CMU 18-447 INTRODUCTION TO COMPUTER ARCHITECTURE, SPRING 2013

: ISA TRADEOFFS

HW 2 SOLUTIONS

Instructor: Prof. Onur Mutlu
TAs: Justin Meza, Yoongu Kim, Jason Lin

1 LC-3b Microcode [80 points]

TAHST

HZIS'VIVd

MU

NH OIN

N1V

XNWHVIN

XNNzaadv

XNNTHAAVv

XNNTYS

XNWHd

XNWOd

dHS?3%D

XNINHVIN2IeD

nIvered

qaneep

odeled

od at

[olojeis]

DEY AT

NHd dT

arant

0

0

AW d1

0

HVIN'AT

0

1
1

0

0

0

0

0

0

0

10010
10010
11101

11000
10100
10010
11001
10111

10010

10010
10010

10010
10010

11100
10000
10001

100001
100001

100001
100001
10010
10010

10010
10010
10000
10000
10001
10001
11001

10010

11100
11101

10010

10010

100001

100000

puop

2

0

0

1

0

0

1

0

ayil

0

ELLEE)

10
11
12
12
13

14
15
16

17
18
18
19
19
20
20
21

22
23
23
24
24

26

28

30
31

32
33

34
35

uorjonIysuy

size

BR

ADD
LDB
STB
JSR

AND

LDW

STW
RTI

XOR

RES1

RES2
JMP

JMP
SHF

LEA

TRAP

STW

STB

ALL
ALL
ALL
ALL
JSR

JSR

JSR
BR

STW

STW

STB

STB

LDW

FREE

LDW

TRAP
LDB

TRAP
LDB
ALL
ALL

FREE
ALL

1/8

2 Data Reuse in Different ISAs [30 points]

(a) Assembly code sequences for code segments A and B for machines X and Y

Code Segment A
Machine X

ADD A,
ADD B,
ADD C,
ADD D,

-

O Qwe=
S wWw N e

Machine Y

LD R1, A
ADD R1, R1, 1
ST R1, A
LD R2, B
ADD R2, R2, 2
ST R2, B
LD R3, C
ADD R3, R3, 3
ST R3, C
LD R4, D
ADD R4, R4, 4
ST R4, D

Code Segment B
Machine X

ADD B,
ADD C,
SUB A,
SUB D,

= W W w
Q Q= =

-

Machine Y

LD R1, A

LD R2, B

ADD R3, R1, R2
ADD R4, R3, R1
SUB R5, R3, R4
SUB R6, R5, R4
ST R3,
ST R4,
ST R5,
ST R6,

o= QQw

(b) Total number of bytes transferred

] | Code Segment A | Code Segment B

Machine X || 60 76
Machine Y || 80 64

2/8

()

(i) No. For code segment A, machine X has lower number of total bytes transferred. For code segment
B, machine Y has lower number of total bytes transferred.

(ii) Code segment A has no data reuse. It just adds an immediate value to A, B and C each, and does
not reuse the values of A, B or C. A memory-memory machine needs just three instructions to express
code segment A. Fach instruction fetches a memory location, adds an immediate value to it and stores
it back. On the other hand, a load-store machine incurs several instructions to load the values of A,
B and C into registers and store them back. This is unnecessary and merely increases the number of
instructions (and hence number of instruction bytes transferred) for code segment A, as there is no reuse
of data.

Code segment B reuses the values of A and B. In this case, a load-store machine loads A and B into
registers first and reuses the values stored in registers. On the other hand, a memory-memory machine
does repeated memory accesses to memory to fetch A and B every time they are used. Therefore, a load-
store machine reduces the number of data bytes transferred significantly, for code segment B, resulting
in a smaller number of total bytes transferred.

Addressing Modes [12 points]

Auto increment
Scale indexed
Register indirect
Memory indirect

Addressability [15 points]
(i) 29 bits

(ii) 26 bits

(iii) 23 bits

(iv) 21 bits

load the two words

lu $8, 0($5)
lw $9, 0($7)

multiply the offset by 4 to get the shift amount
s1l $4, $4, 2
sll $6, $6, 2

shift the loaded word to obtain the nibble at the desired offset
srlv $8, $8, $4
srlv $9, $9, $6

zero out the rest of the word to keep the nibble
andi $8, $8, OxF
andi $9, $9, OxF

add $2, $8, $9
Microarchitecture vs. ISA [20 points]

The ISA level is the interface a machine exposes to the software. The microarchitecture is the actual
underlying implementation of the machine. Therefore, the microarchitecture and changes to the mi-
croarchitecture are transparent to the compiler/programmer (except in terms of performance), while
changes to the ISA affect the compiler/programmer.

The compiler does not need to know about the microarchitecture of the machine in order to compile the
program correctly.

3/8

(b)

(i

(ii
(iii
(iv

(v
(vi
(vii

)
)
)
)
)
)
)
)

(viii

ISA

Microarchitecture

ISA
ISA

Microarchitecture

ISA

Microarchitecture

Microarchitecture

6 Single-Cycle Processor Datapath [30 points]

7 Pipelining [15 points]

Instruction

Read
PC address
isJAL
Instruction
memory
[25:0]
[31:28] 00

! concatenate |

ALU - alu
result

Add
Read
register 1 Read
Read data 1
register 2
Registers
Write &
a1 register Read »
: data 2
Write
data
isJAL
isltype % -
\ Sign
v lextend

Read
Address data
Data
mem
Write oy
data

(a) A non-pipelined machine

9+6+6+ 9+ 6+ 9 =45 cycles

Z—\

A pipelined machine with scoreboarding and five adders and five multipliers without data forwarding

Cycles

MUL
ADD
ADD
MUL
ADD
MUL

R3,
R5,
R6,

R1, R2
R4, R3
R4, R1
R7, R8, R9
R4, R3, R7
R10, R5, R6

11213141516171819110111112|13]14[15/16117118]19120(21]22123|24|25|26|27|28

FIDIEIEIEIEIEIWIW

FI-l-I-1-1-1-1-ID |E |E |W |W
F ID |IE |IE |W

F ID |E
F |- |-

W

28 cycles (or 26 cycles with internal register file data forwarding)

4/8

|[E |IE |E |[E |W W

ID |[E |E W |W

FID IE |IE |E |E |E |W |W

(¢) A pipelined machine with scoreboarding and five adders and five multipliers with data forwarding.

Cycles
MUL R3,
ADD RS,
ADD R6,
MUL R7,
ADD R4,

R1, R2
R4, R3
R4, R1
R8, RO
R3, R7

MUL R10, R5, R6

22 cycles

11213141516171819110111112|13114[15/16117118]19120(21]22

FIDIEIEIEIEIEIWIW
Fl-I-1-1-IDIEIEIW
FIDIEIE
FIDIE
Fl-

W

W W

|E IE |E |E
|- 1-1-1ID

FID |[E |E |E |[E |E |W |W

W 1w
|E |E W |W

(d) A pipelined machine with scoreboarding and one adder and one multiplier without data forwarding

Cycles
MUL R3,
ADD R5,
ADD R6,
MUL R7,
ADD R4,

R1, R2
R4, R3
R4, R1
R8, RO
R3, R7

MUL R10, R5, R6

11213141516171819110111112113]14115|16117118119]120121|22]23]24|25(26127|28129

FIDIEIEIEIEIEIWIW
Fl-I-I-I-1-1-1-ID
F

[E |E W |W
|- ID |E |E
F |- ID I|E

(W |W
|[E |IE |E |E |W |W

F ID IE |E IW |W
FID |[E |[E IE |E |[E |W W

29 cycles (or 27 cycles with internal register file data forwarding)

(e) A pipelined machine with scoreboarding and one adder and one multiplier with data forwarding

Cycles
MUL R3,
ADD R5,
ADD RS6,
MUL R7,
ADD R4,

R1, R2
R4, R3
R4, R1
R8, RO
R3, R7

MUL R10, R5, R6

23 cycles

8 Fine Grain Multi-threading [40 points]
(a) The figure shows the solution

Thread ID

mme
[

Fetch

11213141516171819110111112|13|14[15]16]|17118]19|20]21]22]|23

FIDIE|IEIEIE|IE|W|W
Fl-1-1-I-IDIEIEIW
FI-IDIE

|W
|E W |W

FID |[E |IE |E |E |E IW |W

F

Decode

[] Register |7 |
File

Address

Instruction

Instruction
Cache

—] Register |—
File

[—

| Register |—
File

Thread ID Thread ID

Execute

5/8

ID |E |E W |W

FIDIEIE |E |E |E |W IW

Mem

— Address

Data

Data
Cache

Writeback

(d)

(f)

Why?

Since branches are resolved in the Execute stage, it is necessary that the Fetch stage does not fetch
for a thread until the thread’s previous instruction has passed Execute. Hence three threads are
needed to cover Fetch, Decode, Execute.

4

Why?
The designer must ensure that when an instruction is in Writeback, the next instruction in the same
thread has not reached Decode yet. Hence, at least 4 threads are needed.

Is the number of threads required to eliminate branch-related stalls in Machine II the same as in Machine
1?7

NO (Circle one)
If yes, why?

Branches are resolved at the third pipeline stage in both machines, and distance from fetch to branch
resolution determines the minimum number of threads to avoid branch stalls.

3 (if no flow dependence stalls occur)

Does Machine II require the same minimum number of threads as Machine I to avoid the need for flow-
dependence stalls?

YES (Circle one)

how many threads are required?

12 (the Decode, Execute 1 — 8, Memory, and Writeback stages must all have instructions from
independent threads.)

6/8

12

The additional FGMT-related logic (MUXes and thread selection logic) could increase the critical
path length, which will reduce maximum frequency and thus performance.

9 Branch Prediction and Dual Path Execution [25 points]

(a) 5 instructions.

(b) Note that if you assumed the wrong number of instructions in Part (a), you will only be marked wrong
for this in Part (a). You can still get full credit on this and the following parts.

Correct path instructions = N
Incorrect path instructions = N(0.2)(1 — A)5 = N(1 — A)
Fetched instructions = Correct path instructions + Incorrect path instructions
=N+ N(1-A4)
=|N(2-A)

Correct path instructions = N
Incorrect path instructions = N(0.2)5
(c) Fetched instructions = Correct path instructions + Incorrect path instructions
=N+ N(1-0.8)5

=[2n]

This solution assumes you have enough hardware in the frontend of the machine to fetch concurrently
from both paths. If you assumed that both paths are fetched from on alternate cycles, that high-level ap-
proach is also OK, although note that you would need additional branch taken and not taken information
to solve it completely.

7/8

Correct path instructions = N
Incorrect path instructions due to...
lack of confidence
=N(0.2)(1-C)5=N(1-0C)
incorrect high confidence estimate
= N(0.2)CM5=NCM
(d) Fetched instructions = Correct path instructions
+ Incorrect path instructions due to
lack of confidence
+ Incorrect path instructions due to
incorrect high confidence estimate
=N+N1-C)+NCM
=[N+ -1)]

Like above, if you assumed a different execution model for Part (c), you will not be penalized for using
it in this part.

10 Mysterious Instruction [40 points]

The instruction finds the position of the most significant set bit in SR1 and places this in DR.
Mathematically, this can be expressed as DR = |log, SR1|

Note that this instruction is semantically the same as FINDFIRST in the VAX ISA.

Specifically, here is what happens in each state:

State 10: DR = 15
State 40: TEMP = SR1
if (SR1 is negative)
Go to State 18/19 (Fetch)
else
Go to State 50
State 50: DR = DR - 1
State 51: Left Shift TEMP
if (TEMP is negative)
Go to State 18/19 (Fetch)
else
Go to State 50

8/8

	LC-3b Microcode [80 points]
	Data Reuse in Different ISAs [30 points]
	Addressing Modes [12 points]
	Addressability [15 points]
	Microarchitecture vs. ISA [20 points]
	Single-Cycle Processor Datapath [30 points]
	Pipelining [15 points]
	Fine Grain Multi-threading [40 points]
	Branch Prediction and Dual Path Execution [25 points]
	Mysterious Instruction [40 points]

