R9, R10
ADD R4 <- R5, R6
ADD R7 <- R1, R4
ADD R12 <- R8, R2

(a) Calculate the number of cycles it takes to execute each of these two code segments on machines I and
II.

1

(b) Calculate the machine code size of each of these two code segments on machines I and II, assuming a
fixed-length ISA, where each instruction is encoded as 4 bytes.

(c) Which machine takes a smaller number of cycles to execute each code segment A and B?

(d) Does the machine that takes a smaller number of cycles for code segment A also take a smaller number
of cycles than the other machine for code segment B? Why or why not?

(e) Would you say that the machine that provides a smaller number of cycles as compared to the other
machine has higher performance (taking into account all components of the Iron Law of Performance)?

(f) Which machine incurs lower code size for each code segment A and B?

(g) Does the same machine incur lower code sizes for both code segments A and B? Why or why not?

2 Branch Prediction [55 points]

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */
val = array[i]; /* TAKEN PATH for B1 */
if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */
}
if (val % 5 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */
}
if (val % 10 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */
}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

Only B1.

B2, B3, B4 are not locally correlated. Just like consecutive outcomes of a die, an element
being a multiple of N (N is 2, 5, and 10, respectively for B2, B3, and B4) has no bearing on
whether the next element is also a multiple of N .

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

B4 is correlated with B2 and B3. 10 is a common multiple of 2 and 5.

Now assume that the above piece of code is running on a processor that has a global branch predictor.
The global branch predictor has the following characteristics.

2

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–1023)

• Before the code is run, all PHTEs are initially set to 0.

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

(d) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the
shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE? Then
consider...

Show your work.

Without loss of generality, let’s take a look at the numbers from 1 through 6. Given that a
number is a multiple of two (i.e., 2, 4, 6), the probability that the number is also a multiple
of five (i.e., 15) is equal to 1/24, let’s call this value Q. Given that a number is a multiple
of two and five (i.e., 20), the probability that the number is also a multiple of ten (i.e., 6) is
equal to 1, let’s call this value R.

For a single iteration of the loop, the PHTE has four chances of being incremented/decre-
mented, once at each branch.

• B3’s contribution to PHTE. The probability that both B1 and B2 are taken is denoted as
P(B1 T && B2 T), which is equal to P(B1 T)*P(B2 T) = 1*1/2 = 1/2. Given that they
are, the probability that B3 is taken, is equal to Q = 1/5. Therefore, the PHTE will be
incremented with probability 1/2*1/5 = 1/10 and decremented with probability 1/2*(1-1/5)
= 2/5. The net contribution of B3 to PHTE is 1/10-2/5 = -3/10.

• B4’s contribution to PHTE. P(B2 T && B3 T) = 1/10. P(B4 T | B2 T && B3 T) = R =
1. B4’s net contribution is 1/10*1 = 1/10.

• B1’s contribution to PHTE. P(B3 T && B4 T) = 1/10. P(B1 T | B3 T && B4 T) = 1.
B1’s net contribution is 1/10*1 = 1/10.

• B2’s contribution to PHTE. P(B4 T && B1 T) = 1/10*1 = 1/10. P(B2 T | B4 T &&
B1 T) = 1/2. B2’s net contribution is 1/10*1/2 - 1/10*1/2 = 0.

For a single iteration, the net contribution to the PHTE, summed across all the four branches,
is equal to 1/6. Since there are 120 iterations, the expected PHTE value is equal to -
1/10*120=-12.

3

3 Branch Prediction vs Predication [30 points]

Consider two machines A and B with 17-stage pipelines with the following stages.

• Fetch (one stage)

• Decode (nine stages)

• Execute (six stages).

• Write-back (one stage).

Both machines do full data forwarding on flow dependences. Flow dependences are detected in the last
stage of decode and instructions are stalled in the last stage of decode on detection of a flow dependence.

Machine A has a branch predictor that has a prediction accuracy of P%. The branch direction/target is
resolved in the last stage of execute.
Machine B employs predicated execution, similar to what we saw in lecture.

(a) Consider the following code segment executing on Machine A:

add r3 <- r1, r2
sub r5 <- r6, r7
beq r3, r5, X
addi r10 <- r1, 5
add r12 <- r7, r2
add r1 <- r11, r9
X: addi r15 <- r2, 10
.....

When converted to predicated code on machine B, it looks like this:

add r3 <- r1, r2
sub r5 <- r6, r7
cmp r3, r5
addi.ne r10 <- r1, 5
add.ne r12 <- r7, r2
add.ne r14 <- r11, r9
addi r15 <- r2, 10
.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 75% of the time
and not taken 25% of the time. On an average, for what range of P would you expect machine A to
have a higher instruction throughput than machine B?

(b) Consider another code segment executing on Machine A:

add r3 <- r1, r2
sub r5 <- r6, r7
beq r3, r5, X
addi r10 <- r1, 5
add r12 <- r10, r2
add r14 <- r12, r9
X: addi r15 <- r14, 10
.....

4

When converted to predicated code on machine B, it looks like this:

add r3 <- r1, r2
sub r5 <- r6, r7
cmp r3, r5
addi.ne r10 <- r1, 5
add.ne r12 <- r10, r2
add.ne r14 <- r12, r9
addi r15 <- r14, 10
.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 50% of the time
and not taken 50% of the time. On an average, for what range of P would you expect machine A to
have a higher instruction throughput than machine B?

5

4 Out-of-order Execution [50 points]

In this problem, we will give you the state of the Register Alias Table (RAT) and Reservation Stations (RS)
for a Tomasulo-like out-of-order execution engine. Your job is to determine the original sequence of five
instructions in program order.

The out-of-order machine in this problem behaves as follows:

• The frontend of the machine has a one-cycle fetch stage and a one-cycle decode stage. The machine
can fetch one instruction per cycle, and can decode one instruction per cycle.

• The machine dispatches one instruction per cycle into the reservation stations, in program order.
Dispatch occurs during the decode stage.

• An instruction always allocates the first reservation station that is available (in top-to-bottom order)
at the required functional unit.

• When a value is captured (at a reservation station) or written back (to a register) in this machine, the
old tag that was previously at that location is not cleared ; only the valid bit is set.

• When an instruction in a reservation station finishes executing, the reservation station is cleared.

• Both the adder and multiplier are fully pipelined. Add instructions take 2 cycles. Multiply instructions
take 4 cycles.

• When an instruction completes execution, it broadcasts its result, and dependent instructions can
begin execution in the next cycle if they have all operands available.

• When multiple instructions are ready to execute at a functional unit, the oldest ready instruction is
chosen.

Initially, the machine is empty. Five instructions then are fetched, decoded, and dispatched into reserva-
tion stations, before any instruction executes. Then, one instruction completes execution. Here is the state
of the machine at this point, after the single instruction completes:

6

(a) Give the five instructions that have been dispatched into the machine, in program order. The source
registers for the first instruction can be specified in either order. Give instructions in the following
format: “opcode destination ⇐ source1, source2.”

MUL R3 ⇐ R1 , R7

MUL R4 ⇐ R1 , R2

ADD R2 ⇐ R3 , R4

ADD R6 ⇐ R0 , R5

MUL R6 ⇐ R2 , R6

(b) Now assume that the machine flushes all instructions out of the pipeline and restarts execution from the
first instruction in the sequence above. Show the full pipeline timing diagram below for the sequence of
five instructions that you determined above, from the fetch of the first instruction to the writeback of
the last instruction. Assume that the machine stops fetching instructions after the fifth instruction.

As we saw in class, use “F” for fetch, “D” for decode, “E1,” “E2,” “E3,” and “E4” to signify the first,
second, third and fourth cycles of execution for an instruction (as required by the type of instruction),
and “W” to signify writeback. You may or may not need all columns shown.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

MUL R3 ⇐ R1, R7 F D E1 E2 E3 E4 W
MUL R4 ⇐ R1, R2 F D E1 E2 E3 E4 W
ADD R2 ⇐ R3, R4 F D E1 E2 W
ADD R6 ⇐ R0, R5 F D E1 E2 W
MUL R6 ⇐ R2, R6 F D E1 E2 E3 E4 W

Finally, show the state of the RAT and reservation stations after 8 cycles in the blank figures below.

7

5 Load Store Handling [36 points]

A modern out-of-order execution processor has a store buffer (also called a store queue) as discussed in class.
Remember that this buffer is implemented as a searchable structure, i.e., content addressable memory. Such
a processor also has a load buffer (also called a load queue), which contains all information about decoded
but not yet retired load instructions, in program order. Also as discussed in class, most modern processors
intelligently schedule load instructions in the presence of “unknown address” stores. The process of handling
load/store dependencies and scheduling is called “memory disambiguation”. For this question, assume a
processor that aggressively schedules load instructions even in the presence of older store instructions with
unknown addresses. Within this context, answer the following questions.

1. What is the purpose of the store buffer?

To resolve dependency issues between loads/stores and store value

2. Exactly when is the store buffer searched (if at all)?

When there is a load to check if there are dependent stores that will cause stalls

3. What is the purpose of the load buffer?

Resolve pending load’s value once store value is resolved

4. Exactly when is the load buffer searched (if at all)?

When a store is resolved it will check the load queue

5. You are given the following state of the store buffer and the load buffer at a given instant of time.
Assume the ISA allows unaligned loads and stores, registers are 4 bytes, and byte and double-byte loads are
sign-extended to fill the 4-byte registers. Assume no pipeline flushes during the execution of the code that
lead to this state. Starting addresses and sizes are denoted in bytes; memory is little-endian. Data values
are specified in hexadecimal format.

8

Store buffer

Inst num. Valid Starting Address Size Data
3 Yes 10 1 x00000005
5 Yes 36 4 x00000006
6 Yes 64 2 x00000007
7 Yes 11 1 x00000004
9 Yes 44 4 x00000005
10 Yes 72 2 x00000006
11 Yes 12 1 x00000006
13 Yes 52 4 x00000008
14 Yes 80 2 x00000007
15 Yes 13 1 x00000006
32 Yes Unknown 4 x00000009

Load buffer

Inst num. Valid Starting Address Size Destination
8 Yes 10 2 R1
12 Yes 11 2 R2
22 Yes 12 4 R3
28 Yes 10 4 R4
29 Yes 46 2 R5
30 Yes 13 2 R6
36 Yes 10 4 R7
48 Yes 54 2 R8

What is the value (in hexadecimal notation) loaded by each load into its respective destination register
after the load is committed to the architectural state?

R1: 0x00000405

R2: 0x00000604

R3: 0xXXXX0606

R4: 0x06060405

R5: 0x00000000

R6: 0xXXXXXX06

R7: Unknown

R8: Unknown

9

6 Restartable vs. Precise Interrupts [6 points]

As we discussed in one of the lectures, an exception (or interrupt) is “restartable” if a (pipelined) machine
is able to resume execution exactly from the state when the interrupt happened and after the exception
or interrupt is handled. By now you also should know what it means for an interrupt to be precise versus
imprecise.

Can a pipelined machine have restartable but imprecise exceptions or interrupts?

Yes.

What is the disadvantage of such a machine over one that has restartable and precise exceptions or
interrupts? Explain briefly.

It would be hard to debug code running on such a machine. Restartable exceptions do not ease
debugging.

10

7 GPUs and SIMD [35 points]

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept busy
with active threads during the run of a program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A, B, and C are already in vector registers so there are no
loads and stores in this program. (Hint: Notice that there are 4 instructions in each thread.) A warp in the
GPU consists of 64 threads, and there are 64 SIMD lanes in the GPU.

for (i = 0; i < 1024768; i++) {
if (B[i] < 4444) {

A[i] = A[i] * C[i];
B[i] = A[i] + B[i];
C[i] = B[i] + 1;

}
}

(a) How many warps does it take to execute this program?

Warps = (Number of threads) / (Number of threads per warp)
Number of threads = 220 (i.e., one thread per loop iteration).
Number of threads per warp = 64 = 26 (given).
Warps = 220/26 = 214

(b) When we measure the SIMD utilization for this program with one input set, we find that it is 67/256.
What can you say about arrays A, B, and C? Be precise (Hint: Look at the ”if” branch, what can you
say about A, B and C?).

A: Nothing

B: 1 in every 64 of B’s elements less than 4444.

C: Nothing.

(c) Is it possible for this program to yield a SIMD utilization of 100% (circle one)?

YES NO

If YES, what should be true about arrays A, B, C for the SIMD utilization to be 100%? Be precise.

If NO, explain why not.

B:
Either:
(1) All of B’s elements are greater than or equal to 4444, or
(2) All of B’s elements are less than 4444.

11

(d) Is it possible for this program to yield a SIMD utilization of 25% (circle one)?

If YES, what should be true about arrays A, B, and C for the SIMD utilization to be 25%? Be precise.

If NO, explain why not.

The smallest SIMD utilization possible is the same as part (b), 67/256, but this is greater
than 25%.

8 Vector Processing [40 points]

You are studying a program that runs on a vector computer with the following latencies for various instruc-
tions:

• VLD and VST: 50 cycles for each vector element; fully interleaved and pipelined.
• VADD: 4 cycles for each vector element (fully pipelined).
• VMUL: 16 cycles for each vector element (fully pipelined).
• VDIV: 32 cycles for each vector element (fully pipelined).
• VRSHF (right shift): 1 cycle for each vector element (fully pipelined).

Assume that:

• The machine has an in-order pipeline.
• The machine supports chaining between vector functional units.
• In order to support 1-cycle memory access after the first element in a vector, the machine interleaves

vector elements across memory banks. All vectors are stored in memory with the first element mapped
to bank 0, the second element mapped to bank 1, etc.

• Each memory bank has an 8KB row buffer.
• Vector elements are 64 bits in size.
• Each memory bank has two ports (so that two loads/stores can be active simultaneously), and there

are two load/store functional units available.

(a) What is the minimum power-of-two number of banks required in order for memory accesses to never
stall? (Assume a vector stride of 1.)

64 banks, because memory latency is 50 cycles and the next power of two is 64.
There is another solution if one interprets “never stall” to mean that a single load will never
stall rather than the memory accesses in the program below: in that case, 32 banks suffices
since each bank has two ports. For those who answered this way on the test, we gave full
credit.

(b) The machine (with as many banks as you found in part (a)) executes the following program (assume
that the vector stride is set to 1):

VLD V1 <- A
VLD V2 <- B
VADD V3 <- V1, V2
VMUL V4 <- V3, V1
VRSHF V5 <- V4, 2

It takes 111 cycles to execute this program. What is the vector length?

40 elements

12

VLD |----50------|---(VLEN-1)----|
VLD |1|----50------|
VADD |-4-|
VMUL |-16-|
VRSHF |1|-----(VLEN-1)-----|
50+1+4+16+1 + (VLEN-1) = 71 + VLEN = 111 -> VLEN = 40

If the machine did not support chaining (but could still pipeline independent operations), how many
cycles would be required to execute the same program? Show your work.

228 cycles

VLD |-----50-----|---(VLEN-1)---|
VLD |1|-----50-----|---(VLEN-1)---|
VADD |-4-|--(VLEN-1)---|
VMUL |-16-|--(VLEN-1)---|
VRSHF |1|--(VLEN-1)--|
50 + 1 + 4 + 16 + 1 + 4*(VLEN-1) = 68 + 4*VLEN = 228

(c) The architect of this machine decides that she needs to cut costs in the machine’s memory system. She
reduces the number of banks by a factor of 2 from the number of banks you found in part (a) above.
Because loads and stores might stall due to bank contention, an arbiter is added to each bank so that
pending loads from the oldest instruction are serviced first. How many cycles does the program take to
execute on the machine with this reduced-cost memory system (but with chaining)?

129 cycles

VLD [0] |----50----| bank 0 (takes port 0)
...
[31] |--31--|----50----| bank 31
[32] |---50---| bank 0 (takes port 0)
...
[39] |--7--| bank 7

VLD [0] |1|----50----| bank 0 (takes port 1)
...
[31] |1|--31--|----50----| bank 31
[32] |---50----| bank 0 (takes port 1)
...
[39] |--7--| bank 7

VADD |--4--| (tracking last elements)
VMUL |--16--|
VRSHF |1|
(B[39]: 1 + 50 + 50 + 7) + 4 + 16 + 1 = 129 cyc

Now, the architect reduces cost further by reducing the number of memory banks (to a lower power of
2). The program executes in 279 cycles. How many banks are in the system?

8 banks

13

VLD [0] |---50---|
...
[8] |---50---|
...
[16] |--50--|
...
[24] |--50--|
...
[32] |--50--|
...
[39] |--7--|

VLD [39] |1|
VADD |--4--|
VMUL |--16--|
VRSHF |1|
5*50 + 7 + 1 + 4 + 16 + 1 = 279 cyc

(d) Another architect is now designing the second generation of this vector computer. He wants to build a
multicore machine in which 4 vector processors share the same memory system. He scales up the number
of banks by 4 in order to match the memory system bandwidth to the new demand. However, when
he simulates this new machine design with a separate vector program running on every core, he finds
that the average execution time is longer than if each individual program ran on the original single-core
system with 1/4 the banks. Why could this be (in less than 20 words)? Provide concrete reason(s).

Inter-application memory interference which leads to loss of row-buffer locality and bank-level
parallelism. This occurs because all applications interleave their vectors across all banks in
the system.

What change could this architect make to the system in order to alleviate this problem (in less than 20
words), while only changing the shared memory hierarchy?

Partition applications across channels, or use application-aware memory scheduling.

14

