Providing High and Predictable Performance
in Multicore Systems
Through Shared Resource Management

Lavanya Subramanian

Shared Resource Interference

H Core Core H
H Core Core H
H Core Core H

Shared
Cache

High and Unpredictable
Application Slowdowns

6 6 -
e i
; 4 ; 4 -
S S

3 3 -
S S
© 2- o 2 -

eslie3d (core gcc (core 1) eslie3d (core 0 mcf (core 1)

2. JAm ggipé patioat Bopestonwdanae dejectod s
on wheheappdsmtion interierange with

I

Outline

Goals:
2. Predictable performance

7 N\

* Blacklisting memory scheduler * Predictability with memory
interference

Outline

Goals:
1. High performance

7 N\

* Blacklisting memory scheduler

¢

Background: Main Memory

Columns

Row-buffer hitss 2

n n n
Row Row Row

Buffer Buffer Buffer

Memory ch | [\
Controller anne /

. F R' FC FS M e m O ry SC h e d U Ie r [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]
— Row-buffer hit first
— Older request first

 Unaware of inter-application interference

Tackling Inter-Application Interference:
Memory Request Scheduling

* Monitor application memory access
characteristics

* Rank applications based on memory access
characteristics

* Prioritize requests at the memory
controller, based on ranking

An Example:
Thread Cluster Memory Scheduling

4 higher)

priority

Non-intensive
cluster

Memory-non-intensive

“;u

stem

Throughput

/higher \

[]
Prioritized gne
/ priority
Intensive cluster

Figure: Kim et al., MICRO 2010 &)

Threads in the

Memory-intensive

Problems with Previous
Application-aware Memory Schedulers

 Hardware Complexity

— Ranking incurs high hardware cost

e Unfair slowdowns of some applications

— Ranking causes unfairness

cy (in ns)

High Hardware Complexity

e Ranking incurs high hardware cost
— Rank computation incurs logic/storage cost
— Rank enforcement requires comparison logic

10 80000

A
8% .:

0o

60000

(@)

® FRFCFS

square um)

40000 -

Avoid ranking to achieve low hardware cost

Qb

Ranking Causes
Unfair Application Slowdowns

Grouping offers lower unfairness than ranking

!

Problems with Previous
Application-Aware Memory Schedulers

Our Goal: Design a memory scheduler with

Low Complexity, High Performance, and Fairness

'\E.: 2

Towards a New Scheduler Design

 Monitor applications that have a number of
nsecutive requests serve :
1.c§|mpi’e éroﬂlpmg Mec(iwamsm

e Blacklist such applications

* Prioritize requests of non-blacklisted applications

2. Enforcing Priorities Based On Grouping
* Periodically clear blacklists

Methodology

* Configuration of our simulated system

— 24 cores
— 4 channels, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006, TPCC, Matlab
— 80 multi programmed workloads

¢

Metrics

* System Performance:

10
PCshared c 8
Weighted Speedup = Z pC _§ 6
2 4
“ o9
Harmonic Speedup =
p p IP(:Ianne 0 T I
Z IPQshared 0 0.5 1
. Speed
Fairness: PEecEp
alone
Maximum Slowdown = max IPCS‘hared
IPC,

Previous Memory Schedulers

F R‘FC FS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

— Prioritizes row-buffer hits and older requests
— Application-unaware

PARBS [Mutlu and Moscibroda, ISCA 2008]

— Batches oldest requests from each application; prioritizes batch
— Employs ranking within a batch

ATI_AS [Kim et al., HPCA 2010]

— Prioritizes applications with low memory-intensity

TCM [Kim et al., MICRO 2010]

— Always prioritizes low memory-intensity applications
— Shuffles request priorities of high memory-intensity applications

Weighted Speedup

=
o

(00
|

(0))
|

H
|

N
|

Performance Results

15
M FRFCFS g M FRFCFS
® FRFCFS-Cap -g 10 ® FRFCFS-Cap
m PARBS 2 = PARBS
M ATLAS :E, M ATLAS
= TCM E ° = TCM
m Blacklisting t; m Blacklisting

Approaches fairness of PARBS and
FRFCFS-Cap achieving better
performance than TCM

@

12

10

Latency (in ns)
(@)

Complexity Results

120000
WFRFCFS = 100000 ® FRFCFS
W FRFCFS-Cap 3 80000 m FRFCFS-Cap
M PARBS S B PARBS
S 60000
W ATLAS c M ATLAS
= TCM © 40000 — mTCM
Blacklisting < 20000 Blacklisting
0

Blacklisting achieves
43% lower area than TCM

Need for Predictable Performance

As a first step: Predictable performance
in the presence of memory interference

W

Outline

Goals:
2. Predictable performance

7 N\

* Predictability with memory
interference

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Key Observations

2. Control Slowdown

Slowdown: Definition

Performance aione

Slowdown =
Performance shared

Key Observation 1

For a memory bound application,
Performance o«c Memory request service rate

==0mnetpp

Difficult

d@&Rateem@ath 3.5 GB/s
\

Easy

2

=

Q.

(@)
Normalized lérformance

03 04 05 06 07 08 09 1
Normalized Request Service Rate

Key Observation 2

Request Service Rate ,; .. (RSR,,.) Of an
application can be estimated by giving the
application highest priority in accessing
memory

Highest priority = Little interference
(almost as if the application were run alone)

s

Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

2. Run with another application

Request Buffer State

Main
Memory

Time units

Service order

Timewunits

SerV|ce order

Main
Memory

<€
I

3. Run with another application: highest prlor’lty

Request Buffer State

Main
Memory

Time units
<

. Service order

Main
Memory

3 ‘

Main
Memory

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Slowdown = Request Service Rate aione (RSRAI0ne)

Request Service Rate shared (RSRshared)

Key Observation 3

. . C Ph
* Memory-bound application Bl Compute Phese

- Memory Phase
ot 0 100
interference > time

. 000]
interference

—>time

Memory phase slowdown dominates overall slowdown

¢

Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAIone
RS RShared

Slowdown=(1-a) + o

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—MISE Operation: Putting it All Together

2. Control Slowdown

MISE Operation: Putting it All Together

Interval Interval

A A

(Y 3.
———————————————————————————— SATHTE

)) EN

m Measure RSR¢; gy & m Measure RSR¢, . eqr O
= Estimate RSR = Estimate RSR

Alone Alone

v v
Estimate Estimate

slowdown slowdoyn

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Evaluating the Model
2. Control Slowdown

Previous Work on Slowdown

Estimation

* Previous work on slowdown estimation

<STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07] —
— FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

e Basic ldea: Difficult

Slowdown @ TIME Alone)

Stall Time snared

~ Easy

Count number of cycles application receives interference
Qs

Two Major Advantages of MISE Over STFM

 Advantage 1:

— STFM estimates alone performance while an
application is receiving interference = Difficult

— MISE estimates alone performance while giving an
application the highest priority = Easier

* Advantage 2:

— STFM does not take into account compute phase for
non-memory-bound applications

— MISE accounts for compute phase = Better accuracy

Methodology

* Configuration of our simulated system

— 4 cores
— 1 channel, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006
— 300 multi programmed workloads

Quantitative Comparison

SPEC CPU 2006 application
leslie3d

/\/\/\ 4/ —Actual

20 40 60 80 100
Million Cycles

D

w
U

w

N .

Slowdown
N
(On

=
Ul

[N

o

¢

Comparison to STFM

Average error of MISE: 8.2%
Avera ' 0

N/

(across 300 workloads)

AN

Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown

—Providing Soft Slowdown Guarantees

MISE-QoS: Providing

“Soft” Slowdown Guarantees
e Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

 Basic ldea

— Allocate just enough bandwidth to QoS-critical
application

— Assign remaining bandwidth to other applications

@

Outline

Goals:

1. High performance
2. Predictable performance

v 4

* Blacklisting memory scheduler

\

* Predictability with memory
interference

A Recap

* Problem: Shared resource interference causes
high and unpredictable application slowdowns
* Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Slowdown control mechanisms

e Future Work:

— Extending to shared caches

Q>

Core

Core

Core

Core

Shared Cache Interference

Core H
Core
Core
Core

Core

Core

Core

Core

Slowdown

Impact of Cache Capacity Contention

Shared Main Memory Shared Main Memory and Caches

2 - 2 -
c

1.5 - S 15 -
3

1 1 -
l :

0.5 - O o5 -
)y

0 0 -

bzip2 (core 0) soplex (core 1)

bzip2 (core 0) soplex (core 1)

Cache capacity interference causes high
application slowdowns

s

Backup Slides

Outline

Goals:
1. High performance
2. Predictable performance

7 N\

 Coordinated cache/memory * Cache slowdown estimation
management for performance Coordinated cache/memory
management for predictability

Outline

Goals:

2. Predictable performance

7 N\

e Cache slowdown estimation

Request Service vs. Memory Access

Memory
Core Core Core Access Rate
. . Shared
Cache
Core Core Core Core
Service Rate

Request service and access rates tightly coupled

q{r_'

Estimating Cache and Memory Slowdowns
Through Cache Access Rates

coe | [e | [| ncces

Core | | Core | | Core |} Core § » . oec Rate

shared (521 main
<:| Memory

Cache
Core Core Core Core

Cache Access Rate alone
Slowdown=

Cache Access Rate shared

Slowdown

Cache Access Rate vs. Slowdown

2.2 -

c 2

S 1.8

S 16

2 14

1.2

1
1 1.2 1.4 1 1.5 2 2.5
Cache Access Rate Ratio Cache Access Rate Ratio

bzip2 xalancbmk

W

Challenge

How to estimate alone cache access rate?

. Cache

Core Core Core Access Rate

Core H Core S h a red
ke =

Core Core Core

Core H E Auxiliary
lags

Core

Core

Core

Core

Main

Outline

Goals:
1. High performance

7 N\

 Coordinated cache/memory
management for performance

Leveraging Slowdown Estimates
for Performance Optimization

* How do we leverage slowdown estimates to
achieve high performance by allocating

— Memory bandwidth?
— Cache capacity?
* Leverage other metrics along with slowdowns

— Memory intensity
— Cache miss rates

Core

Core

Core

Core

Core

Core

Core

Core

Coordinated Resource
Allocation Schemes

Cache capacity-aware

- bandwidth allocation
Core Core

Core H
Core H
Core H

Bandwidth-aware

Wpacity alw
1)

Outline

Goals:

2. Predictable performance

7 N\

 Coordinated cache/memory

management for predictability
Q-

Coordinated Resource Management
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

e Large search space of potential cache capacity
and memory bandwidth allocations

* Multiple possible combinations of
cache/memory allocations for each application

Outline

Goals:
1. High performance
2. Predictable performance

* Blacklisting memory scheduler * Predictability with memory
interference

 Coordinated cache/memory * Cache slowdown estimation

management for performance Coordinated cache/memory

management for predictability

Timeline

2014

2015

Cache slowdown estimation (75% Goal)

Coordinated cache/memory management
for performance (100% Goal)

Apr.

May [Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

Jan.

Feb.

Mar.

Apr.

May

Coordinated cache/memory management
for predictability (125% Goal)

Writeup thesis and defend

&

Summary

 Problem: Shared resource interference causes
high and unpredictable application slowdowns

* Goals: High and predictable performance

* Our Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Coordinated cache/memory management

@

Thank You!

Backup Slides

Prior Work: Cache and Memory QoS

* Resource QOS (SIGMETRICS 2007, ICS 2009, TACO 2010)
* Bubble up (MICRO 2011)
e Cache capacity QoS (ASPLOS 2014)

* Provide QoS on resource allocations
 Complementary to our slowdown-based mechanisms

Prior Work: Memory Interference Mitigation

* Source throttling (ASPLOS 2010)

— Throttle interfering applications at the core

* Memory interleaving (MICRO 2011)

— Map data to banks to exploit parallelism and row
locality

Complementary to our proposals

Prior Work: Shared Cache Management

e Cache replacement policies (PACT 2008, ISCA 2010)
* |nsertion policies (ACSAC 2007, MICRO 2011)
* Partitioning (ICS 2004, MICRO 2006, ASPLOS 2014)

* Focused on a single resource: shared cache
* Goal of these policies: Improve performance

Prior Work: DRAM Optimizations

Related Work

Main memory interference mitigation
Slowdown estimation
Shared cache capacity management

Cache and memory QoS

Main Memory Interference Mitigation

* Source throttling (Ebrahimi et al., ASPLOS 2010)

— Throttle interfering applications at the core

e Memory interleaving (Kaseridis et al., MICRO 2011)

— Map data to banks to exploit parallelism and row
locality

68

Blacklisting Scheduler Mechanism

At each channel,

— Count the number of consecutive requests served
from an application

The counter is cleared

— when a request belongs to a different application than
the previous one is served

When count equals N
— clear the counter
— blacklist the application

Periodically clear blacklists

Latency (in ns)

12

Complexity Results

DDR3-800

10

1333

o N B~ O ©®©

m FRFCFS

® FRFCFS-Cap
m PARBS

M ATLAS

B TCM

m Blacklisting

Area (in square um)

120000
100000
80000
60000
40000
20000
0

®m FRFCFS

® FRFCFS-Cap
m PARBS

M ATLAS

B TCM

m Blacklisting

70

Fraction of Requests

Understanding Why Blacklisting Works

0.4 . 0.5
0.3 [g 04
. Jf —FRFCFS g 03 1 FRFCFS
By —PARBS S 02 —PARBS
0.1 + - t o "
w TCM g 01 W TCM
0 ' = —Blacklisting %+ 0 - —Blacklisting
0 10 20 0 10 20
Streak Length Streak Length
libguantum calculix
(High memory-intensity (Low memory-intensity
application) application)

Blacklisting shifts the request distribution
towards the right

71

Weighted Speedup
(Normalized)

Effect of Workload Memory Intensity

FRFCFS ATLAS mmm FRFCFS ATLAS mmmm
FRFCFS-Cap C— TCM FRFCFS-Cap C—1 TCM /™
PARBS mmm BLISS mm PARBS BLISS mm
1.25 2
1.2 1 < 18 |
1.15 | 5
o 16}
1.1 ¢ =0
&N
1.05 ¢+ ke 14 |
1 EE 12}
0.95 .EE 1l
09 X
0.85 = 0.8 |
0.8 a P B S 0.6 a P B
z
5 0 <) % 3 0 &) %
Percentage of Memory Intensive Benchmarks in a Workloacad Percentage of Memory Intensive Benchmarks in a Workload

72

Weighted Speedup

(Normalized)

Combining FRFCFS-Cap and Blacklisting

1.3

1.2

1.1

09

0.8

FRFCFS

FRFCFS-Cap —=

BLISS oo
FRFCFS-Cap-Blacklisting

Maximum Slowdown

(Normalized)

1.1

09

0.8

0.7

0.6

FRFCFS

FRFCFS-Cap ——

BLISS o
FRFCFS-Cap-Blacklisting

73

Weighted Speedup
(Normalized)

Sensitivity to Blacklisting Threshold

FRFCFS —— BLISS-&8 s
BLISS-2 —— BLISS-16 m/—=
BLISS-4

1.2
115 |
11
1.05

0.95 r
09 r
0.85 r

0.8

Maximum Slowdown
(Normalized)

1.3

1.2
11

09
0.8
0.7

0.6

FRFCFS ——— BLISS-8
BLISS-2 ——= BLISS-16 /—=
BLISS-4

ol

74

Weighted Speedup
(Normalized)

Sensitivity to Clearing Interval

FRFCFS —— BLISS-10000
BLISS-1000 ——— BLISS-100000 s

1.3

1.2

11}

1F

09 r

0.8

Maximum Slowdown
(Normalized)

1.2

11t

1F

09 r

0.8 r

0.7

0.6

FRFCFS —— BLISS-10000
BLISS-1000 ———= BLISS-100000

75

Weighted Speedup

18
16
14

12 ¢

_ 14%
_ 10%
__ il

10

Sensitivity to Core Count

FRFCFS ——

TCM mm

PARBS C— BLISS mm

15%

19%

6 ¥ D

Maximum Slowdown

30

25
20
15

10

FRFCFS ——
PARBS —— BLISS

TCM

-14%

-20%

-12%

-13%

76

Weighted Speedup

16

14 |
12 |
10 |

Sensitivity to Channel Count

FRFCFS —— TCNM
PARBS ——— BLISS

14%

9% |

Maximum Slowdown

35

30 r
25
20 r
15
10

FRFCFS C— TCM
PARBS ——— BLISS s

11%

15%
-20%

77

Weighted Speedup

(Normalized)

1.2

115 |
1.1 |
1.05 |
0.95 |

0.85 |

0.8

TCM vs. Grouping

TCM
Grouping C—1

Maximum Slowdown

(Normalized)

1.1

1.05 |

0.95 ¢
0.9 |
0.85

0.8

TCM
Grouping 1

Weighted Speedup

(Normalized)

Comparison with TCM-like Clustering

FRFCFS C—

1.3

1.2

1.1 ¢

0.9 r

0.8

TCM =

TCM-Clustering s

BLIS

Maximum Slowdown

(Normalized)

FRFCFS ——— TCM-Clustering
TCM —— BLISS
1.1
1L
0.9
0.8 r
0.7
0.6

79

Weighted Speedup

(Normalized)

BLISS vs. Criticality-aware Scheduling

1.3

12}
1.1}

0.9 r

0.8

FRFCFS ——
Crit-MaxStall —
Crit-TotalStall

BLISS mmm

Maximum Slowdown
(Normalized)

1.2

1.1

09 r
0.8 1
0.7 1

0.6

FRFCFS —
Crit-MaxStall ——
Crit-TotalStall

BLISS

80

Sub-row Interleaving

FRFCFS-Row —— ATLAS ™ FRFCFS-Row — ATLAS 3
FRFCFS —— TCM FRFCFS —— TCM o
FRFCFS-Cap BLISS s FRFCFS-Cap = BLISS mm
PARBS mmm PARBES mm
= 10.5
éL 95+ % 10 +
D o 95 ¢t
S 9 3 9t
W W 85 ¢t
=] L
g 85 E 78]
B =
= 8 = 7t
g & 6.5 |
7.5 = 6

82

Measuring RSR, ...y and o

* Request Service Rate ¢, _..4 (RSR¢; . eq)
— Per-core counter to track number of requests serviced
— At the end of each interval, measure

Number of Requests Serviced
Interval Length

RS RShared —

* Memory Phase Fraction (&)
— Count number of stall cycles at the core
— Compute fraction of cycles stalled for memory

Estimating Request Service Rate , ..
(RSRAIone)

* Divide each interval into shorter epochs

Goa|: Estimate RSR,, .
* At the beginning of each epocﬁ

H Qe &1 ESRELNE N BOKS, SRS LR RBIGREICR the
gE&sesioaty@ppligatibaccessing memory

At the end of an interval, for each
application, estimate

Inaccuracy in Estimating RSR, ...

teqMbheman application has highestqrio Ml High priority

State. . . 3 2 1
—ag%lmehenaﬁs somelinterférence Main
Memory - Memory
Request Buffer Time{units Service order
State 3 2 1
Main Main
- Memory - - Memory
Request Buffer Time{units Service order
State 3 2 1
Main Main
- Memory - - Memory
Time{units Service order
3 2 1

Main
| ooy

Interference Cycles

Accounting for Interference in RSR Estimation

Alone

e Solution: Determine and remove interference

cycles from RSR,,,,.. calculation

Number of Requests During High Priority Epochs

RSRAlone =
"~ Number of Cycles Applicatio n Given High Priority <Interference Cycles>

* Acycleis an interference cycle if

— a request from the highest priority application is waiting
in the request buffer and

— another application’s request was issued previously

86

Other Results in the Paper

e Sensitivity to model parameters

— Robust across different values of model parameters

e Comparison of STFM and MISE models in
enforcing soft slowdown guarantees

— MISE significantly more effective in enforcing guarantees

* Minimizing maximum slowdown

— MISE improves fairness across several system configurations

Slowdown

3.5

2.5

1.5

Quantitative Comparison

SPEC CPU 2006 application

hmmer
- AcCtua
= Actua
-8 CH
==STFM
MISE
20 40 60 80 100

Million Cycles

88

MISE-Qo0S: Mechanism to Provide Soft QoS

Assign an initial bandwidth allocation to QoS-
critical application

Estimate slowdown of QoS-critical application
using the MISE model

After every N intervals

— |f slowdown > bound B +/- €, increase bandwidth allocation
— |f slowdown < bound B +/- €, decrease bandwidth allocation
When slowdown bound not met for N intervals

— Notify the OS so it can migrate/de-schedule jobs

89

A Look at One Workload

g % 195,

MISE is effectlve in Y

1. meeting the slowdown bound for the QoS-critical
application

2. improving performance of non-QoS-critical
applications

< hmmer Ibm omnetpp >

QoS-critical non-QoS-critical

90

Performance of Non-QoS-Critical Applications

1.4

=)

T

v 1

g_ m AlwaysPrioritize

% 0.8 MISE-Q0S-10/1

‘= 0.6 ® MISE-Q0S-10/3

E 0.4 ® MISE-Q0S-10/5

i ® MISE-Q0S-10/7

T 02 = MISE-Q0S-10/9
0

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

91

Slowdown

Case Study with Two QoS-Critical Applications

VO COITIDa O OMIT]

~ riaritiza Wk annlitatinne. @ AlwaysPrioritize
®m EqualBandwidth
UM eMISE-Qos-10/1
m MISE-Qo0S-10/2
m MISE-Qo0S-10/3
m MISE-Qo0S-10/4
MISE-Qo0S-10/5

2% 0

MISE-QoS provides much lower slowdowns for
non-QoS-critical applications

Minimizing Maximum Slowdown

e Goal

— Minimize the maximum slowdown experienced by any
application

e Basic ldea

— Assign more memory bandwidth to the more slowed
down application

Mechanism

* Memory controller tracks

— Slowdown bound B
— Bandwidth allocation of all applications

* Different components of mechanism
— Bandwidth redistribution policy
— Modifying target bound
— Communicating target bound to OS periodically

Bandwidth Redistribution

At the end of each interval,

— Group applications into two clusters
— Cluster 1: applications that meet bound
— Cluster 2: applications that don’t meet bound

— Steal small amount of bandwidth from each
application in cluster 1 and allocate to applications in
cluster 2

Modifying Target Bound

* |f bound B is met for past N intervals

— Bound can be made more aggressive

— Set bound higher than the slowdown of most slowed down
application

* |f bound B not met for past N intervals by more
than half the applications

— Bound should be more relaxed
— Set bound to slowdown of most slowed down application

Results: Harmonic Speedup

0.7
0.6
S 0.5 -
®
v
& 04 - = FRFCFS
:=_’ m ATLAS
g 0.3 7] .TCM
fw mSTFM
£ 0.2 - _
m MISE-Fair
0.1 -
O _

4 8 16
Core Count

97

Results: Maximum Slowdown

16

— —
N EN

—
o

Maximum Slowdown
(00]

4 8 16
Core Count

m FRFCFS
m ATLAS
mTCM

®m STFM

m MISE-Fair

98

25

_ - N
o Ul o

Maximum Slowdown

(9]

Sensitivity to Memory Intensity

(16 cores)

50

75

100

Avg

®m FRFCFS
m ATLAS

= TCM
mSTFM

m MISE-Fair

99

MISE: Per-Application Error

Benchmark STFM MISE Benchmark STFM MISE
453.povray 56.3 0.1 473.astar 12.3 8.1
454 calculix 43.5 1.3 456.hmmer 17.9 8.1
400.perlbench 26.8 1.6 464.h264ref 13.7 8.3
447 .dealll 37.5 2.4 401.bzip2 28.3 8.5
436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8
450.soplex 29.8 3.5 433.milc 26.4 9.5
444 .namd 43.6 3.7 481.wrf 33.6 11.1
437 .leslie3d 26.4 4.3 429.mcf 83.74 11.5
403.gcc 25.4 4.5 445.gobmk 23.1 12.5
462.libquantum 48.9 5.3 483.xalancbmk 18 13.6
459.GemsFDTD 21.6 5.5 435.gromacs 314 15.6
470.lbm 6.9 6.3 482.sphinx3 21 16.8
473.astar 12.3 8.1 471.omnetpp 26.2 17.5
456.hmmer 17.9 8.1 465.tonto 32.7 19.5

100

Epoch
Length

Sensitivity to Epoch and Interval
Lengths

Interval
Length
1 mil. 5 mil. 10 mil. 25 mil. 50 mil.
1000 65.1% 9.1% 11.5% 10.7% 8.2%
10000 64.1% 8.1% 9.6% 8.6% 8.5%
100000 64.3% 11.2% | 9.1% 8.9% 9%
1000000 64.5% 31.3% | 14.8% 14.9% 11.7%

101

Workload Mixes

Mix No. Benchmark 1 Benchmark 2 Benchmark 3
1 sphinx3 leslie3d milc
2 sjeng gcc perlbench
3 tonto povray wrf
4 perlbench gcc povray
5 gcc povray leslie3d
6 perlbench namd lom
7 h264ref bzip2 libguantum
8 hmmer lbm omnetpp
9 sjeng libguantum cactusADM
10 namd libguantum mcf
11 xalancbmk mcf astar
12 mcf libguantum leslie3d

STFM'’s Effectiveness in Enforcing QoS

Across 3000 data points

Predicted Predicted
V" [} Not Met

QoS Bound

Met

QoS Bound
Not Met

103

STFM vs. MISE’s System Performance

0.95
0.9 -
()]
(O]
c
n
£ 0.85 - ® Q0S-10/1
g = Q0S-10/3
g = Q0S-10/5
E 0.8 - m Qo0S-10/7
(‘% ® Q0S-10/9
0.75 -
0.7 -

MISE STFM

104

MISE’s Implementation Cost

1. Per-core counters worth 20 bytes
Request Service Rate Shared

 Request Service Rate Alone
— 1 counter for number of high priority epoch requests
— 1 counter for number of high priority epoch cycles
— 1 counter for interference cycles

 Memory phase fraction (@)

2. Register for current bandwidth allocation — 4
bytes

3. Logic for prioritizing an application in each epoch

MISE Accuracy w/o Interference Cycles

* Average error—23%

MISE Average Error by Workload Category

Workload Category (Number of Average Error
memory intensive applications)

0 4.3%

1 8.9%

2 21.2%

3 18.4%

Initial Ideas

* Separate slowdown into cache and memory
slowdowns

e Determine resource allocations based on
cache, memory and overall slowdowns

QoS in Heterogeneous Systems

e Staged memory scheduling

— In collaboration with Rachata
Ausavarungnirun, Kevin Chang and Gabriel Lob

— Goal: High performance in CPU-GPU systems

* Memory scheduling in heterogeneous systems
— In collaboration with Hiroukui Usui

— Goal: Meet deadlines for accelerators while
improving performance

110

