
1 SPECIFICATIONS OF THE ARM MACHINE

CMU 18-447 Introduction to Computer Architecture, Spring 2014

Lab 2: Single Cycle ARM

Instructor: Prof. Onur Mutlu
TAs: Rachata Ausavarungnirun, Varun Kohli, Paraj Tyle, Xiao Bo Zhao

Assigned: Friday, 1/24, 2014
Due: Friday, 2/7, 2014

Introduction

In Lab 1, you wrote a functional simulator for a ARM machine. In this lab, you will implement an ARM
machine using a hardware description language (SystemVerilog). The architecture of the ARM machine is
identical to what had been specified in Lab 1. The microarchitecture of the ARM machine is single-cycle, a
very simple microarchitecture that we covered in class. For full credit, you should achieve the following in
this lab.

1. Implement a single-cycle ARM machine in SystemVerilog.

2. Ensure that your implementation is correct by simulating it and verifying the register dumps of the
test inputs.

3. Ensure that your implementation is synthesizable (i.e., capable of being translated into logic gates)
and satisfies timing constraints.

Extra credit: A significant amount of extra credit will be given if you also implement another ARM
machine using a microcoded microarchitecture.

1 Specifications of the ARM Machine

1.1 Architecture

• Instruction Set. The machine supports all ARM instructions specified in Lab 1. As shown in the
following table, there are 25 ARM instructions that the machine supports.

ADC ADD AND B BIC
BL CMN CMP EOR LDR
LDRB MLA MOV MUL MVN
ORR RSB RSC SBC STR
STRB SUB TEQ TST SWI

• System Call Instruction. The machine supports a very limited form of the SWI instruction as was
specified in Lab 1: if the least significant byte of a SWI instruction has a value of 0xA, it signals the
end of the program (and also dumps out the register values). To minimize the confusion, we provided
an example implementation of SWI.

• PC prefetch. Similar to Lab 1, the PC register does not directly reflect the PC + 8 offset specified
by ARM. Therefore, if the last instruction executed is at address 0x400020, the PC dumped will have
the value 0x400024 (next instruction to execute) instead of 0x40002C (next instruction to execute +
8). However, to ensure correctness when using PC, every instruction that uses PC should include the
+ 8 offset. Therefore, the instruction R0 ← R15 + R1 is equivalent to R0 ← R15 + R1 + 8. The only
exception to this rule is when storing PC into the link register R14. In this case, you should always
store the address of the next instruction.

1/5



1.2 Microarchitecture 2 LAB RESOURCES

1.2 Microarchitecture

The machine has a single-cycle microarchitecture: every instruction takes exactly one cycle to execute. Aside
from correctness (as defined by the architectural specifications), this is the only constraint that we are placing
on the machine’s microarchitecture. As long as these two constraints are satisfied (i.e., correctness and single-
cycle), you are free to implement the microarchitecture in anyway you want. To guide you along the way,
we provide an abstract description of the single-cycle microarchitecture as we discussed in class.

• The architectural state of the machine (excluding memory) is stored in registers: general-purpose
registers and CPSR.

• There is a global wire called the “clock (clk)” that is connected to all the registers.

• When a register sees a rising edge on the clock, the register captures the instantaneous “snapshot” of
the values on its input. From then on, the register holds the captured values and feeds them to its
output.

• The output from the register(s) are fed into a combinational circuit consisting of logic gates (e.g., ADD).
In turn, the output from the logic gates are fed back as input to the register(s).

• At the next rising edge on the clock, the register again captures the values on its input.

• At each rising edge, the execution of an instruction is initiated. At the next rising edge, the values
stored in all the registers (i.e., the architectural state) should be updated in such a way that the
instruction can be considered to have correctly executed.

2 Lab Resources

2.1 Source Code

The source code is available at: /afs/ece/class/ece447/labs/lab2. Do NOT modify any files or folders
unless explicitly specified in the list below.

• Makefile

• src/ (ALL FILES MODIFIABLE) – You are allowed to add more source code files.

– arm core.sv: The top-level skeleton of the ARM machine. This is where you will be doing most
of the coding.

– arm decode.sv: The skeleton of the instruction decoding unit.

– arm defines.vh: Useful ARM-related definitions.

– internal defines.vh: Where you can add your own definitions.

• 447src/ – Supplementary source code.

– regfile.v: An array of multi-ported registers.

– arm mem.v: The memory module.

– testbench.v: The testbench.

• 447inputs/ – Example test inputs.

• inputs/ (MODIFIABLE) – You are allowed to add your own test inputs.

• outputs/ (MODIFIABLE) – You can direct your outputs to here.

• 447ncsim/ – Config. file for the ncsim tool.

• ncsim/ (MODIFIABLE) – Ignore. If you really want, you can implement a customized config. file.

2/5

/afs/ece/class/ece447/labs/lab2


2.2 Software Tools 3 GETTING STARTED & TIPS

• dc/ (MODIFIABLE) – Config. files for the DC tool. You have to add any new source files in here,
according to dependencies.

• 447util/ – Testing script for simulations.

The source code is written in Verilog, a very popular hardware description language. Since SystemVerilog is
a superset of Verilog, all starter code provided should be compatible with SystemVerilog syntax. If you need
a refresher on Verilog/SystemVerilog, please refer to the course website for tutorials. We will use the IEEE
1800-2012 standard for SystemVerilog. It is up to you if you want to use SystemVerilog constructs or to keep
using the Verilog subset exclusively. However, your source code must compile, simulate, and synthesize using
our Makefile, our software tools, and our supplementary source code. Please stick to the bread-and-butter
features of the language, so that you don’t experience esoteric incompatibilities. (Direct all questions on this
matter to the technical documents of the software tools.)

2.2 Software Tools

We provide software tools for compiling, simulating, and synthesizing your ARM machine. In order to
use the tools, remotely log into an ECE server (e.g., ece[000-008].ece.cmu.edu from off-campus and
ece[009-031].campus.ece.cmu.local from on-campus) and execute the following command in your bash
shell. The command will modify your shell’s environment variables to setup the correct AFS paths to the
tool binaries as well as the licenses for using them. We highly recommend doing the lab on the ECE servers.

$ source /afs/ece/class/ece447/bin/setup447

2.3 Makefile

We provide a Makefile that automates the tedious process of compiling, simulating, verifying, and synthe-
sizing your Verilog implementation. Typing make without any targets or options will invoke the help screen.
Please read this help screen carefully!

$ make

3 Getting Started & Tips

3.1 Getting Started

1. In the top-level skeleton (src/arm core.sv), instantiate the general-purpose register file (defined in
447src/regfile.v) and wire up its inputs and outputs.

2. Look at the alu unit, and correctly implement addition.

3. Wire the modules together and make sure PC is tied correctly.

4. At this point, you should be able to simulate a simple addition instruction.

5. Now that you have a feeling of how things work, study the provided source code. Before you begin
to implement your ARM machine, draw a block diagram of how you want to organize it. The block
diagram will help you think about your implementation. As your implementation matures, so will you
refine your block diagram. This block diagram will be collected!

6. To check the correctness of any test, you can run the following command in your shell:
$ make verify INPUT=447inputs/addiu.s

3.2 Tips

• Read this handout in detail. Ask questions to the TAs using Piazza.

• When you encounter a technical problem, please read the logs/reports generated by the software tools
in the outputs/ folder.

3/5



4 SUBMISSION

• Be cautious about how Verilog handles signed/unsigned numbers.

• The dual-ported memory module (447src/arm mem.v) provides 4 write enable signals for each port.
Each write enable signal corresponds to a byte in a 4-byte word.

• Memory accesses must be aligned. If you are accessing a byte, any address is allowed. But, if you are
accessing a 4-byte word, the two lowest bits of the address must be zero.

• Your implementation should satisfy the timing constraints that the synthesis tool checks for. Notably,
your implementation should have a minimum clock cycle of less than 25ns. The synthesis report
(timing arm core.rpt) shows the value of the minimum clock cycle as well as the critical-path through
your implementation that determines this value. Based on the synthesis report, you will analyze and
briefly discuss the critical-path of your implementation.

4 Submission

4.1 Block Diagram

Please submit a hardcopy of a computer-drawn diagram of your single-cycle ARM machine. The TAs will
collect this diagram during the Lab Sections and you will be responsible for explaining your design decisions
to the TAs.

The diagram should be at the same level of detail as you saw in the textbook and lecture notes. All major
structures (e.g, registers, muxes) should be drawn, as well as boxes for the various control logic blocks.
Label all wires with their names and widths. We suggest using different colors (or line styles) to differentiate
control- and data-path wires. Putting in an extra effort to keep this diagram neat and clean will definitely
pay off. It is okay to utilize plenty of white space and to span multiple sheets of paper. We recommend
using Inkscape (cross-platform), Adobe Illustrator (Windows/Mac), or Microsoft Visio (Windows/Mac).

4.2 Lab Section Checkoff

So that the TAs can check you off, please come to any of the lab sections during the week immediately after
the deadline – i.e., during the week starting from Mon., 2/10. Please come early during the lab section.

During the Lab Section, the TAs may ask you:

• to answer questions about your implementation,

• to simulate your implementation using various test inputs (some of which you may have not seen
before),

• to synthesize your implementation.

4.3 Source Code

Make sure that your source code is readable and documented. Please submit the lab by executing the
following commands.

$ cp -r src /afs/ece/class/ece447/handin/lab2/andrewID/

$ cp -r inputs /afs/ece/class/ece447/handin/lab2/andrewID/

$ cp -r dc /afs/ece/class/ece447/handin/lab2/andrewID/

4.4 README

In addition, please submit a README.txt file. To create this file, execute the following command.

$ cp README.txt /afs/ece/class/ece447/handin/lab2/andrewID/README.txt

The README.txt file must contain the following two pieces of information.

4/5



4.5 Late Days 5 EXTRA CREDIT

1. A high-level description of your design.

2. A high-level description of the critical-path of your synthesized implementation.

It may also contain information about any additional aspect of your lab.

4.5 Late Days

We will write-lock the handin directories at midnight on the due date. For late submissions, please send an
email to 447-instructors@ece.cmu.edu with a tarball of what you would have submitted to the handin
directory.

$ tar cvzf lab2 andrewID.tar.gz src inputs README.txt

Remember, you have only 5 late lab days for the entire semester (applies to only lab submissions, not to
homeworks, not to anything else). If we receive the tarball within 24 hours, we will deduct 1 late lab day.
If we receive the tarball within 48 hours, we will deduct 2 late lab days... During this time, you may send
updated versions of the tarball (but try not to send too many). However, once a tarball is received, it will
immediately invalidate a previous tarball you may have sent. You may not take it back. We will take your
very last tarball to calculate how many late lab days to deduct. If we don’t hear from you at all, we won’t
deduct any late lab days, but you will receive a 0 score for the lab.

5 Extra Credit

For extra credit on this assignment, you may implement a microcoded microarchitecture for the ARM machine
described in this handout. It is up to you as a computer architect to come up with a functional and efficient
design. Because this will require a substantial amount of effort, it will be worth up to 4% additional credit in
the course (i.e., if your grade ended up being 89% at the end of the semester, this could boost it up to 93%).
Note that you do not have to complete the full implementation to receive extra credit – we will give partial
extra credit for the portions of your design that you are able to demonstrate, and we encourage everyone to
attempt this extra credit. All of the guidelines for Lab 2 specified in this handout also apply to the extra
credit, except for the following differences.

• Block diagram: This can be drawn by hand. Please make sure to include the state machine, control
logic (microsequencer and control store design), and datapath.

• Submission path: /afs/ece/class/ece447/handin/lab2extra/andrewID/

• Tarball (for late submissions): lab2extra andrewID.tar.gz

For late submissions, we must receive the tarballs for both Lab 2 and the extra credit on the same day. If
not, we’ll deduct the lab late days for whichever tarball we received last.

5/5


	Specifications of the ARM Machine
	Architecture
	Microarchitecture

	Lab Resources
	Source Code
	Software Tools
	Makefile

	Getting Started & Tips
	Getting Started
	Tips

	Submission
	Block Diagram
	Lab Section Checkoff
	Source Code
	README
	Late Days

	Extra Credit

