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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 
 

 Multi-cycle and Microprogrammed Microarchitectures 
 

 Pipelining 
 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 
 

 Out-of-Order Execution 
 

 Issues in OoO Execution: Load-Store Handling, … 
 

 Alternative Approaches to Instruction Level Parallelism 
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Reminder: Announcements 

 Lab 3 due this Friday (Feb 20) 

 Pipelined MIPS 

 Competition for high performance 

 You can optimize both cycle time and CPI 

 Document and clearly describe what you do during check-off 

 

 Homework 3 due Feb 25 

 A lot of questions that enable you to learn the concepts via 
hands-on exercise 

 Remember this is all for your benefit (to learn and prepare for 
exams) 

 HWs have very little contribution to overall grade 

 Solutions to almost all questions are online anyway 
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Lab 2 Grade Distribution 
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  Avg 70.5 

 Med 96.9 

 Stdev 39.1 

 Max 100 

 Min 50.8 



Lab 2 Extra Credits 

 Complete and correct: 

 Terence An 

 Jared Choi 

 

 Almost correct: 

 Pete Ehrett 

 Xiaofan Li 

 Amanda Marano 

 Ashish Shrestha 

 

 Almost-1 correct: 

 Sohil Shah 
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Readings Specifically for Today 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Next Lecture 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, DAE, Systolic Arrays 

 

 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 
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Recap of Last Lecture 

 Maintaining Speculative Memory State (Ld/St Ordering) 

 Out of Order Execution (Dynamic Scheduling) 

 Link Dependent Instructions: Renaming 

 Buffer Instructions: Reservation Stations 

 Track Readiness of Source Values: Tag (and Value) Broadcast 

 Schedule/Dispatch: Wakeup and Select 

 Tomasulo’s Algorithm 

 OoO Execution Exercise with Code Example: Cycle by Cycle 

 OoO Execution with Precise Exceptions 

 Questions on OoO Implementation 

 Where data is stored? Single physical register file vs. reservation stations 

 Critical path, renaming IDs, … 

 OoO Execution as Restricted Data Flow 

 Reverse Engineering the Data Flow Graph 

 

 

 
8 



Review: In-order vs. Out-of-order Dispatch 

 In order dispatch + precise exceptions: 

 

 

 

 

 

 Out-of-order dispatch + precise exceptions: 

 

 

 

 

 

 16 vs. 12 cycles 
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Review: Out-of-Order Execution with Precise Exceptions 

 

 

 

 

 

 

 

 

 

 Hump 1: Reservation stations (scheduling window) 

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window) 
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Review: Enabling OoO Execution, Revisited 

1. Link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  
 

2. Buffer instructions until they are ready 

 Insert instruction into reservation stations after renaming  
 

3. Keep track of readiness of source values of an instruction 

 Broadcast the “tag” when the value is produced 

 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

 

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU) 

 Wakeup and select/schedule the instruction 
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Review: Summary of OOO Execution Concepts 

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers 

 

 Buffering enables the pipeline to move for independent ops 

 

 Tag broadcast enables communication (of readiness of 
produced value) between instructions 

 

 Wakeup and select enables out-of-order dispatch 
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Review: Our Example 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 



Review: State of RAT and RS in Cycle 7 

14 

All our in-class drawings are at: 

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf  

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf


Review: Corresponding Dataflow Graph 
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Restricted Data Flow 

 An out-of-order machine is a “restricted data flow” machine 

 Dataflow-based execution is restricted to the microarchitecture 
level 

 ISA is still based on von Neumann model (sequential 
execution) 

 

 Remember the data flow model (at the ISA level): 

 Dataflow model: An instruction is fetched and executed in 
data flow order 

 i.e., when its operands are ready 

 i.e., there is no instruction pointer 

 Instruction ordering specified by data flow dependence 

 Each instruction specifies “who” should receive the result 

 An instruction can “fire” whenever all operands are received 
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Review: OOO Execution: Restricted 

Dataflow 
 An out-of-order engine dynamically builds the dataflow 

graph of a piece of the program 

 which piece? 

 

 The dataflow graph is limited to the instruction window 

 Instruction window: all decoded but not yet retired 
instructions 

 

 Can we do it for the whole program?  

 Why would we like to? 

 In other words, how can we have a large instruction 
window? 

 Can we do it efficiently with Tomasulo’s algorithm? 
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Questions to Ponder 

 Why is OoO execution beneficial? 

 What if all operations take single cycle? 

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently 

 

 What if an instruction takes 500 cycles? 

 How large of an instruction window do we need to continue 
decoding? 

 How many cycles of latency can OoO tolerate? 

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm? 

 Active/instruction window size: determined by both scheduling 
window and reorder buffer size 
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Registers versus Memory, Revisited 

 So far, we considered register based value communication 
between instructions 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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Memory Dependence Handling (I) 

 Need to obey memory dependences in an out-of-order 
machine  

 and need to do so while providing high performance 

 

 Observation and Problem: Memory address is not known until 
a load/store executes 

 

 Corollary 1: Renaming memory addresses is difficult 

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their (partial) execution 

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine 
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Memory Dependence Handling (II) 

 When do you schedule a load instruction in an OOO engine? 

 Problem: A younger load can have its address ready before an 
older store’s address is known 

 Known as the memory disambiguation problem or the unknown 
address problem 

 

 Approaches 

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine) 

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away 

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store 
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Handling of Store-Load Dependences 

 A load’s dependence status is not known until all previous store 
addresses are available.  

 

 How does the OOO engine detect dependence of a load instruction on a 
previous store? 

 Option 1: Wait until all previous stores committed (no need to check 
for address match)  

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

 Option 1: Assume load dependent on all previous stores 

 Option 2: Assume load independent of all previous stores 

 Option 3: Predict the dependence of a load on an outstanding store 
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Memory Disambiguation (I) 

 Option 1: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

 Option 2: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 
ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 

 

 

 

 

 

 

 

 

 Predicting store-load dependencies important for performance 

 Simple predictors (based on past history) can achieve most of 
the potential performance  
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Data Forwarding Between Stores and Loads 

 We cannot update memory out of program order 

     Need to buffer all store and load instructions in instruction window 

 

 Even if we know all addresses of past stores when we 
generate the address of a load, two questions still remain: 

1. How do we check whether or not it is dependent on a store 

2. How do we forward data to the load if it is dependent on a store 

 

 Modern processors use a LQ (load queue) and an SQ for this 

 Can be combined or separate between loads and stores 

 A load searches the SQ after it computes its address. Why? 

 A store searches the LQ after it computes its address. Why? 

 

25 



Food for Thought for You 

 Many other design choices 

 

 Should reservation stations be centralized or distributed 
across functional units? 

 What are the tradeoffs? 

 

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored? 

 What are the tradeoffs? 

 

 Exactly when does an instruction broadcast its tag? 

 … 

26 



More Food for Thought for You 

 How can you implement branch prediction in an out-of-
order execution machine? 

 Think about branch history register and PHT updates 

 Think about recovery from mispredictions 

 How to do this fast? 
 

 How can you combine superscalar execution with out-of-
order execution? 

 These are different concepts 

 Concurrent renaming of instructions 

 Concurrent broadcast of tags 

 

 How can you combine superscalar + out-of-order + branch 
prediction? 
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General Organization of an OOO Processor 

 

 

 

 

 

 

 

 

 

 

 
 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 

1995. 
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A Modern OoO Design: Intel Pentium 4 

29 
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001. 



Intel Pentium 4 Simplified 

30 

Mutlu+, “Runahead Execution,”  

HPCA 2003. 



Alpha 21264 

31 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999. 



MIPS R10000 

32 Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996 



IBM POWER4 

 Tendler et al., 
“POWER4 system 
microarchitecture,” 
IBM J R&D, 2002. 
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IBM POWER4 

 2 cores, out-of-order execution 

 100-entry instruction window in each core 

 8-wide instruction fetch, issue, execute 

 Large, local+global hybrid branch predictor 

 1.5MB, 8-way L2 cache 

 Aggressive stream based prefetching 
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IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 
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Recommended Readings 

 Out-of-order execution processor designs 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999. 

 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 

 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 

 

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002. 

36 



And More Readings… 

 Stark et al., “On Pipelining Dynamic Scheduling Logic,” 
MICRO 2000. 

 

 Brown et al., “Select-free Instruction Scheduling Logic,” 
MICRO 2001. 

 

 Palacharla et al., “Complexity-effective Superscalar 
Processors,” ISCA 1997. 
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Other Approaches to Concurrency 

(or Instruction Level Parallelism) 

 

 

 

 

 



Approaches to (Instruction-Level) Concurrency 

 Pipelining 

 Out-of-order execution 

 Dataflow (at the ISA level) 

 SIMD Processing (Vector and array processors, GPUs) 

 VLIW 

 Decoupled Access Execute 

 Systolic Arrays 
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Data Flow: 

Exploiting Irregular Parallelism 

 
 

 

 

 

 



Remember: State of RAT and RS in Cycle 7 
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Remember: Dataflow Graph 
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Review: More on Data Flow 

 In a data flow machine, a program consists of data flow 
nodes 

 A data flow node fires (fetched and executed) when all it 
inputs are ready 

 i.e. when all inputs have tokens 

 

 Data flow node and its ISA representation 
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Data Flow Nodes 
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Dataflow Nodes (II) 

 A small set of dataflow operators can be used to 
define a general programming language  

Fork Primitive Ops 

+ 

Switch Merge 

 

T F 
T F 

T T 

+ T F 
T F 

T T 


 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 

a b 

+ *7 

- + 

* 

y 
x 

1 2 

3 4 

5 

 Values in dataflow graphs are 
represented as tokens 

 

 

 

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination operators 

token < ip , p , v > 

instruction ptr port data 

no separate control flow 



Example Data Flow Program 
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Control Flow vs. Data Flow 
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Data Flow Characteristics 

 Data-driven execution of instruction-level graphical code 

 Nodes are operators 

 Arcs are data (I/O) 

 As opposed to control-driven execution 

 

 Only real dependencies constrain processing 

 

 No sequential instruction stream  

 No program counter 

 

 Execution triggered by the presence/readiness of data 

 

 Operations execute asynchronously 
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What About Loops and Function Calls? 

 Problem: Multiple dynamic instances can be active for the 
same instruction (i.e., due to loop iteration or invocation of 
function from different location) 

 IP is not enough to distinguish between these different 
dynamic instances of the same static instruction 

 

 

 Solution: Distinguish between different instances by creating 
new tags/frames (at the beginning of new iteration or call) 
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token < ip , p , v > 

instruction ptr port data 

<fp, ip, port, data> 

frame  
pointer  

(tag or context ID) 

instruction 
pointer 

a tagged token 



An Example Frame and Execution  
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Monsoon Dataflow Processor [ISCA 1990] 
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Instruction 
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A Dataflow Processor 
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MIT Tagged Token Data Flow Architecture 

 Wait−Match Unit: try 
to match incoming 
token and context id 
and a waiting token 
with same instruction 
address  

 Success: Both 
tokens forwarded, 
fetch instruction 

 Fail: Incoming token 
stored in Waiting 
Token Memory, 
bubble inserted 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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Manchester Data Flow Machine 

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

 Large data set  

overflow in overflow 
unit 

 Paired tokens fetch the 
appropriate instruction 
from the node store 
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Data Flow Advantages/Disadvantages 
 Advantages 

 Very good at exploiting irregular parallelism 

 Only real dependencies constrain processing 
 

 Disadvantages 

 Debugging difficult (no precise state) 

 Interrupt/exception handling is difficult (what is precise state 
semantics?) 

 Implementing dynamic data structures difficult in pure data 
flow models 

 Too much parallelism? (Parallelism control needed) 

 High bookkeeping overhead (tag matching, data storage) 

 Instruction cycle is inefficient (delay between dependent 
instructions), memory locality is not exploited 
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Combining Data Flow and Control Flow 

 Can we get the best of both worlds? 

 

 Two possibilities 

 

 Model 1: Keep control flow at the ISA level, do dataflow 
underneath, preserving sequential semantics 

 

 Model 2: Keep dataflow model, but incorporate some control 
flow at the ISA level to improve efficiency, exploit locality, and 
ease resource management 

 Incorporate threads into dataflow: statically ordered instructions; 
when the first instruction is fired, the remaining instructions 
execute without interruption 
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Data Flow Summary 

 Availability of data determines order of execution 

 A data flow node fires when its sources are ready 

 Programs represented as data flow graphs (of nodes) 

 

 Data Flow at the ISA level has not been (as) successful 

 

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful 

 Out of order execution 

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986. 
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Further Reading on Data Flow 

 ISA level dataflow 

 Gurd et al., “The Manchester prototype dataflow computer,” 
CACM 1985. 

 

 Microarchitecture-level dataflow: 

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale 
and introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 

 Hwu and Patt, “HPSm, a high performance restricted data 
flow architecture having minimal functionality,” ISCA 1986. 
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