
Providing High and Predictable Performance
in Multicore Systems

Through Shared Resource Management

Lavanya Subramanian

1

Shared Resource Interference

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

2

High and Unpredictable
Application Slowdowns

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n

2. An application’s performance depends
on which application it is running with
1. High application slowdowns due to

shared resource interference
3

Outline

4

Goals:
1. High performance

2. Predictable performance

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Goals:
1. High performance

2. Predictable performance

Outline

5

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Background: Main Memory

• FR-FCFS Memory Scheduler [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]

– Row-buffer hit first

– Older request first

• Unaware of inter-application interference

Row
Buffer

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

Row
Buffer

Row
Buffer

R
o

w
s

Columns

Channel
Memory

Controller

Bank 0 Bank 1 Bank 2 Bank 3

Row
Buffer

6

Row-buffer hitRow-buffer miss

Tackling Inter-Application Interference:
Memory Request Scheduling

• Monitor application memory access
characteristics

• Rank applications based on memory access
characteristics

• Prioritize requests at the memory
controller, based on ranking

7

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

An Example:
Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010
8

Problems with Previous
Application-aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness

9

High Hardware Complexity

• Ranking incurs high hardware cost

– Rank computation incurs logic/storage cost

– Rank enforcement requires comparison logic

10

0

2

4

6

8

10

La
te

n
cy

 (
in

 n
s)

FRFCFS

TCM

0

20000

40000

60000

80000

A
re

a
(i

n
 s

q
u

ar
e

 u
m

)
FRFCFS

TCM8x

1.8x

Synthesized with a 32nm standard cell library

Avoid ranking to achieve low hardware cost

Ranking Causes
Unfair Application Slowdowns

• Lower-rank applications experience
significant slowdowns

– Low memory service causes slowdown

– Periodic rank shuffling not sufficient0

10

20

30

40

50

0 50 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

TCM

Grouping
0

20

40

60

80

100

0 50 100

N
u

m
b

e
r

o
f

R
e

q
u

e
st

s

Execution Time (in 1000s of Cycles)

TCM

Grouping

0

2

4

6

8

10

12

Sl
o

w
d

o
w

n

TCM

Grouping

0

2

4

6

8

10

Sl
o

w
d

o
w

n
TCM

Grouping

astar soplex

11

Grouping offers lower unfairness than ranking

Problems with Previous
Application-Aware Memory Schedulers

• Hardware Complexity

– Ranking incurs high hardware cost

• Unfair slowdowns of some applications

– Ranking causes unfairness

Our Goal: Design a memory scheduler with
Low Complexity, High Performance, and Fairness

12

Towards a New Scheduler Design

• Monitor applications that have a number of
consecutive requests served

• Blacklist such applications

1. Simple Grouping Mechanism

2. Enforcing Priorities Based On Grouping

• Prioritize requests of non-blacklisted applications

• Periodically clear blacklists

13

Methodology

• Configuration of our simulated system
– 24 cores

– 4 channels, 8 banks/channel

– DDR3 1066 DRAM

– 512 KB private cache/core

• Workloads
– SPEC CPU2006, TPCC, Matlab

– 80 multi programmed workloads

14

Metrics

• System Performance:

• Fairness:


i

alone

i

shared

i

IPC

IPC
Speedup Weighted

IPC

IPC
shared

i

alone

imaxSlowdown Maximum 

15





i
shared

i

alone

i

IPC

IPC

N
Speedup Harmonic

0

2

4

6

8

10

0 0.5 1

Sl
o

w
d

o
w

n

Speedup

Previous Memory Schedulers

• FR-FCFS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

– Prioritizes row-buffer hits and older requests

– Application-unaware

• PARBS [Mutlu and Moscibroda, ISCA 2008]

– Batches oldest requests from each application; prioritizes batch

– Employs ranking within a batch

• ATLAS [Kim et al., HPCA 2010]

– Prioritizes applications with low memory-intensity

• TCM [Kim et al., MICRO 2010]

– Always prioritizes low memory-intensity applications

– Shuffles request priorities of high memory-intensity applications
16

Performance Results

0

2

4

6

8

10

W
e

ig
h

te
d

 S
p

e
e

d
u

p FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

5

10

15

M
ax

im
u

m
 S

lo
w

d
o

w
n

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

5% higher system performance and 25%
lower maximum slowdown than TCM

17

Approaches fairness of PARBS and
FRFCFS-Cap achieving better

performance than TCM

Complexity Results

Blacklisting achieves
70% lower latency than TCM

18

Blacklisting achieves
43% lower area than TCM

0

2

4

6

8

10

12

La
te

n
cy

 (
in

 n
s)

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

20000

40000

60000

80000

100000

120000

A
re

a
(i

n
 s

q
u

ar
e

u
m

) FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

Outline

19

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Need for Predictable Performance

• There is a need for predictable performance
– When multiple applications share resources
– Especially if some applications require performance

guarantees

• Example 1: In server systems
– Different users’ jobs consolidated onto the same server
– Need to provide bounded slowdowns to critical jobs

• Example 2: In mobile systems
– Interactive applications run with non-interactive applications
– Need to guarantee performance for interactive applications

As a first step: Predictable performance
in the presence of memory interference

20

Outline

21

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

22

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

23

Slowdown: Definition

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown 

24

Key Observation 1

For a memory bound application,
Performance  Memory request service rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

Shared

Alone

 Rate ServiceRequest

 Rate ServiceRequest
Slowdown

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown 

Easy

Difficult

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

25

Key Observation 2

Request Service Rate Alone (RSRAlone) of an
application can be estimated by giving the

application highest priority in accessing
memory

Highest priority  Little interference

(almost as if the application were run alone)

26

Key Observation 2

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State

Main
Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State

Main
Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

27

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest

)(RSR Rate ServiceRequest
Slowdown

SharedShared

AloneAlone


28

Key Observation 3

• Memory-bound application

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req

29

Key Observation 3

• Non-memory-bound application

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

1



1

Shared

Alone

RSR

RSR


Shared

Alone

RSR

RSR
) - (1 Slowdown  

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

30

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

31

MISE Operation: Putting it All Together

time

Interval



Estimate

slowdown

Interval

Estimate

slowdown

 Measure RSRShared,

 Estimate RSRAlone

 Measure RSRShared,

 Estimate RSRAlone

32

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

33

Previous Work on Slowdown
Estimation

• Previous work on slowdown estimation
– STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07]

– FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

• Basic Idea:

Shared

Alone

 Time Stall

 Time Stall
 Slowdown 

Difficult

Easy

Count number of cycles application receives interference
34

Two Major Advantages of MISE Over STFM

• Advantage 1:
– STFM estimates alone performance while an

application is receiving interference  Difficult

– MISE estimates alone performance while giving an
application the highest priority Easier

• Advantage 2:
– STFM does not take into account compute phase for

non-memory-bound applications

– MISE accounts for compute phase  Better accuracy

35

Methodology

• Configuration of our simulated system
– 4 cores

– 1 channel, 8 banks/channel

– DDR3 1066 DRAM

– 512 KB private cache/core

• Workloads
– SPEC CPU2006

– 300 multi programmed workloads

36

Quantitative Comparison

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

SPEC CPU 2006 application
leslie3d

37

Comparison to STFM

cactusADM

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

GemsFDTD

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

soplex

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

wrf

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

calculix

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

38

Predictability in the Presence of
Memory Interference

1. Estimate Slowdown

–Key Observations

–MISE Operation: Putting it All Together

–Evaluating the Model

2. Control Slowdown

–Providing Soft Slowdown Guarantees

–Minimizing Maximum Slowdown

39

MISE-QoS: Providing
“Soft” Slowdown Guarantees

• Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

• Basic Idea

– Allocate just enough bandwidth to QoS-critical
application

– Assign remaining bandwidth to other applications

40

Outline

41

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

A Recap

• Problem: Shared resource interference causes
high and unpredictable application slowdowns

• Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Slowdown control mechanisms

• Future Work:

– Extending to shared caches

42

Shared Cache Interference

43

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Impact of Cache Capacity Contention

44

Cache capacity interference causes high
application slowdowns

Shared Main Memory Shared Main Memory and Caches

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

bzip2 (core 0) soplex (core 1)
S

lo
w

d
o

w
n

Backup Slides

45

Outline

46

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Outline

47

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Request Service vs. Memory Access

48

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Memory
Access Rate

Request
Service Rate

Request service and access rates tightly coupled

Estimating Cache and Memory Slowdowns
Through Cache Access Rates

49

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Shared

Alone

 Rate Access Cache

 Rate Access Cache
Slowdown

Cache Access Rate vs. Slowdown

50

1

1.1

1.2

1.3

1.4

1.5

1 1.2 1.4

Sl
o

w
d

o
w

n

Cache Access Rate Ratio

1

1.2

1.4

1.6

1.8

2

2.2

1 1.5 2 2.5

Sl
o

w
d

o
w

n
Cache Access Rate Ratio

bzip2 xalancbmk

Challenge

How to estimate alone cache access rate?

51

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache
Access Rate

Auxiliary
Tags

Priority

Outline

52

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Leveraging Slowdown Estimates
for Performance Optimization

• How do we leverage slowdown estimates to
achieve high performance by allocating

– Memory bandwidth?

– Cache capacity?

• Leverage other metrics along with slowdowns

– Memory intensity

– Cache miss rates

53

Coordinated Resource
Allocation Schemes

54

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Main
Memory

Shared
Cache

Cache capacity-aware
bandwidth allocation

Bandwidth-aware
cache capacity allocation

Outline

55

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Coordinated Resource Management
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

• Large search space of potential cache capacity
and memory bandwidth allocations

• Multiple possible combinations of
cache/memory allocations for each application

56

Outline

57

• Blacklisting memory scheduler • Predictability with memory
interference

Goals:
1. High performance

2. Predictable performance

• Coordinated cache/memory
management for performance

• Cache slowdown estimation
• Coordinated cache/memory
management for predictability

Timeline

58

Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May

Cache slowdown estimation (75% Goal)

Coordinated cache/memory management

for performance (100% Goal)

Coordinated cache/memory management

for predictability (125% Goal)

Writeup thesis and defend

20152014

Summary

• Problem: Shared resource interference causes
high and unpredictable application slowdowns

• Goals: High and predictable performance

• Our Approach:

– Simple mechanisms to mitigate interference

– Slowdown estimation models

– Coordinated cache/memory management

59

Thank You!

60

Backup Slides

61

Prior Work: Cache and Memory QoS

• Resource QoS (SIGMETRICS 2007, ICS 2009, TACO 2010)

• Bubble up (MICRO 2011)

• Cache capacity QoS (ASPLOS 2014)

62

• Provide QoS on resource allocations
• Complementary to our slowdown-based mechanisms

Prior Work: Memory Interference Mitigation

63

• Source throttling (ASPLOS 2010)

– Throttle interfering applications at the core

• Memory interleaving (MICRO 2011)

– Map data to banks to exploit parallelism and row
locality

Complementary to our proposals

Prior Work: Shared Cache Management

• Cache replacement policies (PACT 2008, ISCA 2010)

• Insertion policies (ACSAC 2007, MICRO 2011)

• Partitioning (ICS 2004, MICRO 2006, ASPLOS 2014)

64

• Focused on a single resource: shared cache
• Goal of these policies: Improve performance
Complementary to our slowdown-based mechanisms

Prior Work: DRAM Optimizations

65

Related Work

• Main memory interference mitigation

• Slowdown estimation

• Shared cache capacity management

• Cache and memory QoS

66

Main Memory Interference Mitigation

• Source throttling (Ebrahimi et al., ASPLOS 2010)

– Throttle interfering applications at the core

• Memory interleaving (Kaseridis et al., MICRO 2011)

– Map data to banks to exploit parallelism and row
locality

67

Blacklisting

68

Blacklisting Scheduler Mechanism

• At each channel,
– Count the number of consecutive requests served

from an application

• The counter is cleared
– when a request belongs to a different application than

the previous one is served

• When count equals N
– clear the counter

– blacklist the application

• Periodically clear blacklists

69

Complexity Results

70

0

2

4

6

8

10

12

La
te

n
cy

 (
in

 n
s)

FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

0

20000

40000

60000

80000

100000

120000

A
re

a
(i

n
 s

q
u

ar
e

u
m

) FRFCFS

FRFCFS-Cap

PARBS

ATLAS

TCM

Blacklisting

DDR3-800

DDR3-1333

DDR4-3200

Understanding Why Blacklisting Works

0

0.1

0.2

0.3

0.4

0 10 20

Fr
ac

ti
o

n
 o

f
R

e
q

u
e

st
s

Streak Length

FRFCFS

PARBS

TCM

Blacklisting 0

0.1

0.2

0.3

0.4

0.5

0 10 20

Fr
ac

ti
o

n
 o

f
R

e
q

u
e

st
s

Streak Length

FRFCFS

PARBS

TCM

Blacklisting

libquantum
(High memory-intensity

application)

Blacklisting shifts the request distribution
towards the left

calculix
(Low memory-intensity

application)

Blacklisting shifts the request distribution
towards the right

71

Effect of Workload Memory Intensity

72

Combining FRFCFS-Cap and Blacklisting

73

Sensitivity to Blacklisting Threshold

74

Sensitivity to Clearing Interval

75

Sensitivity to Core Count

76

Sensitivity to Channel Count

77

TCM vs. Grouping

78

Comparison with TCM-like Clustering

79

BLISS vs. Criticality-aware Scheduling

80

Sub-row Interleaving

81

MISE

82

Measuring RSRShared and α

• Request Service Rate Shared (RSRShared)
– Per-core counter to track number of requests serviced
– At the end of each interval, measure

• Memory Phase Fraction ()
– Count number of stall cycles at the core
– Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber
 RSRShared



83

Estimating Request Service Rate Alone

(RSRAlone)

• Divide each interval into shorter epochs

• At the beginning of each epoch
– Memory controller randomly picks an application as the

highest priority application

• At the end of an interval, for each
application, estimate

PriorityHigh Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone 

Goal: Estimate RSRAlone

How: Periodically give each application
highest priority in accessing memory

84

Inaccuracy in Estimating RSRAlone

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

• When an application has highest priority
– Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Time units Service order

Main
Memory

123

Interference Cycles

High Priority

Main
Memory

Time units Service order

Main
Memory

123

Request Buffer
State

85

Accounting for Interference in RSRAlone Estimation

• Solution: Determine and remove interference
cycles from RSRAlone calculation

• A cycle is an interference cycle if
– a request from the highest priority application is waiting

in the request buffer and

– another application’s request was issued previously

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone 

86

Other Results in the Paper

• Sensitivity to model parameters
– Robust across different values of model parameters

• Comparison of STFM and MISE models in
enforcing soft slowdown guarantees
– MISE significantly more effective in enforcing guarantees

• Minimizing maximum slowdown
– MISE improves fairness across several system configurations

87

Quantitative Comparison
SPEC CPU 2006 application

hmmer

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

88

MISE-QoS: Mechanism to Provide Soft QoS

• Assign an initial bandwidth allocation to QoS-
critical application

• Estimate slowdown of QoS-critical application
using the MISE model

• After every N intervals

– If slowdown > bound B +/- ε, increase bandwidth allocation

– If slowdown < bound B +/- ε, decrease bandwidth allocation

• When slowdown bound not met for N intervals

– Notify the OS so it can migrate/de-schedule jobs
89

A Look at One Workload

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

QoS-critical non-QoS-critical

MISE is effective in
1. meeting the slowdown bound for the QoS-critical

application
2. improving performance of non-QoS-critical

applications

Slowdown Bound = 10
Slowdown Bound = 3.33

Slowdown Bound = 2

90

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

Higher performance when bound is looseWhen slowdown bound is 10/3
MISE-QoS improves system performance by 10%

91

Case Study with Two QoS-Critical Applications

• Two comparison points

– Always prioritize both applications

– Prioritize each application 50% of time

0

1

2

3

4

5

6

7

8

9

10

astar mcf leslie3d mcf

S
lo

w
d

o
w

n

AlwaysPrioritize

EqualBandwidth

MISE-QoS-10/1

MISE-QoS-10/2

MISE-QoS-10/3

MISE-QoS-10/4

MISE-QoS-10/5

MISE-QoS can achieve a lower slowdown bound
for both applications

MISE-QoS provides much lower slowdowns for
non-QoS-critical applications

92

Minimizing Maximum Slowdown

• Goal
– Minimize the maximum slowdown experienced by any

application

• Basic Idea
– Assign more memory bandwidth to the more slowed

down application

93

Mechanism

• Memory controller tracks
– Slowdown bound B

– Bandwidth allocation of all applications

• Different components of mechanism
– Bandwidth redistribution policy

– Modifying target bound

– Communicating target bound to OS periodically

94

Bandwidth Redistribution

• At the end of each interval,

– Group applications into two clusters

– Cluster 1: applications that meet bound

– Cluster 2: applications that don’t meet bound

– Steal small amount of bandwidth from each
application in cluster 1 and allocate to applications in
cluster 2

95

Modifying Target Bound

• If bound B is met for past N intervals
– Bound can be made more aggressive

– Set bound higher than the slowdown of most slowed down
application

• If bound B not met for past N intervals by more
than half the applications
– Bound should be more relaxed

– Set bound to slowdown of most slowed down application

96

Results: Harmonic Speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4 8 16

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Core Count

FRFCFS

ATLAS

TCM

STFM

MISE-Fair

97

Results: Maximum Slowdown

0

2

4

6

8

10

12

14

16

4 8 16

M
a

x
im

u
m

 S
lo

w
d

o
w

n

Core Count

FRFCFS

ATLAS

TCM

STFM

MISE-Fair

98

Sensitivity to Memory Intensity
(16 cores)

0

5

10

15

20

25

0 25 50 75 100 Avg

M
a

x
im

u
m

 S
lo

w
d

o
w

n

FRFCFS

ATLAS

TCM

STFM

MISE-Fair

99

MISE: Per-Application Error
Benchmark STFM MISE Benchmark STFM MISE

453.povray 56.3 0.1 473.astar 12.3 8.1

454.calculix 43.5 1.3 456.hmmer 17.9 8.1

400.perlbench 26.8 1.6 464.h264ref 13.7 8.3

447.dealII 37.5 2.4 401.bzip2 28.3 8.5

436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8

450.soplex 29.8 3.5 433.milc 26.4 9.5

444.namd 43.6 3.7 481.wrf 33.6 11.1

437.leslie3d 26.4 4.3 429.mcf 83.74 11.5

403.gcc 25.4 4.5 445.gobmk 23.1 12.5

462.libquantum 48.9 5.3 483.xalancbmk 18 13.6

459.GemsFDTD 21.6 5.5 435.gromacs 31.4 15.6

470.lbm 6.9 6.3 482.sphinx3 21 16.8

473.astar 12.3 8.1 471.omnetpp 26.2 17.5

456.hmmer 17.9 8.1 465.tonto 32.7 19.5 100

Sensitivity to Epoch and Interval
Lengths

1 mil. 5 mil. 10 mil. 25 mil. 50 mil.

1000 65.1% 9.1% 11.5% 10.7% 8.2%

10000 64.1% 8.1% 9.6% 8.6% 8.5%

100000 64.3% 11.2% 9.1% 8.9% 9%

1000000 64.5% 31.3% 14.8% 14.9% 11.7%

Interval
Length

Epoch
Length

101

Workload Mixes

Mix No. Benchmark 1 Benchmark 2 Benchmark 3

1 sphinx3 leslie3d milc

2 sjeng gcc perlbench

3 tonto povray wrf

4 perlbench gcc povray

5 gcc povray leslie3d

6 perlbench namd lbm

7 h264ref bzip2 libquantum

8 hmmer lbm omnetpp

9 sjeng libquantum cactusADM

10 namd libquantum mcf

11 xalancbmk mcf astar

12 mcf libquantum leslie3d 102

STFM’s Effectiveness in Enforcing QoS

Predicted
Met

Predicted
Not Met

QoS Bound
Met

63.7% 16%

QoS Bound
Not Met

2.4% 17.9%

Across 3000 data points

103

STFM vs. MISE’s System Performance

0.7

0.75

0.8

0.85

0.9

0.95

MISE STFM

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

QoS-10/1

QoS-10/3

QoS-10/5

QoS-10/7

QoS-10/9

104

MISE’s Implementation Cost

1. Per-core counters worth 20 bytes
• Request Service Rate Shared
• Request Service Rate Alone

– 1 counter for number of high priority epoch requests
– 1 counter for number of high priority epoch cycles
– 1 counter for interference cycles

• Memory phase fraction ()
2. Register for current bandwidth allocation – 4

bytes
3. Logic for prioritizing an application in each epoch



105

MISE Accuracy w/o Interference Cycles

• Average error – 23%

106

MISE Average Error by Workload Category

Workload Category (Number of
memory intensive applications)

Average Error

0 4.3%

1 8.9%

2 21.2%

3 18.4%

107

Initial Ideas

• Separate slowdown into cache and memory
slowdowns

• Determine resource allocations based on
cache, memory and overall slowdowns

108

QoS in Heterogeneous Systems

• Staged memory scheduling
– In collaboration with Rachata

Ausavarungnirun, Kevin Chang and Gabriel Lob

– Goal: High performance in CPU-GPU systems

• Memory scheduling in heterogeneous systems
– In collaboration with Hiroukui Usui

– Goal: Meet deadlines for accelerators while
improving performance

109

Publications

110

