
CMU 18-447 Introduction to Computer Architecture, Spring 2014

HW 3: Branch Prediction, Out-of-order Execution

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Varun Kohli, Xiao Bao Zhao, Paraj Tyle

Assigned: Wed., 2/12, 2014
Due: Wed., 2/26, 2014 (Midnight)

Handin: /afs/ece/class/ece447/handin/hw3

1 Delay Slots (Optional)

A machine has a five-stage pipeline consisting of fetch, decode, execute, mem and write-back stages. The
machine uses delay slots to handle control dependences. Jump targets, branch targets and destinations are
resolved in the execute stage.

(a) What is the number of delay slots needed to ensure correct operation?

(b) Which instruction(s) in the assembly sequences below would you place in the delay slot(s), assuming
the number of delay slots you answered for part(a)? Clearly rewrite the code with the appropriate
instruction(s) in the delay slot(s).

(a) ADD R5 <- R4, R3

OR R3 <- R1, R2

SUB R7 <- R5, R6

J X

Delay Slots

LW R10 <- (R7)

ADD R6 <- R1, R2

X:

(b) ADD R5 <- R4, R3

OR R3 <- R1, R2

SUB R7 <- R5, R6

BEQ R5 <- R7, X

Delay Slots

LW R10 <- (R7)

ADD R6 <- R1, R2

X:

(c) ADD R2 <- R4, R3

OR R5 <- R1, R2

SUB R7 <- R5, R6

BEQ R5 <- R7, X

Delay Slots

LW R10 <- (R7)

ADD R6 <- R1, R2

X:

(c) Can you modify the pipeline to reduce the number of delay slots (without introducing branch prediction)?
Clearly state your solution and explain why.

1

2 Hardware vs Software Interlocking [30 points]

Consider two pipelined machines A and B.

Machine I implements interlocking in hardware. On detection of a flow dependence, it stalls the
instruction in the decode stage of the pipeline (blocking fetch/decode of subsequent instructions) until all of
the instruction’s sources are available. Assume internal register file forwarding (an instruction writes into a
register in the first half of a cycle and another instruction can access the same register in the next half of the
cycle). No other data forwarding is implemented. However, there are two execute units with adders, and
independent instructions can be executed in separate execution units and written back out-of-order. There
is one write-back stage per execute unit, so an instruction can write-back as soon as it finishes execution.

Machine II does not implement interlocking in hardware. It assumes all instructions are independent
and relies on the compiler to order instructions such that there is sufficient distance between dependent
instructions. The compiler either moves other independent instructions between two dependent instructions,
if it can find such instructions, or otherwise, inserts NOPs. Assume internal register file forwarding (an
instruction writes into a register in the first half of a cycle and another instruction can access the same
register in the next half of the cycle).

Both machines have the following four pipeline stages and two adders.

• Fetch (one clock cycle)

• Decode (one clock cycle)

• Execute (ADD takes 3 clock cycles. Each ADD unit is not pipelined, but an instruction can be executed
if an unused execute (ADD) unit is available.)

• Write-back (one clock cycle). There is one write-back stage per execute (ADD) unit.

Consider the following 2 code segments.

Code segment A

ADD R5 <- R6, R7

ADD R3 <- R5, R4

ADD R6 <- R3, R8

ADD R9 <- R6, R3

Code segment B

ADD R3 <- R1, R2

ADD R8 <- R9, R10

ADD R4 <- R5, R6

ADD R7 <- R1, R4

ADD R12 <- R8, R2

(a) Calculate the number of cycles it takes to execute each of these two code segments on machines I and
II.

(b) Calculate the machine code size of each of these two code segments on machines I and II, assuming a
fixed-length ISA, where each instruction is encoded as 4 bytes.

(c) Which machine takes a smaller number of cycles to execute each code segment A and B?

(d) Does the machine that takes a smaller number of cycles for code segment A also take a smaller number
of cycles than the other machine for code segment B? Why or why not?

(e) Would you say that the machine that provides a smaller number of cycles as compared to the other
machine has higher performance (taking into account all components of the Iron Law of Performance)?

(f) Which machine incurs lower code size for each code segment A and B?

(g) Does the same machine incur lower code sizes for both code segments A and B? Why or why not?

2

3 Branch Prediction [55 points]

Assume the following piece of code that iterates through a large array populated with completely (i.e.,
truly) random positive integers. The code has four branches (labeled B1, B2, B3, and B4). When we say
that a branch is taken, we mean that the code inside the curly brackets is executed.

for (int i=0; i<N; i++) { /* B1 */

val = array[i]; /* TAKEN PATH for B1 */

if (val % 2 == 0) { /* B2 */

sum += val; /* TAKEN PATH for B2 */

}

if (val % 5 == 0) { /* B3 */

sum += val; /* TAKEN PATH for B3 */

}

if (val % 10 == 0) { /* B4 */

sum += val; /* TAKEN PATH for B4 */

}

}

(a) Of the four branches, list all those that exhibit local correlation, if any.

(b) Which of the four branches are globally correlated, if any? Explain in less than 20 words.

Now assume that the above piece of code is running on a processor that has a global branch predictor.
The global branch predictor has the following characteristics.

• Global history register (GHR): 2 bits.

• Pattern history table (PHT): 4 entries.

• Pattern history table entry (PHTE): 11-bit signed saturating counter (possible values: -1024–1023)

• Before the code is run, all PHTEs are initially set to 0.

• As the code is being run, a PHTE is incremented (by one) whenever a branch that corresponds to that
PHTE is taken, whereas a PHTE is decremented (by one) whenever a branch that corresponds to that
PHTE is not taken.

(d) After 120 iterations of the loop, calculate the expected value for only the first PHTE and fill it in the
shaded box below. (Please write it as a base-10 value, rounded to the nearest one’s digit.)

Hint. For a given iteration of the loop, first consider, what is the probability that both B1 and B2 are
taken? Given that they are, what is the probability that B3 will increment or decrement the PHTE? Then
consider...

Show your work.

3

4 Interference in Two-Level Branch Predictors [15 points]

Assume a two-level global predictor with a global history register and a single pattern history table shared
by all branches (call this “predictor A”).

(a) We call the notion of different branches mapping to the same locations in a branch predictor ”branch
interference”. Where do different branches interfere with each other in these structures?

(b) Compared to a two-level global predictor with a global history register and a separate pattern history
table for each branch (call this “predictor B”),

(i) When does predictor A yield lower prediction accuracy than predictor B? Explain. Give a concrete
example. If you wish, you can write source code to demonstrate a case where predictor A has lower
accuracy than predictor B.

(ii) Could predictor A yield higher prediction accuracy than predictor B? Explain how. Give a concrete
example. If you wish, you can write source code to demonstrate this case.

(iii) Is there a case where branch interference in predictor structures does not impact prediction accu-
racy? Explain. Give a concrete example. If you wish, you can write source code to demonstrate
this case as well.

5 Branch Prediction vs Predication [30 points]

Consider two machines A and B with 17-stage pipelines with the following stages.

• Fetch (one stage)

• Decode (nine stages)

• Execute (six stages).

• Write-back (one stage).

Both machines do full data forwarding on flow dependences. Flow dependences are detected in the last
stage of decode and instructions are stalled in the last stage of decode on detection of a flow dependence.

Machine A has a branch predictor that has a prediction accuracy of P%. The branch direction/target is
resolved in the last stage of execute.
Machine B employs predicated execution, similar to what we saw in lecture.

(a) Consider the following code segment executing on Machine A:

add r3 <- r1, r2

sub r5 <- r6, r7

beq r3, r5, X

addi r10 <- r1, 5

add r12 <- r7, r2

add r1 <- r11, r9

X: addi r15 <- r2, 10

.....

When converted to predicated code on machine B, it looks like this:

add r3 <- r1, r2

sub r5 <- r6, r7

cmp r3, r5

addi.ne r10 <- r1, 5

add.ne r12 <- r7, r2

add.ne r14 <- r11, r9

addi r15 <- r2, 10

.....

4

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 75% of the time
and not taken 25% of the time. On an average, for what range of P would you expect machine A to
have a higher instruction throughput than machine B?

(b) Consider another code segment executing on Machine A:

add r3 <- r1, r2

sub r5 <- r6, r7

beq r3, r5, X

addi r10 <- r1, 5

add r12 <- r10, r2

add r14 <- r12, r9

X: addi r15 <- r14, 10

.....

When converted to predicated code on machine B, it looks like this:

add r3 <- r1, r2

sub r5 <- r6, r7

cmp r3, r5

addi.ne r10 <- r1, 5

add.ne r12 <- r10, r2

add.ne r14 <- r12, r9

addi r15 <- r14, 10

.....

(Assume that the condition codes are set by the “cmp” instruction and used by each predicated “.ne”
instruction. Condition codes are evaluated in the last stage of execute and can be forwarded like any
other data value.)

This segment is repeated several hundreds of times in the code. The branch is taken 50% of the time
and not taken 50% of the time. On an average, for what range of P would you expect machine A to
have a higher instruction throughput than machine B?

5

6 Out-of-order Execution [50 points]

In this problem, we will give you the state of the Register Alias Table (RAT) and Reservation Stations (RS)
for a Tomasulo-like out-of-order execution engine. Your job is to determine the original sequence of five
instructions in program order.

The out-of-order machine in this problem behaves as follows:

• The frontend of the machine has a one-cycle fetch stage and a one-cycle decode stage. The machine
can fetch one instruction per cycle, and can decode one instruction per cycle.

• The machine dispatches one instruction per cycle into the reservation stations, in program order.
Dispatch occurs during the decode stage.

• An instruction always allocates the first reservation station that is available (in top-to-bottom order)
at the required functional unit.

• When a value is captured (at a reservation station) or written back (to a register) in this machine, the
old tag that was previously at that location is not cleared ; only the valid bit is set.

• When an instruction in a reservation station finishes executing, the reservation station is cleared.

• Both the adder and multiplier are fully pipelined. Add instructions take 2 cycles. Multiply instructions
take 4 cycles.

• When an instruction completes execution, it broadcasts its result, and dependent instructions can
begin execution in the next cycle if they have all operands available.

• When multiple instructions are ready to execute at a functional unit, the oldest ready instruction is
chosen.

Initially, the machine is empty. Five instructions then are fetched, decoded, and dispatched into reserva-
tion stations, before any instruction executes. Then, one instruction completes execution. Here is the state
of the machine at this point, after the single instruction completes:

6

(a) Give the five instructions that have been dispatched into the machine, in program order. The source
registers for the first instruction can be specified in either order. Give instructions in the following
format: “opcode destination ⇐ source1, source2.”

⇐ ,

⇐ ,

⇐ ,

⇐ ,

⇐ ,

(b) Now assume that the machine flushes all instructions out of the pipeline and restarts execution from the
first instruction in the sequence above. Show the full pipeline timing diagram below for the sequence of
five instructions that you determined above, from the fetch of the first instruction to the writeback of
the last instruction. Assume that the machine stops fetching instructions after the fifth instruction.

As we saw in class, use “F” for fetch, “D” for decode, “E1,” “E2,” “E3,” and “E4” to signify the first,
second, third and fourth cycles of execution for an instruction (as required by the type of instruction),
and “W” to signify writeback. You may or may not need all columns shown.

Cycle: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Instruction:
Instruction:
Instruction:
Instruction:
Instruction:

Finally, show the state of the RAT and reservation stations after 8 cycles in the blank figures below.

7

7 0x44444444 [35 points]

A 32-bit processor implements paging-based virtual memory using a single-level page table. The following
are the assumptions about the processor’s virtual memory.

• The number of bytes in a page is greater than four and is also a power of two.

• The base address of the page table is page-aligned.

• A page table entry (PTE) stores only the physical page number and has the following format. All of
the unused bits in the PTE are set to 0.

physical page numberunused

Bit 0Bit 31

The following figure shows the physical memory of the processor at a particular point in time.

31 0

0x00000044

0x00000000

0x44444444

0x44444444
0x44454444

0xFFFFFFFF

4GB Physical Memory

At this point, when the processor executes the following piece of code, it turns out that the processor
accesses the page table entry residing at the physical address of 0x44444444.

char *ptr = 0x44444444;

char val = *ptr; // val == 0x44

Let n be equal to log2(pagesize).
What is the page size of the processor? Please show work for partial credit.
Hint 1: PTBA is page-aligned. What are the possible values of n?
Hint 2: Physical address 0x44454444 is not a PTE. What are the possible values of n?

8

8 GPUs and SIMD [35 points]

We define the SIMD utilization of a program run on a GPU as the fraction of SIMD lanes that are kept busy
with active threads during the run of a program.

The following code segment is run on a GPU. Each thread executes a single iteration of the shown
loop. Assume that the data values of the arrays A, B, and C are already in vector registers so there are no
loads and stores in this program. (Hint: Notice that there are 4 instructions in each thread.) A warp in the
GPU consists of 64 threads, and there are 64 SIMD lanes in the GPU.

for (i = 0; i < 1024768; i++) {

if (B[i] < 4444) {

A[i] = A[i] * C[i];

B[i] = A[i] + B[i];

C[i] = B[i] + 1;

}

}

(a) How many warps does it take to execute this program?

(b) When we measure the SIMD utilization for this program with one input set, we find that it is 67/256.
What can you say about arrays A, B, and C? Be precise (Hint: Look at the ”if” branch, what can you
say about A, B and C?).

(c) Is it possible for this program to yield a SIMD utilization of 100% (circle one)?

If YES, what should be true about arrays A, B, C for the SIMD utilization to be 100%? Be precise.

If NO, explain why not.

(d) Is it possible for this program to yield a SIMD utilization of 25% (circle one)?

If YES, what should be true about arrays A, B, and C for the SIMD utilization to be 25%? Be precise.

If NO, explain why not.

9

