
Providing High and Predictable Performance 
in Multicore Systems 

Through Shared Resource Management

Lavanya Subramanian

1



Shared Resource Interference

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

2



High and Unpredictable 
Application Slowdowns
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Background: Main Memory

• FR-FCFS Memory Scheduler [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]

– Row-buffer hit first

– Older request first

• Unaware of inter-application interference
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Tackling Inter-Application Interference:
Memory Request Scheduling

• Monitor application memory access 
characteristics

• Rank applications based on memory access 
characteristics

• Prioritize requests at the memory 
controller, based on ranking

7



thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive 
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive 

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

An Example: 
Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010
8



Problems with Previous 
Application-aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness
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High Hardware Complexity

• Ranking incurs high hardware cost

– Rank computation incurs logic/storage cost

– Rank enforcement requires comparison logic
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Ranking Causes 
Unfair Application Slowdowns

• Lower-rank applications experience  
significant slowdowns

– Low memory service causes slowdown

– Periodic rank shuffling not sufficient0

10

20

30

40

50

0 50 100

N
u

m
b

e
r 

o
f 

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

TCM

Grouping
0

20

40

60

80

100

0 50 100

N
u

m
b

e
r 

o
f 

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

TCM

Grouping

0

2

4

6

8

10

12

Sl
o

w
d

o
w

n

TCM

Grouping

0

2

4

6

8

10

Sl
o

w
d

o
w

n
TCM

Grouping

astar soplex

11

Grouping offers lower unfairness than ranking



Problems with Previous 
Application-Aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness
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Towards a New Scheduler Design

• Monitor applications that have a number of 
consecutive requests served

• Blacklist such applications

1. Simple Grouping Mechanism

2. Enforcing Priorities Based On Grouping

• Prioritize requests of non-blacklisted applications

• Periodically clear blacklists
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Methodology

• Configuration of our simulated system
– 24 cores

– 4 channels, 8 banks/channel

– DDR3 1066 DRAM 

– 512 KB private cache/core

• Workloads
– SPEC CPU2006, TPCC, Matlab

– 80 multi programmed workloads

14



Metrics

• System Performance:

• Fairness:
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Previous Memory Schedulers

• FR-FCFS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

– Prioritizes row-buffer hits and older requests

– Application-unaware

• PARBS [Mutlu and Moscibroda, ISCA 2008]

– Batches oldest requests from each application; prioritizes batch

– Employs ranking within a batch

• ATLAS [Kim et al., HPCA 2010]

– Prioritizes applications  with low memory-intensity

• TCM [Kim et al., MICRO 2010]

– Always prioritizes low memory-intensity applications

– Shuffles request priorities of high memory-intensity applications
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Performance Results
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Complexity Results

Blacklisting achieves 
70% lower latency than TCM
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Blacklisting achieves 
43% lower area than TCM
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Need for Predictable Performance

• There is a need for predictable performance
– When multiple applications share resources 
– Especially if some applications require performance 

guarantees

• Example 1: In server systems
– Different users’ jobs consolidated onto the same server
– Need to provide bounded slowdowns to critical jobs 

• Example 2: In mobile systems
– Interactive applications run with non-interactive applications
– Need to guarantee performance for interactive applications

As a first step: Predictable performance 
in the presence of memory interference
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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Slowdown: Definition
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Key Observation 1

For a memory bound application,  
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Key Observation 2

Request Service Rate Alone (RSRAlone) of an 
application can be estimated by giving the 

application highest priority in accessing 
memory 

Highest priority  Little interference

(almost as if the application were run alone)
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Key Observation 2
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications
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Key Observation 3

• Memory-bound application

No 
interference

Compute Phase

Memory Phase

With 
interference

Memory phase slowdown dominates overall slowdown
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Key Observation 3

• Non-memory-bound application
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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MISE Operation: Putting it All Together

time
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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Previous Work on Slowdown 
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07] 

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

• Basic Idea:

Shared

Alone

 Time Stall

 Time Stall
 Slowdown 

Difficult

Easy

Count number of cycles application receives interference
34



Two Major Advantages of MISE Over STFM

• Advantage 1:
– STFM estimates alone performance while an 

application is receiving interference  Difficult

– MISE estimates alone performance while giving an 
application the highest priority Easier

• Advantage 2:
– STFM does not take into account compute phase for 

non-memory-bound applications 

– MISE accounts for compute phase  Better accuracy
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Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1066 DRAM 

– 512 KB private cache/core

• Workloads
– SPEC CPU2006 

– 300 multi programmed workloads
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Quantitative Comparison
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Comparison to STFM
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Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)
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Predictability in the Presence of 
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown
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MISE-QoS: Providing 
“Soft” Slowdown Guarantees

• Goal

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound

2. Maximize system performance for other applications

• Basic Idea

– Allocate just enough bandwidth to QoS-critical 
application

– Assign remaining bandwidth to other applications
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A Recap

• Problem: Shared resource interference causes 
high and unpredictable application slowdowns

• Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Slowdown control mechanisms

• Future Work:

– Extending to shared caches
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Shared Cache Interference
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Impact of Cache Capacity Contention
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Cache capacity interference causes high 
application slowdowns
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Backup Slides
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2. Predictable performance

• Coordinated cache/memory 
management for performance 

• Cache slowdown estimation
• Coordinated cache/memory 
management for predictability
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2. Predictable performance
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management for performance 

• Cache slowdown estimation
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Request Service vs. Memory Access
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Estimating Cache and Memory Slowdowns
Through Cache Access Rates
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Cache Access Rate vs. Slowdown
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Challenge

How to estimate alone cache access rate?
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management for performance
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Leveraging Slowdown Estimates 
for Performance Optimization

• How do we leverage slowdown estimates to 
achieve high performance by allocating

– Memory bandwidth?

– Cache capacity?

• Leverage other metrics along with slowdowns

– Memory intensity

– Cache miss rates
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Coordinated Resource 
Allocation Schemes

54

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main 
Memory

Shared 
Cache

Cache capacity-aware 
bandwidth allocation

Bandwidth-aware 
cache capacity allocation



Outline

55

• Blacklisting memory scheduler • Predictability with memory 
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory 
management for performance 

• Cache slowdown estimation
• Coordinated cache/memory 
management for predictability 



Coordinated Resource Management 
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth 
allocation for an application to meet a bound

Challenges:

• Large search space of potential cache capacity 
and memory bandwidth allocations

• Multiple possible combinations of 
cache/memory allocations for each application
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Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory 
management for performance 

• Cache slowdown estimation
• Coordinated cache/memory 
management for predictability 



Timeline
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Summary

• Problem: Shared resource interference causes 
high and unpredictable application slowdowns

• Goals: High and predictable performance 

• Our Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Coordinated cache/memory management
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Thank You!
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Prior Work: Cache and Memory QoS

• Resource QoS (SIGMETRICS 2007, ICS 2009, TACO 2010)

• Bubble up (MICRO 2011)

• Cache capacity QoS (ASPLOS 2014)

62

• Provide QoS on resource allocations
• Complementary to our slowdown-based mechanisms



Prior Work: Memory Interference Mitigation

63

• Source throttling (ASPLOS 2010) 

– Throttle interfering applications at the core

• Memory interleaving (MICRO 2011)

– Map data to banks to exploit parallelism and row 
locality

Complementary to our proposals



Prior Work: Shared Cache Management 

• Cache replacement policies (PACT 2008, ISCA 2010) 

• Insertion policies (ACSAC 2007, MICRO 2011)

• Partitioning (ICS 2004, MICRO 2006, ASPLOS 2014)
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• Focused on a single resource: shared cache
• Goal of these policies: Improve performance 
Complementary to our slowdown-based mechanisms



Prior Work: DRAM Optimizations
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Related Work

• Main memory interference mitigation

• Slowdown estimation

• Shared cache capacity management

• Cache and memory QoS
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Main Memory Interference Mitigation

• Source throttling (Ebrahimi et al., ASPLOS 2010) 

– Throttle interfering applications at the core

• Memory interleaving (Kaseridis et al., MICRO 2011)

– Map data to banks to exploit parallelism and row 
locality
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Blacklisting
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Blacklisting Scheduler Mechanism

• At each channel, 
– Count the number of consecutive requests served 

from an application

• The counter is cleared
– when a request belongs to a different application than 

the previous one is served

• When count equals N
– clear the counter

– blacklist the application

• Periodically clear blacklists
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Complexity Results
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Understanding Why Blacklisting Works

0

0.1

0.2

0.3

0.4

0 10 20

Fr
ac

ti
o

n
 o

f 
R

e
q

u
e

st
s

Streak Length

FRFCFS

PARBS

TCM

Blacklisting 0

0.1

0.2

0.3

0.4

0.5

0 10 20

Fr
ac

ti
o

n
 o

f 
R

e
q

u
e

st
s

Streak Length

FRFCFS

PARBS

TCM

Blacklisting

libquantum
(High memory-intensity 

application)

Blacklisting shifts the request distribution 
towards the left

calculix
(Low memory-intensity 

application)

Blacklisting shifts the request distribution 
towards the right

71



Effect of Workload Memory Intensity
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Combining FRFCFS-Cap and Blacklisting
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Sensitivity to Blacklisting Threshold
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Sensitivity to Clearing Interval
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Sensitivity to Core Count
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Sensitivity to Channel Count
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TCM vs. Grouping
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Comparison with TCM-like Clustering
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BLISS vs. Criticality-aware Scheduling
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Sub-row Interleaving
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MISE
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Measuring RSRShared and α

• Request Service Rate Shared (RSRShared)
– Per-core counter to track number of requests serviced
– At the end of each interval, measure

• Memory Phase Fraction (  )
– Count number of stall cycles at the core
– Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber 
  RSRShared


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Estimating Request Service Rate Alone

(RSRAlone)

• Divide each interval into shorter epochs

• At the beginning of each epoch
– Memory controller randomly picks an application as the 

highest priority application

• At the end of an interval, for each 
application, estimate 

PriorityHigh Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone 

Goal: Estimate RSRAlone

How: Periodically give each application 
highest priority in accessing memory 
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Inaccuracy in Estimating RSRAlone

Request Buffer
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• When an application has highest priority
– Still experiences some interference
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Accounting for Interference in RSRAlone Estimation

• Solution: Determine and remove interference 
cycles from RSRAlone calculation

• A cycle is an interference cycle if
– a request from the highest priority application is waiting 

in the request buffer and

– another application’s request was issued previously

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber 

EpochsPriority High  During Requests ofNumber 
RSR

           

Alone 
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Other Results in the Paper

• Sensitivity to model parameters
– Robust across different values of model parameters

• Comparison of STFM and MISE models in 
enforcing soft slowdown guarantees
– MISE significantly more effective in enforcing guarantees

• Minimizing maximum slowdown
– MISE improves fairness across several system configurations
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Quantitative Comparison
SPEC CPU 2006 application
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MISE-QoS: Mechanism to Provide Soft QoS

• Assign an initial bandwidth allocation to QoS-
critical application

• Estimate slowdown of QoS-critical application 
using the MISE model

• After every N intervals

– If slowdown > bound B +/- ε, increase bandwidth allocation

– If slowdown < bound B +/- ε, decrease bandwidth allocation

• When slowdown bound not met for N intervals

– Notify the OS so it can migrate/de-schedule jobs
89



A Look at One Workload
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Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

Higher performance when bound is looseWhen slowdown bound is 10/3 
MISE-QoS improves system performance by 10%  
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Case Study with Two QoS-Critical Applications

• Two comparison points

– Always prioritize both applications

– Prioritize each application 50% of time
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MISE-QoS can achieve a lower slowdown bound 
for both applications

MISE-QoS provides much lower slowdowns for 
non-QoS-critical applications 
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Minimizing Maximum Slowdown

• Goal
– Minimize the maximum slowdown experienced by any 

application

• Basic Idea
– Assign more memory bandwidth to the more slowed 

down application
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Mechanism

• Memory controller tracks
– Slowdown bound B

– Bandwidth allocation of all applications

• Different components of mechanism
– Bandwidth redistribution policy

– Modifying target bound

– Communicating target bound to OS periodically
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Bandwidth Redistribution

• At the end of each interval,

– Group applications into two clusters

– Cluster 1: applications that meet bound

– Cluster 2: applications that don’t meet bound

– Steal small amount of bandwidth from each 
application in cluster 1 and allocate to applications in 
cluster 2
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Modifying Target Bound

• If bound B is met for past N intervals
– Bound can be made more aggressive

– Set bound higher than the slowdown of most slowed down 
application

• If bound B not met for past N intervals by more 
than half the applications
– Bound should be more relaxed

– Set bound to slowdown of most slowed down application
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Results: Harmonic Speedup 
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Results: Maximum Slowdown
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Sensitivity to Memory Intensity
(16 cores)
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MISE: Per-Application Error
Benchmark STFM MISE Benchmark STFM MISE

453.povray 56.3 0.1 473.astar 12.3 8.1

454.calculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbench 26.8 1.6 464.h264ref 13.7 8.3

447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8

450.soplex 29.8 3.5 433.milc 26.4 9.5

444.namd 43.6 3.7 481.wrf 33.6 11.1

437.leslie3d 26.4 4.3 429.mcf 83.74 11.5

403.gcc 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalancbmk 18 13.6

459.GemsFDTD 21.6 5.5 435.gromacs 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8

473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5 100



Sensitivity to Epoch and Interval 
Lengths

1 mil. 5 mil. 10 mil. 25 mil. 50 mil.

1000 65.1% 9.1% 11.5% 10.7% 8.2%

10000 64.1% 8.1% 9.6% 8.6% 8.5%

100000 64.3% 11.2% 9.1% 8.9% 9%

1000000 64.5% 31.3% 14.8% 14.9% 11.7%

Interval 
Length

Epoch 
Length
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Workload Mixes

Mix No. Benchmark 1 Benchmark 2 Benchmark 3

1 sphinx3 leslie3d milc

2 sjeng gcc perlbench

3 tonto povray wrf

4 perlbench gcc povray

5 gcc povray leslie3d

6 perlbench namd lbm

7 h264ref bzip2 libquantum

8 hmmer lbm omnetpp

9 sjeng libquantum cactusADM

10 namd libquantum mcf

11 xalancbmk mcf astar

12 mcf libquantum leslie3d 102



STFM’s Effectiveness in Enforcing QoS

Predicted 
Met

Predicted
Not Met

QoS Bound 
Met

63.7% 16%

QoS Bound 
Not Met

2.4% 17.9%

Across 3000 data points
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STFM vs. MISE’s System Performance
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MISE’s Implementation Cost

1. Per-core counters worth 20 bytes
• Request Service Rate Shared
• Request Service Rate Alone

– 1 counter for number of high priority epoch requests
– 1 counter for number of high priority epoch cycles
– 1 counter for interference cycles

• Memory phase fraction (  )
2. Register for current bandwidth allocation – 4 

bytes
3. Logic for prioritizing an application in each epoch


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MISE Accuracy w/o Interference Cycles

• Average error – 23%
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MISE Average Error by Workload Category

Workload Category (Number of 
memory intensive applications)

Average Error

0 4.3%

1 8.9%

2 21.2%

3 18.4%
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Initial Ideas

• Separate slowdown into cache and memory 
slowdowns

• Determine resource allocations based on 
cache, memory and overall slowdowns
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QoS in Heterogeneous Systems

• Staged memory scheduling 
– In collaboration with Rachata

Ausavarungnirun, Kevin Chang and Gabriel Lob

– Goal: High performance in CPU-GPU systems

• Memory scheduling in heterogeneous systems
– In collaboration with Hiroukui Usui

– Goal: Meet deadlines for accelerators while 
improving performance
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