Providing High and Predictable Performance
in Multicore Systems
Through Shared Resource Management
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High and Unpredictable
Application Slowdowns
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Background: Main Memory

Columns
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. F R' FC FS M e m O ry SC h e d U Ie r [Zuravleff and Robinson, US Patent ‘97; Rixner et al., ISCA ‘00]
— Row-buffer hit first
— Older request first

 Unaware of inter-application interference



Tackling Inter-Application Interference:
Memory Request Scheduling

* Monitor application memory access
characteristics

* Rank applications based on memory access
characteristics

* Prioritize requests at the memory
controller, based on ranking



An Example:
Thread Cluster Memory Scheduling
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Problems with Previous
Application-aware Memory Schedulers

 Hardware Complexity

— Ranking incurs high hardware cost

e Unfair slowdowns of some applications

— Ranking causes unfairness
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High Hardware Complexity

e Ranking incurs high hardware cost
— Rank computation incurs logic/storage cost
— Rank enforcement requires comparison logic

10 80000

A
8% .:

0o

60000

(@)

® FRFCFS

square um)

40000 -

Avoid ranking to achieve low hardware cost

Qb



Ranking Causes
Unfair Application Slowdowns

Grouping offers lower unfairness than ranking
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Problems with Previous
Application-Aware Memory Schedulers

Our Goal: Design a memory scheduler with

Low Complexity, High Performance, and Fairness

'\E.: 2




Towards a New Scheduler Design

 Monitor applications that have a number of
nsecutive requests serve :
1.c§|mpi’e éroﬂlpmg Mec(iwamsm

e Blacklist such applications

* Prioritize requests of non-blacklisted applications

2. Enforcing Priorities Based On Grouping
* Periodically clear blacklists



Methodology

* Configuration of our simulated system

— 24 cores
— 4 channels, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006, TPCC, Matlab
— 80 multi programmed workloads
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Metrics

* System Performance:
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Previous Memory Schedulers

F R‘FC FS [Zuravleff and Robinson, US Patent 1997, Rixner et al., ISCA 2000]

— Prioritizes row-buffer hits and older requests
— Application-unaware

PARBS [Mutlu and Moscibroda, ISCA 2008]

— Batches oldest requests from each application; prioritizes batch
— Employs ranking within a batch

ATI_AS [Kim et al., HPCA 2010]

— Prioritizes applications with low memory-intensity

TCM [Kim et al., MICRO 2010]

— Always prioritizes low memory-intensity applications
— Shuffles request priorities of high memory-intensity applications
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Complexity Results

120000
WFRFCFS = 100000 ® FRFCFS
W FRFCFS-Cap 3 80000 m FRFCFS-Cap
M PARBS S B PARBS
S 60000
W ATLAS c M ATLAS
= TCM © 40000 — mTCM
Blacklisting < 20000 Blacklisting
0

Blacklisting achieves
43% lower area than TCM







Need for Predictable Performance

As a first step: Predictable performance
in the presence of memory interference
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Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown



Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Key Observations

2. Control Slowdown



Slowdown: Definition

Performance aione

Slowdown =
Performance shared



Key Observation 1

For a memory bound application,
Performance o«c Memory request service rate
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Key Observation 2

Request Service Rate ,; .. (RSR,,.) Of an
application can be estimated by giving the
application highest priority in accessing
memory

Highest priority = Little interference
(almost as if the application were run alone)
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Key Observation 2

1. Run alone
Request Buffer State

Main
Memory

2. Run with another application
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Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

Slowdown = Request Service Rate aione (RSRAI0ne)

Request Service Rate shared (RSRshared)



Key Observation 3

. . C Ph
* Memory-bound application Bl  Compute Phese

- Memory Phase
ot 0 100
interference > time

. 000 ]
interference

—>time

Memory phase slowdown dominates overall slowdown

¢



Key Observation 3

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

RS RAIone
RS RShared

Slowdown=(1-a) + o



Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—MISE Operation: Putting it All Together

2. Control Slowdown



MISE Operation: Putting it All Together
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Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

—Evaluating the Model
2. Control Slowdown



Previous Work on Slowdown

Estimation

* Previous work on slowdown estimation

<STFM (Stall Time Fair Memory) Scheduling [Mutlu et al., MICRO ‘07] —
— FST (Fairness via Source Throttling) [Ebrahimi et al., ASPLOS ‘10]

e Basic ldea: Difficult

Slowdown @ TIME Alone )

Stall Time snared

~ Easy

Count number of cycles application receives interference
Qs




Two Major Advantages of MISE Over STFM

 Advantage 1:

— STFM estimates alone performance while an
application is receiving interference = Difficult

— MISE estimates alone performance while giving an
application the highest priority = Easier

* Advantage 2:

— STFM does not take into account compute phase for
non-memory-bound applications

— MISE accounts for compute phase = Better accuracy



Methodology

* Configuration of our simulated system

— 4 cores
— 1 channel, 8 banks/channel

— DDR3 1066 DRAM
— 512 KB private cache/core

e Workloads

— SPEC CPU2006
— 300 multi programmed workloads



Quantitative Comparison
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Comparison to STFM

Average error of MISE: 8.2%
Avera ' 0

N/

(across 300 workloads)

AN




Predictability in the Presence of

Memory Interference
1. Estimate Slowdown

2. Control Slowdown

—Providing Soft Slowdown Guarantees



MISE-QoS: Providing

“Soft” Slowdown Guarantees
e Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

 Basic ldea

— Allocate just enough bandwidth to QoS-critical
application

— Assign remaining bandwidth to other applications

@
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A Recap

* Problem: Shared resource interference causes
high and unpredictable application slowdowns
* Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Slowdown control mechanisms

e Future Work:

— Extending to shared caches

Q>



Core

Core

Core

Core

Shared Cache Interference

Core H
Core
Core
Core

Core

Core

Core

Core



Slowdown

Impact of Cache Capacity Contention

Shared Main Memory Shared Main Memory and Caches
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Request Service vs. Memory Access

Memory
Core Core Core Access Rate
. . Shared
Cache
Core Core Core Core
Service Rate

Request service and access rates tightly coupled
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Estimating Cache and Memory Slowdowns
Through Cache Access Rates

coe | [ e | [ | ncces

Core | | Core | | Core |} Core § » . oec Rate

shared (521 main
<:| Memory

Cache
Core Core Core Core

Cache Access Rate alone
Slowdown=

Cache Access Rate shared




Slowdown

Cache Access Rate vs. Slowdown
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Challenge

How to estimate alone cache access rate?

. Cache

Core Core Core Access Rate
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Leveraging Slowdown Estimates
for Performance Optimization

* How do we leverage slowdown estimates to
achieve high performance by allocating

— Memory bandwidth?
— Cache capacity?
* Leverage other metrics along with slowdowns

— Memory intensity
— Cache miss rates
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Coordinated Resource Management
Schemes for Predictable Performance

Goal: Cache capacity and memory bandwidth
allocation for an application to meet a bound

Challenges:

e Large search space of potential cache capacity
and memory bandwidth allocations

* Multiple possible combinations of
cache/memory allocations for each application




Outline

Goals:
1. High performance
2. Predictable performance

* Blacklisting memory scheduler * Predictability with memory
interference

 Coordinated cache/memory * Cache slowdown estimation

management for performance  Coordinated cache/memory

management for predictability



Timeline

2014

2015

Cache slowdown estimation (75% Goal)

Coordinated cache/memory management
for performance (100% Goal)

Apr.

May [Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

Jan.

Feb.

Mar.

Apr.

May

Coordinated cache/memory management
for predictability (125% Goal)

Writeup thesis and defend
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Summary

 Problem: Shared resource interference causes
high and unpredictable application slowdowns

* Goals: High and predictable performance

* Our Approach:
— Simple mechanisms to mitigate interference
— Slowdown estimation models
— Coordinated cache/memory management

@
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Prior Work: Cache and Memory QoS

* Resource QOS (SIGMETRICS 2007, ICS 2009, TACO 2010)
* Bubble up (MICRO 2011)
e Cache capacity QoS (ASPLOS 2014)

* Provide QoS on resource allocations
 Complementary to our slowdown-based mechanisms




Prior Work: Memory Interference Mitigation

* Source throttling (ASPLOS 2010)

— Throttle interfering applications at the core

* Memory interleaving (MICRO 2011)

— Map data to banks to exploit parallelism and row
locality

Complementary to our proposals




Prior Work: Shared Cache Management

e Cache replacement policies (PACT 2008, ISCA 2010)
* |nsertion policies (ACSAC 2007, MICRO 2011)
* Partitioning (ICS 2004, MICRO 2006, ASPLOS 2014)

* Focused on a single resource: shared cache
* Goal of these policies: Improve performance




Prior Work: DRAM Optimizations



Related Work

Main memory interference mitigation
Slowdown estimation
Shared cache capacity management

Cache and memory QoS



Main Memory Interference Mitigation

* Source throttling (Ebrahimi et al., ASPLOS 2010)

— Throttle interfering applications at the core

e Memory interleaving (Kaseridis et al., MICRO 2011)

— Map data to banks to exploit parallelism and row
locality
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Blacklisting Scheduler Mechanism

At each channel,

— Count the number of consecutive requests served
from an application

The counter is cleared

— when a request belongs to a different application than
the previous one is served

When count equals N
— clear the counter
— blacklist the application

Periodically clear blacklists
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Fraction of Requests

Understanding Why Blacklisting Works
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Blacklisting shifts the request distribution
towards the right
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Weighted Speedup
(Normalized)

Effect of Workload Memory Intensity
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Weighted Speedup

(Normalized)

Combining FRFCFS-Cap and Blacklisting
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Weighted Speedup
(Normalized)

Sensitivity to Blacklisting Threshold
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Weighted Speedup
(Normalized)

Sensitivity to Clearing Interval
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Weighted Speedup
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Weighted Speedup
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Weighted Speedup

(Normalized)

1.2

115 |
1.1 |
1.05 |
0.95 |

0.85 |

0.8

TCM vs. Grouping

TCM
Grouping C—1

Maximum Slowdown

(Normalized)

1.1

1.05 |

0.95 ¢
0.9 |
0.85

0.8

TCM
Grouping 1




Weighted Speedup

(Normalized)

Comparison with TCM-like Clustering
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Weighted Speedup

(Normalized)

BLISS vs. Criticality-aware Scheduling
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Sub-row Interleaving
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Measuring RSR, ...y and o

* Request Service Rate ¢, _..4 (RSR¢; . eq)
— Per-core counter to track number of requests serviced
— At the end of each interval, measure

Number of Requests Serviced
Interval Length

RS RShared —

* Memory Phase Fraction (&)
— Count number of stall cycles at the core
— Compute fraction of cycles stalled for memory



Estimating Request Service Rate , ..
(RSRAIone)

* Divide each interval into shorter epochs

Goa|: Estimate RSR,, .
* At the beginning of each epocﬁ

H Qe &1 ESRELNE N BOKS, SRS LR RBIGREICR the
gE&sesioaty@ppligatibaccessing memory

At the end of an interval, for each
application, estimate




Inaccuracy in Estimating RSR, ...

teqMbheman application has highestqrio Ml High priority

State. . . 3 2 1
—ag%lmehenaﬁs somelinterférence Main
Memory - Memory
Request Buffer Time{units Service order
State 3 2 1
Main Main
- Memory - - Memory
Request Buffer Time{units Service order
State 3 2 1
Main Main
- Memory - - Memory
Time{units Service order
3 2 1

Main
| ooy

Interference Cycles




Accounting for Interference in RSR Estimation

Alone

e Solution: Determine and remove interference

cycles from RSR,,,,.. calculation

Number of Requests During High Priority Epochs

RSRAlone =
"~ Number of Cycles Applicatio n Given High Priority <Interference Cycles>

* Acycleis an interference cycle if

— a request from the highest priority application is waiting
in the request buffer and

— another application’s request was issued previously
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Other Results in the Paper

e Sensitivity to model parameters

— Robust across different values of model parameters

e Comparison of STFM and MISE models in
enforcing soft slowdown guarantees

— MISE significantly more effective in enforcing guarantees

* Minimizing maximum slowdown

— MISE improves fairness across several system configurations



Slowdown
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MISE-Qo0S: Mechanism to Provide Soft QoS

Assign an initial bandwidth allocation to QoS-
critical application

Estimate slowdown of QoS-critical application
using the MISE model

After every N intervals

— |f slowdown > bound B +/- €, increase bandwidth allocation
— |f slowdown < bound B +/- €, decrease bandwidth allocation
When slowdown bound not met for N intervals

— Notify the OS so it can migrate/de-schedule jobs
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A Look at One Workload

g % 195,

MISE is effectlve in Y

1. meeting the slowdown bound for the QoS-critical
application

2. improving performance of non-QoS-critical
applications

< hmmer Ibm omnetpp >

QoS-critical non-QoS-critical
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Performance of Non-QoS-Critical Applications

1.4
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When slowdown bound is 10/3
MISE-QoS improves system performance by 10%
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Slowdown

Case Study with Two QoS-Critical Applications
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MISE-QoS provides much lower slowdowns for
non-QoS-critical applications




Minimizing Maximum Slowdown

e Goal

— Minimize the maximum slowdown experienced by any
application

e Basic ldea

— Assign more memory bandwidth to the more slowed
down application



Mechanism

* Memory controller tracks

— Slowdown bound B
— Bandwidth allocation of all applications

* Different components of mechanism
— Bandwidth redistribution policy
— Modifying target bound
— Communicating target bound to OS periodically



Bandwidth Redistribution

At the end of each interval,

— Group applications into two clusters
— Cluster 1: applications that meet bound
— Cluster 2: applications that don’t meet bound

— Steal small amount of bandwidth from each
application in cluster 1 and allocate to applications in
cluster 2



Modifying Target Bound

* |f bound B is met for past N intervals

— Bound can be made more aggressive

— Set bound higher than the slowdown of most slowed down
application

* |f bound B not met for past N intervals by more
than half the applications

— Bound should be more relaxed
— Set bound to slowdown of most slowed down application



Results: Harmonic Speedup
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Results: Maximum Slowdown
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MISE: Per-Application Error

Benchmark STFM MISE Benchmark STFM MISE
453.povray 56.3 0.1 473.astar 12.3 8.1
454 calculix 43.5 1.3 456.hmmer 17.9 8.1
400.perlbench 26.8 1.6 464.h264ref 13.7 8.3
447 .dealll 37.5 2.4 401.bzip2 28.3 8.5
436.cactusADM 18.4 2.6 458.sjeng 21.3 8.8
450.soplex 29.8 3.5 433.milc 26.4 9.5
444 .namd 43.6 3.7 481.wrf 33.6 11.1
437 .leslie3d 26.4 4.3 429.mcf 83.74 11.5
403.gcc 25.4 4.5 445.gobmk 23.1 12.5
462.libquantum 48.9 5.3 483.xalancbmk 18 13.6
459.GemsFDTD 21.6 5.5 435.gromacs 314 15.6
470.lbm 6.9 6.3 482.sphinx3 21 16.8
473.astar 12.3 8.1 471.omnetpp 26.2 17.5
456.hmmer 17.9 8.1 465.tonto 32.7 19.5
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Epoch
Length

Sensitivity to Epoch and Interval
Lengths

Interval
Length
1 mil. 5 mil. 10 mil. 25 mil. 50 mil.
1000 65.1% 9.1% 11.5% 10.7% 8.2%
10000 64.1% 8.1% 9.6% 8.6% 8.5%
100000 64.3% 11.2% | 9.1% 8.9% 9%
1000000 64.5% 31.3% | 14.8% 14.9% 11.7%
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Workload Mixes

Mix No. Benchmark 1 Benchmark 2 Benchmark 3
1 sphinx3 leslie3d milc
2 sjeng gcc perlbench
3 tonto povray wrf
4 perlbench gcc povray
5 gcc povray leslie3d
6 perlbench namd lom
7 h264ref bzip2 libguantum
8 hmmer lbm omnetpp
9 sjeng libguantum cactusADM
10 namd libguantum mcf
11 xalancbmk mcf astar
12 mcf libguantum leslie3d




STFM'’s Effectiveness in Enforcing QoS

Across 3000 data points

Predicted Predicted
V" [} Not Met

QoS Bound

Met

QoS Bound
Not Met
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STFM vs. MISE’s System Performance
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MISE’s Implementation Cost

1. Per-core counters worth 20 bytes
Request Service Rate Shared

 Request Service Rate Alone
— 1 counter for number of high priority epoch requests
— 1 counter for number of high priority epoch cycles
— 1 counter for interference cycles

 Memory phase fraction (@)

2. Register for current bandwidth allocation — 4
bytes

3. Logic for prioritizing an application in each epoch




MISE Accuracy w/o Interference Cycles

* Average error—23%



MISE Average Error by Workload Category

Workload Category (Number of Average Error
memory intensive applications)

0 4.3%

1 8.9%

2 21.2%

3 18.4%




Initial Ideas

* Separate slowdown into cache and memory
slowdowns

e Determine resource allocations based on
cache, memory and overall slowdowns



QoS in Heterogeneous Systems

e Staged memory scheduling

— In collaboration with Rachata
Ausavarungnirun, Kevin Chang and Gabriel Lob

— Goal: High performance in CPU-GPU systems

* Memory scheduling in heterogeneous systems
— In collaboration with Hiroukui Usui

— Goal: Meet deadlines for accelerators while
improving performance
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