
CMU 18-447 Introduction to Computer Architecture, Spring 2013

HW 2 Solutions: ISA Tradeoffs

Instructor: Prof. Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

1 LC-3b Microcode [80 points]

In
s
t
r
u
c
t
io

n

s
t
a
t
e

IR
D

C
o
n
d

J L
D

.M
A
R

L
D

.M
D

R

L
D

.I
R

L
D

.B
E
N

L
D

.R
E
G

L
D

.C
C

L
D

.P
C

G
a
t
e
P
C

G
a
t
e
M

D
R

G
a
t
e
A
L
U

G
a
t
e
M

A
R
M

U
X

G
a
t
e
S
H
F

P
C
M

U
X

D
R
M

U
X

S
R
1
M

U
X

A
D

D
R
1
M

U
X

A
D

D
R
2
M

U
X

M
A
R
M

U
X

A
L
U
K

M
IO

.E
N

R
.W

D
A
T
A
.S

IZ
E

L
S
H
F
1

size 1 2 6 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 1

BR 0 0 2 10010 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 0 X X X

ADD 1 0 0 10010 0 0 0 0 1 1 0 0 0 1 0 0 X 0 1 X X X 0 0 X X X

LDB 2 0 0 11101 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 0

STB 3 0 0 11000 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 0

JSR 4 0 3 10100 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 0 X X X

AND 5 0 0 10010 0 0 0 0 1 1 0 0 0 1 0 0 X 0 1 X X X 1 0 X X X

LDW 6 0 0 11001 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 1

STW 7 0 0 10111 1 0 0 0 0 0 0 0 0 0 1 0 X X 1 1 1 1 X 0 X X 1

RTI 8 X

XOR 9 0 0 10010 0 0 0 0 1 1 0 0 0 1 0 0 X 0 1 X X X 2 0 X X X

RES1 10 X

RES2 11 X

JMP 12 0 0 10010 0 0 0 0 0 0 1 0 0 0 0 0 2 X 1 1 0 X X 0 X X X

JMP 12 0 0 10010 0 0 0 0 0 0 1 0 0 1 0 0 1 X 1 X X X 3 0 X X X

SHF 13 0 0 10010 0 0 0 0 1 1 0 0 0 0 0 1 X 0 1 X X X X 0 X X X

LEA 14 0 0 10010 0 0 0 0 1 0 0 0 0 0 1 0 X X X 0 2 1 X 0 X X 1

TRAP 15 0 0 11100 1 0 0 0 0 0 0 0 0 0 1 0 X X X X X 0 X 0 X X X

STW 16 0 1 10000 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 1 1 X

STB 17 0 1 10001 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 1 0 X

ALL 18 0 0 100001 1 0 0 0 0 0 1 1 0 0 0 0 0 X X X X X X 0 X X X

ALL 18 0 0 100001 1 0 0 0 0 0 1 0 0 0 1 0 X X X 0 0 1 X 0 X X X

ALL 19 0 0 100001 1 0 0 0 0 0 1 1 0 0 0 0 0 X X X X X X 0 X X X

ALL 19 0 0 100001 1 0 0 0 0 0 1 0 0 0 1 0 X X X 0 0 1 X 0 X X X

JSR 20 0 0 10010 0 0 0 0 1 0 1 1 0 0 0 0 2 1 1 1 0 X X 0 X X X

JSR 20 0 0 10010 0 0 0 0 1 0 1 1 0 0 0 0 2 1 1 1 1 X X 0 X X X

JSR 21 0 0 10010 0 0 0 0 1 0 1 1 0 0 0 0 2 1 X 0 3 X X 0 X X 1

BR 22 0 0 10010 0 0 0 0 0 0 1 0 0 0 0 0 2 X X 0 2 X X 0 X X 1

STW 23 0 0 10000 0 1 0 0 0 0 0 0 0 1 0 0 X X 0 X X X 3 0 X X X

STW 23 0 0 10000 0 1 0 0 0 0 0 0 0 0 1 0 X X 0 1 0 1 X 0 X X X

STB 24 0 0 10001 0 1 0 0 0 0 0 0 0 1 0 0 X X 0 X X X 3 0 X X X

STB 24 0 0 10001 0 1 0 0 0 0 0 0 0 0 1 0 X X 0 1 0 1 X 0 X X X

LDW 25 0 1 11001 0 1 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 0 X X

FREE 26 X

LDW 27 0 0 10010 0 0 0 0 1 1 0 0 1 0 0 0 X 0 X X X X X 0 X 1 X

TRAP 28 0 1 11100 0 1 0 0 1 0 0 1 0 0 0 0 X 1 X X X X X 1 0 X X

LDB 29 0 1 11101 0 1 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 0 X X

TRAP 30 0 0 10010 0 0 0 0 0 0 1 0 1 0 0 0 1 X X X X X X 0 X 1 X

LDB 31 0 0 10010 0 0 0 0 1 1 0 0 1 0 0 0 X 0 X X X X X 0 X 0 X

ALL 32 1 X X 0 0 0 1 0 0 0 0 0 0 0 0 X X X X X X X 0 X X X

ALL 33 0 1 100001 0 1 0 0 0 0 0 0 0 0 0 0 X X X X X X X 1 0 X X

FREE 34 X

ALL 35 0 0 100000 0 0 1 0 0 0 0 0 1 0 0 0 X X X X X X X 0 X 1 X

1/8

2 Data Reuse in Different ISAs [30 points]

(a) Assembly code sequences for code segments A and B for machines X and Y

Code Segment A
Machine X

ADD A, A, 1

ADD B, B, 2

ADD C, C, 3

ADD D, D, 4

Machine Y

LD R1, A

ADD R1, R1, 1

ST R1, A

LD R2, B

ADD R2, R2, 2

ST R2, B

LD R3, C

ADD R3, R3, 3

ST R3, C

LD R4, D

ADD R4, R4, 4

ST R4, D

Code Segment B
Machine X

ADD B, B, A

ADD C, B, A

SUB A, B, C

SUB D, A, C

Machine Y

LD R1, A

LD R2, B

ADD R3, R1, R2

ADD R4, R3, R1

SUB R5, R3, R4

SUB R6, R5, R4

ST R3, B

ST R4, C

ST R5, A

ST R6, D

(b) Total number of bytes transferred

Code Segment A Code Segment B

Machine X 60 76
Machine Y 80 64

2/8

(c) (i) No. For code segment A, machine X has lower number of total bytes transferred. For code segment
B, machine Y has lower number of total bytes transferred.

(ii) Code segment A has no data reuse. It just adds an immediate value to A, B and C each, and does
not reuse the values of A, B or C. A memory-memory machine needs just three instructions to express
code segment A. Each instruction fetches a memory location, adds an immediate value to it and stores
it back. On the other hand, a load-store machine incurs several instructions to load the values of A,
B and C into registers and store them back. This is unnecessary and merely increases the number of
instructions (and hence number of instruction bytes transferred) for code segment A, as there is no reuse
of data.

Code segment B reuses the values of A and B. In this case, a load-store machine loads A and B into
registers first and reuses the values stored in registers. On the other hand, a memory-memory machine
does repeated memory accesses to memory to fetch A and B every time they are used. Therefore, a load-
store machine reduces the number of data bytes transferred significantly, for code segment B, resulting
in a smaller number of total bytes transferred.

3 Addressing Modes [12 points]

(a) Auto increment

(b) Scale indexed

(c) Register indirect

(d) Memory indirect

4 Addressability [15 points]

(a) (i) 29 bits

(ii) 26 bits

(iii) 23 bits

(iv) 21 bits

(b) # load the two words

lw $8, 0($5)

lw $9, 0($7)

multiply the offset by 4 to get the shift amount

sll $4, $4, 2

sll $6, $6, 2

shift the loaded word to obtain the nibble at the desired offset

srlv $8, $8, $4

srlv $9, $9, $6

zero out the rest of the word to keep the nibble

andi $8, $8, 0xF

andi $9, $9, 0xF

add $2, $8, $9

5 Microarchitecture vs. ISA [20 points]

(a) The ISA level is the interface a machine exposes to the software. The microarchitecture is the actual
underlying implementation of the machine. Therefore, the microarchitecture and changes to the mi-
croarchitecture are transparent to the compiler/programmer (except in terms of performance), while
changes to the ISA affect the compiler/programmer.

The compiler does not need to know about the microarchitecture of the machine in order to compile the
program correctly.

3/8

(b) (i) ISA

(ii) Microarchitecture

(iii) ISA

(iv) ISA

(v) Microarchitecture

(vi) ISA

(vii) Microarchitecture

(viii) Microarchitecture

6 Single-Cycle Processor Datapath [30 points]

7 Pipelining [15 points]

(a) A non-pipelined machine

9 + 6 + 6 + 9 + 6 + 9 = 45 cycles

(b) A pipelined machine with scoreboarding and five adders and five multipliers without data forwarding

Cycles 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28

MUL R3, R1, R2 F|D|E|E|E|E|E|W|W

ADD R5, R4, R3 F|-|-|-|-|-|-|-|D |E |E |W |W

ADD R6, R4, R1 F |D |E |E |W |W

MUL R7, R8, R9 F |D |E |E |E |E |E |W |W

ADD R4, R3, R7 F |- |- |- |- |- |- |- |D |E |E |W |W

MUL R10, R5, R6 F |D |E |E |E |E |E |W |W

28 cycles (or 26 cycles with internal register file data forwarding)

4/8

(c) A pipelined machine with scoreboarding and five adders and five multipliers with data forwarding.

Cycles 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22

MUL R3, R1, R2 F|D|E|E|E|E|E|W|W

ADD R5, R4, R3 F|-|-|-|-|D|E|E|W |W

ADD R6, R4, R1 F|D|E|E |W |W

MUL R7, R8, R9 F|D|E |E |E |E |E |W |W

ADD R4, R3, R7 F|- |- |- |- |D |E |E |W |W

MUL R10, R5, R6 F |D |E |E |E |E |E |W |W

22 cycles

(d) A pipelined machine with scoreboarding and one adder and one multiplier without data forwarding

Cycles 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29

MUL R3, R1, R2 F|D|E|E|E|E|E|W|W

ADD R5, R4, R3 F|-|-|-|-|-|-|-|D |E |E |W |W

ADD R6, R4, R1 F |- |D |E |E |W |W

MUL R7, R8, R9 F |- |D |E |E |E |E |E |W |W

ADD R4, R3, R7 F |D |E |E |W |W

MUL R10, R5, R6 F |D |E |E |E |E |E |W |W

29 cycles (or 27 cycles with internal register file data forwarding)

(e) A pipelined machine with scoreboarding and one adder and one multiplier with data forwarding

Cycles 1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23

MUL R3, R1, R2 F|D|E|E|E|E|E|W|W

ADD R5, R4, R3 F|-|-|-|-|D|E|E|W |W

ADD R6, R4, R1 F|-|D|E |E |W |W

MUL R7, R8, R9 F|D |E |E |E |E |E |W |W

ADD R4, R3, R7 F |- |- |- |- |D |E |E |W |W

MUL R10, R5, R6 F |D |E |E |E |E |E |W |W

23 cycles

8 Fine Grain Multi-threading [40 points]

(a) The figure shows the solution

ALU File
Register

 File
Register

 File
Register

PC

PC

PC

.

.

.

Fetch Decode Execute Mem Writeback

Address

Instruction

Address

Data
Cache

Instruction
Cache

Data

.

.

.

Thread ID

Thread ID Thread ID

5/8

(b)

3

Why?

Since branches are resolved in the Execute stage, it is necessary that the Fetch stage does not fetch
for a thread until the thread’s previous instruction has passed Execute. Hence three threads are
needed to cover Fetch, Decode, Execute.

(c)

4

Why?

The designer must ensure that when an instruction is in Writeback, the next instruction in the same
thread has not reached Decode yet. Hence, at least 4 threads are needed.

(d) Is the number of threads required to eliminate branch-related stalls in Machine II the same as in Machine
I?

YES NO (Circle one)

If yes, why?

Branches are resolved at the third pipeline stage in both machines, and distance from fetch to branch
resolution determines the minimum number of threads to avoid branch stalls.

(e)

3 (if no flow dependence stalls occur)

(f) Does Machine II require the same minimum number of threads as Machine I to avoid the need for flow-
dependence stalls?

YES NO (Circle one)

how many threads are required?

12 (the Decode, Execute 1 – 8, Memory, and Writeback stages must all have instructions from
independent threads.)

6/8

(g)

12

(h)

The additional FGMT-related logic (MUXes and thread selection logic) could increase the critical
path length, which will reduce maximum frequency and thus performance.

9 Branch Prediction and Dual Path Execution [25 points]

(a) 5 instructions.

(b) Note that if you assumed the wrong number of instructions in Part (a), you will only be marked wrong
for this in Part (a). You can still get full credit on this and the following parts.

Correct path instructions = N
Incorrect path instructions = N(0.2)(1−A)5 = N(1−A)

Fetched instructions = Correct path instructions + Incorrect path instructions
= N + N(1−A)

= N(2−A)

(c)

Correct path instructions = N
Incorrect path instructions = N(0.2)5

Fetched instructions = Correct path instructions + Incorrect path instructions
= N + N(1− 0.8)5

= 2N

This solution assumes you have enough hardware in the frontend of the machine to fetch concurrently
from both paths. If you assumed that both paths are fetched from on alternate cycles, that high-level ap-
proach is also OK, although note that you would need additional branch taken and not taken information
to solve it completely.

7/8

(d)

Correct path instructions = N
Incorrect path instructions due to. . .

lack of confidence
= N(0.2)(1− C)5 = N(1− C)

incorrect high confidence estimate
= N(0.2)CM5 = NCM

Fetched instructions = Correct path instructions
+ Incorrect path instructions due to

lack of confidence
+ Incorrect path instructions due to

incorrect high confidence estimate
= N + N(1− C) + NCM

= N [2 + C(M − 1)]

Like above, if you assumed a different execution model for Part (c), you will not be penalized for using
it in this part.

10 Mysterious Instruction [40 points]

The instruction finds the position of the most significant set bit in SR1 and places this in DR.

Mathematically, this can be expressed as DR = blog2 SR1c

Note that this instruction is semantically the same as FINDFIRST in the VAX ISA.

Specifically, here is what happens in each state:

State 10: DR = 15

State 40: TEMP = SR1

if (SR1 is negative)

Go to State 18/19 (Fetch)

else

Go to State 50

State 50: DR = DR - 1

State 51: Left Shift TEMP

if (TEMP is negative)

Go to State 18/19 (Fetch)

else

Go to State 50

8/8

	LC-3b Microcode [80 points]
	Data Reuse in Different ISAs [30 points]
	Addressing Modes [12 points]
	Addressability [15 points]
	Microarchitecture vs. ISA [20 points]
	Single-Cycle Processor Datapath [30 points]
	Pipelining [15 points]
	Fine Grain Multi-threading [40 points]
	Branch Prediction and Dual Path Execution [25 points]
	Mysterious Instruction [40 points]

