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Agenda for Today & Next Few Lectures

= Single-cycle Microarchitectures
= Multi-cycle and Microprogrammed Microarchitectures
= Pipelining

= Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

= Out-of-Order Execution
= Issues in 000 Execution: Load-Store Handling, ...

= Alternative Approaches to Instruction Level Parallelism




Reminder: Announcements

Lab 3 due this Friday (Feb 20)
o Pipelined MIPS
o Competition for high performance

You can optimize both cycle time and CPI
Document and clearly describe what you do during check-off

Homework 3 due Feb 25

o A lot of questions that enable you to learn the concepts via
hands-on exercise

o Remember this is all for your benefit (to learn and prepare for
exams)
HWSs have very little contribution to overall grade
Solutions to almost all questions are online anyway
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Lab 2 Extra Credits

= Complete and correct:
o Terence An
o Jared Choi

= Almost correct:
o Pete Ehrett
o Xiaofan Li
o Amanda Marano
a Ashish Shrestha

= Almost-1 correct:
o Sohil Shah




Readings Specifically for Today

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
a Out-of-order and superscalar execution concepts

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.



Readings for Next Lecture

SIMD Processing
Basic GPU Architecture
Other execution models: VLIW, DAE, Systolic Arrays

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.



Recap of Last Lecture

Maintaining Speculative Memory State (Ld/St Ordering)

Out of Order Execution (Dynamic Scheduling)

o Link Dependent Instructions: Renaming

o Buffer Instructions: Reservation Stations

o Track Readiness of Source Values: Tag (and Value) Broadcast
o Schedule/Dispatch: Wakeup and Select

Tomasulo’s Algorithm
000 Execution Exercise with Code Example: Cycle by Cycle
000 Execution with Precise Exceptions

Questions on 000 Implementation

o Where data is stored? Single physical register file vs. reservation stations
o Critical path, renaming IDs, ...

000 Execution as Restricted Data Flow

Reverse Engineering the Data Flow Graph



Review: In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

IMUL R3 ¢ R1, R2
F/DIEEIEIERIW ADD R3 & R3,R1
F |D STALL |E |R |W ADD R1 ¢ R6, R7
F STALL |D |E |R |W IMUL R5 ¢ R6, R8
FlplEIEIE|E . EVY ADD R7 ¢ R3,R5

F D STALL E| R |W

Out-of-order dispatch + precise exceptions:

F |D|E

R

W

F D

16 vs. 12 cycles

Py

Py
=

This slide is actually correct



Review: Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

v
S
R
C E Integer add -
H Integer mul 0
£ D S E E |[E |E |E JR W
D FP mul D
U >E |E |E |E |E |E |E | E c
. R
E —~E |E |E |E |E |E |E |E |- «
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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Review: Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

11



Review: Summary of OOO Execution Concepts

Register renaming eliminates false dependencies, enables
linking of producer to consumers

Buffering enables the pipeline to move for independent ops

Tag broadcast enables communication (of readiness of
produced value) between instructions

Wakeup and select enables out-of-order dispatch
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Review: Our Example

MUL
ADD
ADD
ADD
MUL
ADD

R3 € R1, R2
R5 € R3, R4
R7 € R2, R6
R10 € R8, R9
R11 € R7, R10
R5 € R5, R11

13



Review: State of RAT and RS in Cycle 7

end of oyole -

V-};; vohve. - —

KT -~ | _:{Z:A'Z‘ }(l~’||~|zl
:'g_‘Q; Az-h"l"" 8 =19 y ’VOh(L ~>
s ~ 2 dpq ~ ol Yy {~

rslol d | ~

L | ~ 6

RE || —~ Q

R9 | = 9

R0 ] & | ~

il Y | -~

% Al L msindass Vereved .
— Neike whd- hoppenad 4t RS

All our in-class drawings are at:
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http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf

Review: Corresponding Dataflow Graph
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Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

a ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence
Each instruction specifies “who” should receive the result

An instruction can “fire” whenever all operands are received
16



Review: OOQO Execution: Restricted

Dﬁl}%ﬂt@o‘ﬁzorder engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?
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Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take single cycle?

o Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Active/instruction window size: determined by both scheduling
window and reorder buffer size
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Registers versus Memory, Revisited

So far, we considered register based value communication
between instructions

What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Memory Dependence Handling (T)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known until
a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their (partial) execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

20



Memory Dependence Handling (II)

When do you schedule a load instruction in an OOO engine?

o Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with @ more sophisticated predictor) if the
load is dependent on the/any unknown address store

21



Handling of Store-l.oad Dependences

A load’ s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to check
for address match)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)

Option 1: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWAGO O N

xlisp e

compress [
- perl scr

‘A no speculatlon B naive sﬁécullation.." ;;erfect

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance
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Data Forwarding Between Stores and Loads

We cannot update memory out of program order
- Need to buffer all store and load instructions in instruction window

Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store
2. How do we forward data to the load if it is dependent on a store

Modern processors use a LQ (load queue) and an SQ for this
o Can be combined or separate between loads and stores

o A load searches the SQ after it computes its address. Why?

o A store searches the LQ after it computes its address. Why?

25



Food for Thought for You

Many other design choices

Should reservation stations be centralized or distributed
across functional units?

o What are the tradeoffs?

Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

o What are the tradeoffs?

Exactly when does an instruction broadcast its tag?

26



More Food for Thought for You

How can you implement branch prediction in an out-of-
order execution machine?

a Think about branch history register and PHT updates

o Think about recovery from mispredictions
How to do this fast?

How can you combine superscalar execution with out-of-
order execution?

a These are different concepts
o Concurrent renaming of instructions
o Concurrent broadcast of tags

How can you combine superscalar + out-of-order + branch
prediction?
27



General Organization of an OOQO Processor
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A Modern OoO Design: Intel Penttum 4
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Intel Penttum 4 Simplified
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Alpha 21264
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MIPS R10000

External interface Data cache refill and write-back
Syslem ’ B-bit physiczal register numbers ' 6-bit data paths
interface - A N A -
(64 bits) R EPL L0 o
o — " =p A S T R ot £ R P
B e FP adder
: ' - rogiste R :
 Secondary FP Sie |- Algn | AddiN e
i ‘-{'—:I-C EFT r. — - queue - ' [ |. r"l'lll"r""-t'-l-‘-ll ":‘_T *-ul-—.'..:-J!:J'
| (128 hits) (16 (BAxB4) S I'—PI It El"" L
) ) . O . multipliar 3
Register renaming entries) — 5 read it P
e e Mult | SumN F'ack
3 write : :
A?tii.re Froe | 4] BUSy-bit
{'?2 | - :egistrjr lables .
: triesl lists Load
| EMres) ™ Store
.- | _\\. L | Address |*| ™| Load
[ Instr. ot .
Instr. | caghre - ! Inst:., Registor] gueue Store
pre- =l " op | | decode | pl gigp (s {t‘iﬁ : Intﬂgtel.
. e i " entrigs) —m| register
decode o] Koytes) | | Branch || | tables fe
S I
e | o Lol 8550
arefill . . . oA
Instruction fetch Instruction decode Integer 7reag |
. : , L] Queue 3 write
. Y _ (16 '
5-bit logical register numbers entrics) | g
(@) : Instruction issue .. 5 pipelined execution units ;E

Yeager, “The MIPS R10000 Superscalar Mlcroprocessor” IEEE Mlcro April 1996 32



IBM POWER4

= Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.




IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching
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IBM POWERDS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.
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Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).
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Recommended Readings

Out-of-order execution processor designs

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

Boggs et al., "The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

Yeager, "The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

Tendler et al., "POWER4 system microarchitecture,” IBM

Journal of Research and Development, January 2002.
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And More Readings...

Stark et al., "On Pipelining Dynamic Scheduling Logic,”
MICRO 2000.

Brown et al., "Select-free Instruction Scheduling Logic,”
MICRO 2001.

Palacharla et al., "Complexity-effective Superscalar
Processors,” ISCA 1997.
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Other Approaches to Concurrency
(or Instruction Level Parallelism)




Approaches to (Instruction-Level) Concurrency

= Pipelining

= Out-of-order execution

= Dataflow (at the ISA level)

= SIMD Processing (Vector and array processors, GPUs)
= VLIW

= Decoupled Access Execute

= Systolic Arrays

39



Data Flow:
Exploiting Irregular Parallelism




Remember: State of RAT and RS in Cycle 7
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Remember: Dataflow Graph
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Review: More on Data Flow

In a data flow machine, a program consists of data flow
nodes

o A data flow node fires (fetched and executed) when all it
inputs are ready
i.e. when all inputs have tokens

Data flow node and its ISA representation

S % R ARG1 R ARG2 Dest. Of Result
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Data Flow Nodes
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Datatlow Nodes (II)

A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops Switch Merge
A *(i) T T ?
U
AR s
?

+




Datatlow Graphs
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Example Data Flow Program

OuT
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Control Flow vs. Data Flow

a:“x+}r
b:=a XxXa
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Figure 2. A comparison of control flow and dataflow programs. On the
left a control flow program for a computer with memory-to-memory
instructions. The arcs point to the locations of data that are to be used or
created. Control flow arcs are indicated with dashed arrows; usually most
of them are implicit. In the equivalent dataflow program on the right on

one memory 18 involved. Kach instruction contains mtera to all instruc-
tions that consume its results.
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Data Flow Characteristics

Data-driven execution of instruction-level graphical code

o Nodes are operators
o Arcs are data (I/0)
o As opposed to control-driven execution

Only real dependencies constrain processing

No sequential instruction stream
2 No program counter

Execution triggered by the presence/readiness of data

Operations execute asynchronously
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What About Loops and Function Calls?

Problem: Multiple dynamic instances can be active for the
same instruction (i.e., due to loop iteration or invocation of
function from different location)

IP is not enough to distinguish between these different
dynamic instances of the same static instruction

token <ip,p,v>
\

/ \
instruction ptr port data

Solution: Distinguish between different instances by creating
new tags/frames (at the beginning of new iteration or call)

a tagged token  <fp, ip, port, data>
frame instruction

pointer pointer
(tag or context'ID) 50



An Example Frame and Execution

3L, 4L Program

1 | a |
3| - 3 5L . ;
405 4 :
X
51 % 5 out <f|3: Ip/ P, V>—/’y/ #
J “““ e = 5
1=
o — #
| L 7 - ]
4
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| |

Need to provide storage for only one operand/operator
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Monsoon Dataflow Processor [ISCA 1990]
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A Dataflow Processor
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I'T Tagged Token Data Flow Architecture

Wait—Match Unit: try

to match incoming
token and context id
and a waiting token
with same instruction
address

a Success: Both

tokens forwarded,
fetch instruction

o Fail: Incoming token
stored in Waiting
Token Memory,
bubble inserted

To network From network

54



TTDA Data Flow Example

Conceptual

|
My, o

Encoding of token:
A "packet" containing:

] Iﬁ_]

=0 =

Encoding of graph

Program memory:

Re-entrancy ("dynamic" dataflow):

® Each invocation of a function or loop iteration gets
its own, unique, "Context"

® Tokens destined for same instruction in different
invocations are distinguished by a context identifier

120R Destination instruction address, Left/Right port
Ctxt Context Identifier

E-:Ed-e Destination(s)
109 [opl [ 120L |
113 [op2 | 120R |
120 [ + 141, 159
141 [op3 |
159 [opd | ..., |

6.847 Value

120R Destination instruction address, Left/Right port

6.847 Value
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TTDA Data Flow Example

120R,c, 6.847

120L,c, 6.001
120,c, 6.001,6.847

141,159L,c, +,6.001,6.847

o

141,159L,c, 12.848

e |

1-!41,.!:‘.*.I 12.848
159L,c, 12.848
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TTDA Data Flow Example

200,c, A
Conceptual:
Heap Memory
200,c, A
207,c, Fetch,A -

Encoding of graph:

Program memory:

Opcode Destination(s) 207,c, v Fetch, A, 207,c
200 [Fefch| 207 ] reteh, A, 207.¢ mr:.c, v
N C el )
207 1 - T *
Fetch, A, 207,c 207,¢, v
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Manchester Data Flow Machine
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Data Flow Advantages/Disadvantages

Advantages
o Very good at exploiting irregular parallelism
o Only real dependencies constrain processing

Disadvantages

o Debugging difficult (no precise state)

Interrupt/exception handling is difficult (what is precise state
semantics?)

o Implementing dynamic data structures difficult in pure data
flow models

o Too much parallelism? (Parallelism control needed)
o High bookkeeping overhead (tag matching, data storage)

o Instruction cycle is inefficient (delay between dependent
instructions), memory locality is not exploited
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Combining Data Flow and Control Flow

Can we get the best of both worlds?

Two possibilities

o Model 1: Keep control flow at the ISA level, do dataflow
underneath, preserving sequential semantics

o Model 2: Keep dataflow model, but incorporate some control
flow at the ISA level to improve efficiency, exploit locality, and
ease resource management

Incorporate threads into dataflow: statically ordered instructions;

when the first instruction is fired, the remaining instructions
execute without interruption
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Data Flow Summary

Availability of data determines order of execution
A data flow node fires when its sources are ready
Programs represented as data flow graphs (of nodes)

Data Flow at the ISA level has not been (as) successful

Data Flow implementations under the hood (while

preserving sequential ISA semantics) have been very
successful

o Out of order execution

o Hwu and Patt, "HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.
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Further Reading on Data Flow

ISA level dataflow

Gurd et al., "The Manchester prototype dataflow computer,”
CACM 1985.

Microarchitecture-level dataflow:

o Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale
and introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Hwu and Patt, "HPSm, a high performance restricted data
flow architecture having minimal functionality,” ISCA 1986.
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