
18-447

Computer Architecture

Lecture 13: Out-of-Order Execution

and Data Flow

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/16/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism

2

Reminder: Announcements

 Lab 3 due this Friday (Feb 20)

 Pipelined MIPS

 Competition for high performance

 You can optimize both cycle time and CPI

 Document and clearly describe what you do during check-off

 Homework 3 due Feb 25

 A lot of questions that enable you to learn the concepts via
hands-on exercise

 Remember this is all for your benefit (to learn and prepare for
exams)

 HWs have very little contribution to overall grade

 Solutions to almost all questions are online anyway

3

Lab 2 Grade Distribution

4

0

2

4

6

8

10

12

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

  Avg 70.5

 Med 96.9

 Stdev 39.1

 Max 100

 Min 50.8

Lab 2 Extra Credits

 Complete and correct:

 Terence An

 Jared Choi

 Almost correct:

 Pete Ehrett

 Xiaofan Li

 Amanda Marano

 Ashish Shrestha

 Almost-1 correct:

 Sohil Shah

5

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

6

Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, DAE, Systolic Arrays

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

7

Recap of Last Lecture

 Maintaining Speculative Memory State (Ld/St Ordering)

 Out of Order Execution (Dynamic Scheduling)

 Link Dependent Instructions: Renaming

 Buffer Instructions: Reservation Stations

 Track Readiness of Source Values: Tag (and Value) Broadcast

 Schedule/Dispatch: Wakeup and Select

 Tomasulo’s Algorithm

 OoO Execution Exercise with Code Example: Cycle by Cycle

 OoO Execution with Precise Exceptions

 Questions on OoO Implementation

 Where data is stored? Single physical register file vs. reservation stations

 Critical path, renaming IDs, …

 OoO Execution as Restricted Data Flow

 Reverse Engineering the Data Flow Graph

8

Review: In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
9

F D W E E E E R

F D E R W

F

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5
D E R W

F D E R W

F D E R W

F D W E E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

This slide is actually correct

Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

10

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Review: Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

11

Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

12

Review: Our Example

13

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

Review: State of RAT and RS in Cycle 7

14

All our in-class drawings are at:

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf

http://www.ece.cmu.edu/~ece447/s15/lib/exe/fetch.php?media=447_tomasulo.pdf

Review: Corresponding Dataflow Graph

15

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

16

Review: OOO Execution: Restricted

Dataflow
 An out-of-order engine dynamically builds the dataflow

graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

17

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by both scheduling
window and reorder buffer size

 18

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

19

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known until
a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their (partial) execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

20

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

21

Handling of Store-Load Dependences

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to check
for address match)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

22

Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

23

Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

24

Data Forwarding Between Stores and Loads

 We cannot update memory out of program order

  Need to buffer all store and load instructions in instruction window

 Even if we know all addresses of past stores when we
generate the address of a load, two questions still remain:

1. How do we check whether or not it is dependent on a store

2. How do we forward data to the load if it is dependent on a store

 Modern processors use a LQ (load queue) and an SQ for this

 Can be combined or separate between loads and stores

 A load searches the SQ after it computes its address. Why?

 A store searches the LQ after it computes its address. Why?

25

Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed
across functional units?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …

26

More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

27

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

 28

A Modern OoO Design: Intel Pentium 4

29
Boggs et al., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal, 2001.

Intel Pentium 4 Simplified

30

Mutlu+, “Runahead Execution,”

HPCA 2003.

Alpha 21264

31 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, March-April 1999.

MIPS R10000

32 Yeager, “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro, April 1996

IBM POWER4

 Tendler et al.,
“POWER4 system
microarchitecture,”
IBM J R&D, 2002.

33

IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

34

IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

35

Recommended Readings

 Out-of-order execution processor designs

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

36

And More Readings…

 Stark et al., “On Pipelining Dynamic Scheduling Logic,”
MICRO 2000.

 Brown et al., “Select-free Instruction Scheduling Logic,”
MICRO 2001.

 Palacharla et al., “Complexity-effective Superscalar
Processors,” ISCA 1997.

37

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

39

Data Flow:

Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

41

Remember: Dataflow Graph

42

Review: More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

43

Data Flow Nodes

44

Dataflow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T



Dataflow Graphs

{x = a + b;
 y = b * 7
in
 (x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

47

OUT

Control Flow vs. Data Flow

48

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential instruction stream

 No program counter

 Execution triggered by the presence/readiness of data

 Operations execute asynchronously

49

What About Loops and Function Calls?

 Problem: Multiple dynamic instances can be active for the
same instruction (i.e., due to loop iteration or invocation of
function from different location)

 IP is not enough to distinguish between these different
dynamic instances of the same static instruction

 Solution: Distinguish between different instances by creating
new tags/frames (at the beginning of new iteration or call)

50

token < ip , p , v >

instruction ptr port data

<fp, ip, port, data>

frame
pointer

(tag or context ID)

instruction
pointer

a tagged token

An Example Frame and Execution

51

1

2

3

4

5

Program +

*

-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out *

1

2

4

5

7

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

L

Monsoon Dataflow Processor [ISCA 1990]

52

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

A Dataflow Processor

53

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit: try
to match incoming
token and context id
and a waiting token
with same instruction
address

 Success: Both
tokens forwarded,
fetch instruction

 Fail: Incoming token
stored in Waiting
Token Memory,
bubble inserted

54

TTDA Data Flow Example

55

TTDA Data Flow Example

56

TTDA Data Flow Example

57

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set 

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

58

Data Flow Advantages/Disadvantages
 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 Debugging difficult (no precise state)

 Interrupt/exception handling is difficult (what is precise state
semantics?)

 Implementing dynamic data structures difficult in pure data
flow models

 Too much parallelism? (Parallelism control needed)

 High bookkeeping overhead (tag matching, data storage)

 Instruction cycle is inefficient (delay between dependent
instructions), memory locality is not exploited

59

Combining Data Flow and Control Flow

 Can we get the best of both worlds?

 Two possibilities

 Model 1: Keep control flow at the ISA level, do dataflow
underneath, preserving sequential semantics

 Model 2: Keep dataflow model, but incorporate some control
flow at the ISA level to improve efficiency, exploit locality, and
ease resource management

 Incorporate threads into dataflow: statically ordered instructions;
when the first instruction is fired, the remaining instructions
execute without interruption

 60

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

61

Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow computer,”
CACM 1985.

 Microarchitecture-level dataflow:

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale
and introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Hwu and Patt, “HPSm, a high performance restricted data
flow architecture having minimal functionality,” ISCA 1986.

62

