CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 1/4

LAB 5: DAaTA CACHE
AssiGNED: WED., 2/25; DUE: Mon., 3/23

INSTRUCTOR: ONUR MUTLU
TAS: RACHATA AUSAVARUNGNIRUN, KEVIN CHANG, ALBERT CHO, JEREMIE KiM, CLEMENT LOH

1. Introduction

In this lab, you will extend your pipelined MIPS machine to implement a data cache. For the previous
labs, we have been assuming that accessing (i.e., reading from and writing to) the memory can be
completed within a single clock cycle for simplicity. In this lab, you will be using a memory that takes
several cycles to complete serving memory accesses, resulting in pipeline stalls at the memory stage.
The goal of this lab is to add a data cache to reduce the number of stalls due to memory accesses.

2. Additions to the MIPS Machine

2.1. Microarchitectural Specifications

Data Cache. Your goal is to implement a data cache without an instruction cache, assuming that
reading instructions from memory still takes only a single cycle. The data cache is accessed whenever
a load or store instruction is in the memory stage. The specifications of the data cache that you will
be implementing are listed below.

Organization. The data cache is direct mapped and has a parameterized capacity with a 32-bit
block size. The cache is empty to begin with, and it has the default capacity of 8KB.

Hit and Miss Timing. When a load instruction hits in the data cache in the memory stage, the
data is retrieved within the same cycle. When a store instruction hits in the data cache, the data is
written at the end of the cycle. On the other hand, when either a load or a store misses in the data
cache, the block must be read from main memory and installed into the appropriate cache set. The
top module that links the MIPS processor and memory in testbench.v has been modified to reflect
the multi-cycle access latency of memory. The memory has been modified so that it takes 4 cycles to
read or write the data.

Table 1 shows the timing of a load instruction that misses in the cache. The core accesses the cache
in cycle 1 with cache_addr, which results in a cache miss. Within the same cycle, the cache issues
a memory request with the load address of 0x04000000 through mem_addr, which is an address port
from the mips_core module to the mips_mem module. In cycle 5, the data is returned and installed
into the cache. After the data has returned to the core, the load instruction can fetch it in the next
cycle from the cache through cache_data_out.!

] Cycles I 1 \ 2 \ 3 \ 4 \ 5 \ 6 \
cache_addr 0x04000000 | 0x04000000 | 0x04000000 | 0x04000000 | 0x04000000 | 0x04000000
mem_addr 0x04000000 X X X X X
cache_hit 0 0 0 0 0 1
mem_data_out X X X X Oxdeadbeef X
cache_data_out X X X X X Oxdeadbeef

Table 1. Timing of a load that misses in the cache.

1The ports, cache_addr and cache_data_out, are not provided in the starter code. They are used in the handout for
demonstration purposes.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 2/4

Writing Policy. The data cache uses the write-back policy. No data is returned from the cache on
a store hit. On a store miss, the cache first reads the block from memory into the cache, and after
the block is in the cache, it then performs the store operation into the block.

Handling Dirty Block Evictions. When a dirty block is being evicted due to a cache conflict miss,
it needs to be written back to memory. In this lab, we will simply write back the dirty data first
before we allocate a new block in the set. Table 2 shows the timing of a load instruction (with address
0x04000000) conflicting with a dirty block in the cache, thus evicting it. Assuming the dirty block’s
address is 0x04008000, the cache will begin writing back the dirty data to the memory starting in the
first cycle of the cache-miss operation. Note that we is asserted along with the mem_data_in in the
first cycle. Your design will need to hold the mem_addr, which is the address of the dirty block being
written back to memory, until the fifth cycle due to a four-cycle delay on the data propagation back
to the memory. After the data is written back to memory at the fifth cycle, a memory-read operation
will begin in order to fetch the new block into the cache. The sixth cycle essentially corresponds to
the first cycle in Table 1.

’ Cycles H 1 \ 2 \ 3 \ 4 \) \ 6 ‘
cache_addr || 0x04000000 | 0x04000000 | 0x04000000 | 0x04000000 | 0x04000000 | 0x04000000
mem_addr 0x04008000 | 0x04008000 | 0x04008000 | 0x04008000 | 0x04008000 | 0x04000000

cache_hit 0 0 0 0 0 0
we ’b1111 0 0 0 0 0
mem_data_in Oxcafecafe X X X X X
cache_data_out X X X X X X

Table 2. Timing of a load that evicts a dirty block from the cache.

Interface. Replace your 447src directory with the one provided in the tarball. The interface between
the memory and the core remains the same. Note that we do not provide a cache interface for you in
this lab, you have the freedom of designing your own interface between the cache and the core.

Tests. To test the correctness of your core after adding the data cache, you will be using memtest0
and memtestl. Note that we will not include control flow instructions in our test cases to test your
code. You will need to write your own test cases to verify various behaviors of your data cache.

3. Submission
3.1. Lab Section Checkoff

So that the TAs can check you off, please come to any of the lab sections before Sat., 3/28. Please
come early during the lab section. During the Lab Section, the TAs may ask you:

e to answer questions about your implementations,

e to simulate your implementations using various test inputs (some of which you may have not
seen before),

3.2. Source Code

Make sure that your source code is readable and documented. Please set your default cache size to
4KB. Please submit the lab by executing the following commands.

$ cp -r src /afs/ece/class/ece447/handin/lab5/andrewID/
$ cp -r inputs /afs/ece/class/ece447/handin/lab5/andrewID/

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 3/4

3.3. README

In addition, please submit two README. txt files. To submit these files, execute the following command.
$ cp README.txt /afs/ece/class/ece447/handin/lab4/andrewID/README. txt

The README. txt file must contain the following three pieces of information.

1. A high-level description of your design.

2. The number of cache hits and misses. You will need to add counters to your module to record
these.

3. The percentage speedup of using your data cache over your machine without the cache for the
memtestO and memtestl input program.

It may also contain information about any additional aspect of your lab.
3.4. Late Days

We will write-lock the handin directories at midnight on the due date. For late submissions, please
send an email to 447-instructors@ece.cmu.edu with tarballs of what you would have submitted to
the handin directory.

Remember, you have only 5 late lab days for the entire semester (applies only to lab submissions,
not to homeworks, not to anything else). If we receive the tarball within 24 hours after the deadline,
we will deduct 1 late lab day. If we receive the tarball within 24 to 48 hours, we will deduct 2 late
lab days. During this time, you may send updated versions of the tarballs (but try not to send too
many). However, once a tarball is received, it will immediately invalidate a previous tarball you may
have sent. You may not take it back. We will take your very last tarball to calculate how many late
lab days to deduct. If we don’t hear from you at all, we won’t deduct any late lab days, but you will
receive a grade of 0 for the lab.

4. Extra Credit: Cache Exploration

We will offer up to 50% additional credit for this lab (equivalent to 2.5% additional credit for the
course) for exploring two different design aspects of the cache.

1. Critical path: We will hold a performance competition. Among all implementations that are
correct, the “top”? students that have the lowest critical path will receive up to 20% additional
credit for this lab (equivalent to 1% additional credit for the course).

2. Four-way set-associate cache and replacement policy: You will first need to design and
implement a four-way set-associate cache. On top of your cache, you will explore various cache
replacement and/or insertion policies. The cache replacement policy specifies which cache block
in a set is replaced when a new block is inserted into the cache. The cache insertion policy
specifies where in the list of blocks the new block is placed. You can, for example, implement a
replacement policy that evicts (replaces) the least-recently-used block, and an insertion policy
that places new blocks at the most-recently-used position. However, other replacement and
insertion policies have been studied, and some have been shown to achieve significantly better
performance (fewer cache misses) for certain access patterns [1, 2]. You should experiment with
a variety of test programs and optimize the cache replacement/insertion policy.

Among all implementations that are correct, the “top” students that have the fastest execution
time for an undisclosed set of test inputs will receive up to 30% additional credit for this lab
(equivalent to 1.5% additional credit for the course).

2The instructor reserves all rights for the precise definition of the word “top”.

CMU 18-447 — INTRODUCTION TO COMPUTER ARCHITECTURE — SPRING 2015 4/4

Please write a report (report.pdf) that briefly summarizes 1) how you optimize the critical path
and 2) your findings on cache replacement /insertion policies. Your report does not need to be more
than one page. Please also submit the version of your simulator (src/) that implements the best
performing cache replacement /insertion policies.

All of the guidelines for Lab 5 specified in this handout also apply to the extra credit, except for the
following differences.

e Submission path: /afs/ece/class/ece447/handin/lab5/andrewID/extra using
cp -r src /afs/ece/class/ece447/handin/lab5/andrewID/extra

e Tarball (for late submissions): labb_extra_andrewID.tar.gz

References

[1] M. K. Qureshi et al. Adaptive insertion policies for high performance caching. In ISCA, 2007.

[2] V. Seshadri et al. The evicted-address filter: A unified mechanism to address both cache pollution and thrashing.
In PACT, 2012.

