ARCHITECTURE HANDBOOK

ZOZEEED vAX 11/780 ARCHITECTURE HANDBOOK VOL. 1 1977-78

180 €2 011 £4/0% 99¥40 €3 YSN NI LLN™Hd

VAXI
780

ARCHITECTURE HANDBOOK

Copyright © 1977, by Digital Equipment Corporation

VAX, VMS, SBI, PDP, UNIBUS
are registered trademarks of
Digital Equipment Corporation

CONTENTS

CHAPTER1 SYSTEM OVERVIEW

1.1
1.2
1.3

INTRODUCTION ...t 1-1
VAX-11/780 HANDBOOK SET, 1-4
NOTATIONALCONVENTIONS 1-4

CHAPTER 2 VAX-11/780 INTRODUCTION

2.1 HARDWAREARCHITECTURE 2-1
2.2 THESYNCHRONOUS BACKPLANE INTERCONNECT 2-1
2.3 THEVAX-11/780 CENTRAL PROCESSING UNIT 2-3
2.4 NATIVEINSTRUCTIONSETc.vieiai... 2-3
2.5 COMPATIBILITY MODE INSTRUCTION SET 2-6
2.6 GENERALREGISTERS ANDSTACKS 2-6
27 CACHES ... i e e 2-7
271 MemoryCacheccciiiiivnennn. 2-7
2.7.2 InstructionBuffer0o.... 2-7
2.7.3 TranslationBufferc...... 2-7
2.8 HIGH PERFORMANCE FLOATING POINT
ACCELERATOR ... i et 2-8
29 THEMEMORY SUBSYSTEMttt 2-8
2.10 THEINPUT/QUTPUTSUBSYSTEMS 2-10
2.10.1 TheUNIBUS it 2-10
2.10.2 The MASSBUS(€S).......cvvviiiiiiaanannn, 2-11
2.11 THECONSOLESUBSYSTEM 2-12
2.12 RELIABILITY/AVAILABILITY/MAINTAINABILITY/
PROGRAM(RAMP). i 2-13
‘2.12.1 Hardware Architecture 2-13
2.12.2 Improved Packaging 2-14
2.12.3 Improved Diagnostic Aids 2-14
2.12.4 Software Architecture 2-15
CHAPTER 3 ARCHITECTURE
3.1 INTRODUCTION ...ttt i 3-1
3.2 MEMORY .. 3-1
3.3 GENERALREGISTERSciiiiiinnin.. 3-4
3.4 STACKS . i 3-5
3.5 PROCESSORSTATUSLONGWORD 3-8
CHAPTER 4 DATA REPRESENTATION
41 BYTE .. 4-2
42 WORD ... e 4-2
43 LONGWORD.ot ittt 4-2
44 QUADWORD. e 4-3
45 FLOATING i it 4-3
46 DOUBLEFLOATINGcciiiiiiiiniinnn. 4-4

4.7 VARIABLELENGTHBITFIELD....................u. 4-4

48 CHARACTERSTRINGcioiiiiiivninnn. 4-5
49 TRAILINGNUMERICSTRINGcoute. 4-5
4.10 LEADING SEPARATENUMERICSTRING 4-7
4,11 PACKEDDECIMALSTRINGccoivivnnnn.. 4-8
CHAPTER 5 INSTRUCTION FORMATS AND ADDRESSING
MODES
51 INTRODUCTION ...ttt it 5-1
5.2 GENERALREGISTERS ...ttt 5-1
5.3 INSTRUCTIONFORMATcciviiiiiniiinnnn. 5-2
5.3.1 Assembler Notation 5-2
5.3.2 Operation Code (opcode).................... 5-3
5.3.3 OperandTypesccovvviiiiiininnnnn, 5-4
5.3.4 Operand Specifier 5-5
5.4 ADDRESSINGMODESccoiviiviiiiann. 5-5
55 GENERALMODEADDRESSING 5-5
5.5.1 RegisterMode.............................. 5-5
5.5.2 Register DeferredMode 5-8
5.5.3 AutoincrementMode........................ 5-9
5.5.4 Autoincrement DeferredMode 5-11
5.5.5 AutodecrementMode 5-12
556 LiteralMode 5-13
5.5.7 DisplacementMode 5-16
5.5.8 Displacement DeferredMode 5-18
56 INDEXMODE 5-19
5.7 PROGRAM COUNTERADDRESSING 5-26
5.71 ImmediateMode 5-27
5.72 AbsoluteMode, 5-28
573 RelativeMode 5-30
5.7.4 Relative DeferredMode 5-31
58 BRANCHADDRESSING..........cooviiiiiinann... 5-32
CHAPTER 6 INTEGER AND FLOATING POINT INSTRUCTIONS
6.1 INSTRUCTIONSETOVERVIEW 6-1
6.2 FLOATING POINTINSTRUCTIONS 6-3
6.2.1 Introduction..................o, 6-3
6.2.2 ACCUraCYcoviiiiiiianinininnnnnn. 6-4
MOV, PUSHL, CLR, MNEG, MCOM
MOVZ, CVT, CMP, TST, ADD

INC, ADWC, ADAWI, SUB, DEC
SBWC, MUL, EMUL, EMOD, DIV
EDIV, BIT, BIS, BIC, XOR

ASH, ROTL, POLY

CHAPTER7 SPECIAL INSTRUCTIONS

7.1 MULTIPLE REGISTER INSTRUCTIONS 7-1
PUSHR, POPR

7.2
7.3
7.4
7.5
7.6

PROCESSOR STATUS LONGWORD MANIPULATION 7-4
MOVPSL, BISPSW, BICPSW

ADDRESS INSTRUCTIONSoiiiiinnnn 7-6
MOVA, PUSHA

INDEXINSTRUCTION. ... 7-7
INDEX

QUEUEINSTRUCTIONSccciiiiiinnn. 7-9
INSQUE, RMQUE

VARIABLE LENGTH BIT FIELD INSTRUCTIONS.. 7-15

EXT, INSV, CMP, FF

CHAPTER 8 CONTROL INSTRUCTIONS

8.1

8.2
8.3

8.4

BRANCH AND JUMP INSTRUCTIONS 8-1
B, BR, JMP, BB
BB, BB, BLB, ACB, ACB
AOBLSS, AOBLEQ, SOBGEQ, SOBGTR

CASEINSTRUCTIONSt 8-9
CASE

SUBROUTINEINSTRUCTIONS 8-14
BSB, JSB, RSB

PROCEDURE CALLINSTRUCTIONS 8-16

CALLG, CALLS, RET

CHAPTER9 CHARACTER STRING INSTRUCTIONS

9.1

9.2

CHARACTER STRING INSTRUCTIONS 9-1
MOVC, MOVTUC, CMPC, SCANC, SPANC
LOCC, SKP, MATCHC

CYCLIC REDUNDANCY CHECK INSTRUCTION 9-13
CRC

CHAPTER 10 DECIMAL STRING INSTRUCTIONS

10.1
10.2
10.3
10.4
10.5
10.6

DECIMALOVERFLOW., 10-2
ZERONUMBERS i 10-2
RESERVED GPERAND EXCEPTION................ 10-2
UNPREDICTABLERESULTS ...t 10-2
PACKED DECIMAL OPERATIONS 10-2
ZERO LENGTHDECIMALSTRINGS 10-2

MOVP, COMP, ADDP, SUBP, MULP
DiVP, CVTLP, CVTPL, CVTPT, CVTTP
CVTPS, CVTSP, ASHP

CHAPTER 11 EDIT INSTRUCTION

EDITPC, EO$INSERT, EO$STORE-SIGN, EO$FILL,
EO$MOVE, EO$FLOAT, EOSEND-FLOAT,
EO$BLANK-ZERO, EO$REPLACE-SIGN,
EO$LOAD, EO$SIGNIF, EO$ADJUST INPUT,
EOSEND

CHAPTER 12 EXCEPTIONS

12.1
12.2
12.3

12.4

12.5

12.6

12.7

12.8

INTRODUCTION ... iiiiiiiiiennnn, 12-1
PROCESSORSTATUS. ...t 12-2
ARITHMETICTRAPS it 12-4
12.3.1 Integer Overflow Trap 12-5
12.3.2 Integer Divide By ZeroTrap 12-5
12.3.3 FloatingOverflowTrap 12-5
12.3.4 Divide By Zero Trap — Floating or

DecimalString 12-5
12.3.5 FloatingUnderflowTrap.................... 12-6
12.3.6 Decimal String Overflow Trap 12-6
12.3.7 SubscriptRangeTrap...................... 12-6
EXCEPTIONS DETECTED DURING OPERAND
REFERENCE 12-6
12.4.1 Access Control ViolationFault 12-6
12.4.2 TranslationNotValidFault.................. 12-6
12.4.3 Reserved Addressing Mode Fault 12-6
12.4.4 Reserved Operand Exception 12-7
EXCEPTIONS OCCURRING AS THE CONSEQUENCE
OF ANINSTRUCTION ... 12-7
12.5.1 Opcode Reserved to DIGITAL Fault.......... 12-7
12.5.2 Opcode Reserved to Customers (and CSS)

Fault i 12-8
12.5.3 Compatibility Mode Exception 12-8
12.5.4 BreakpointFault 12-8
TRACING. ... e 12-8
12.6.1 Trace Instruction Summary 12-9
12.6.2 UsingTraceccvviiinnnnnnn.n. 12-10
SERIOUS SYSTEMFAILURES 12-11
12.7.1 Kernel Stack Not Valid Abort................ 12-11
12.7.2 Interrupt Stack Not ValidHalt 12-11
12.7.3 Machine Check Exception 12-11
STACKS ... e 12-11
12.8.1 Stack Residencyc..oiunn. 12-11
12.8.2 Stack Alignmentii 12-12
12.8.3 Stack StatusBits 12-12
RELATEDINSTRUCTIONScovvvnnn, 12-13

CHAPTER 13 PRIVILEGE INSTRUCTIONS

CHM, PROBE, XFC, MTPR, MFPR, LDPCTX,

SVPCTX
APPENDIX A DATA TABLES
INTRODUCTION ... e A-1
HEXADECIMAL TO DECIMAL CONVERSION A-1
DECIMAL TO HEXADECIMAL CONVERSION A-1

HEXADECIMALADDITION A-2

vi

A5
AB

A7

HEXADECIMAL MULTIPLICATION.................. A-2
ASCIli CHARACTER SET AND HEX-ASCII

CONVERSION e A-5
POWERS OF TWO AND POWERSOF 16 A-6

APPENDIX B INSTRUCTION INDEX

B.1
B.2

c.12

MNEMONICLISTINGoii i ee s B-1
OPCODELISTINGiiiriiie e iiiaiiiaiiineens B-7
APPENDIX C PROCEDURE CALLING AND CONDITION

HANDLING
INTRODUCTION ..ttt eieeeiaes C1
GOALS .t e e C-1
CALLINGSEQUENCEccciiiiiiiiiiann. C-2
ARGUMENTLLISTS ... C-3
C.4.1 ArgumentlistFormat C-3
C.4.2 Argument Lists And Higher-level

Languagesvvviiniiiiiiii s C-
FUNCTIONVALUERETURN C-4
CONDITIONVALUE i C-5
C.6.1 Interpretation of SeverityCodes.............. C-6
C.6.2 Use of ConditionValues C-7
REGISTERUSAGEcvviii i C-7
STACKUSAGEciiiiiiiiiii i C-8
ARGUMENT DATATYPES ...t C-8
ARGUMENT DESCRIPTORScoovinnt. C-9
C.10.1 Scalar, String Descriptor

(DSCSK-CLASS-S)vvviiiiiii i C-10
C.10.2 Dynamic String Descriptor

(DSCSK-CLASS-D) ...oeeeiiiieiiiinns C-10
C.10.3 Varying String Descriptor

(DSCPK-CLASS-V) ..o C-10
C.10.4 Array Descriptor (DSC$K-CLASS-A) C-10
C.10.5 Procedure Descriptor (DSC$K-CLASS-P)C-12
C.10.7 Label Descriptar (DSC$K-CLASS-J) C-13
C.10.8 Label Incarnation Descriptor

(DSCHK-CLASS-JI) ..o C-13
C.10.9 Reserved Descriptors C-13
VAX-11CONDITIONS C-13
C.11.1 ConditionHandlers C-14
C.11.2 Condition Handler Options C-15
OPERATIONS INVOLVING CONDITION
HANDLERS ... it C-15
C.12.1 Establish A Condition Handler C-16
C.12.2 Revert Condition Handler C-16
C.12.3 SignalaConditione. C-16
PROPERTIES OF CONDITION HANDLERS C-18

C.13

vii

C.13.1 Condition Handler Parameters and

Invocationl C-18
C.13.2 UseofMemorycccovvvuneunnnn.. C-19
C.13.3 Returning From a Condition Handler.......... C-19
C.13.4 Request ToUnwing C-20
C.13.5 SignallersRegisters C-21
C.14 MULTIPLEACTIVESIGNALSoevnn... C-21
APPENDIXD PROGRAMMING EXAMPLES
D1 PURPOSE. ... e, D-1
D.2 SORTALGORITHMccviiinnnn.. D-1
D.3 SINFUNCTION ..., D-3
D.4 FIXED FORMAT FLOATINGOUTPUT D-4
D.5 COBOLOUTPUTEDITINGccovunn.. D-4
D.6 FORTRAN STATEMENT EVALUATION.............. D-7
D.7 VARIABLELENGTHFIELD D-7
D.8 LOOPS ... D-8
D.9 LOOPS D-9
D.10 CHARACTERSTRINGcovvnnet. D-9
APPENDIX E OPERAND SPECIFIER NOTATION
E.1 OPERANDSPECIFIERS..............c.covvvvenn. .. E-1
E.2 OPERATION DESCRIPTION NOTATION E-1

viii

VAX-11/780 SYSTEM

CHAPTER 1

SYSTEM OVERVIEW

1.1 [INTRODUCTION

The VAX-11/780 is the most powerful computer system in the -11 family
of interactive computers, which includes the LSI-11, the PDP-11, and now
the VAX-11. It consists of the VAX-11/780 processor and the VAX/VMS
virtual memory operating system. It is designed for applications which
require the power and sophistication of a high-performance, virtual mem-
ory computer system—at prices well below computer systems of its
same caliber. 1t can be used as a powerful computational tool for high-
speed, time-critical applications, for timesharing applications, and for a
wide variety of commercial applications.

VAX, or Virtual Address eXtension, is the architecture for the VAX-11/
780. It has been designed and developed by both hardware and software
engineers and, in fact, was carefully documented before any implemen-
tation was begun. The goals of the VAX architecture were to provide a
significant enhancement to the virtual addressing capability of the
PDP-11 series consistent with small code size, easy exploitation by
higher-level languages, and a high degree of compatibility with the
PDP-11 series. While the VAX-11 is not strictly binary compatible with
the PDP-11 binary code, it does implement a Compatibility Mode which
executes most of the PDP-11 instructions (refer to Volumes 2 and 3). A
consequence of this is that most user-level programs can execute in this
Compatibility Mode, with system services and memory management being
provided by the VAX/VMS operating system in Native Mode.

The VAX-11 architecture is characterized by a powerful and complete
instruction set of 244 basic instructions, a wide range of data types, an
elegant set of addressing modes, full demand paging memory manage-
ment, and a very large virtual address space of over 4 billion bytes
(2%*32 bytes). Arithmetic and logical operations can be performed on
byte-integers (a byte is eight bits), word-integers, and 32-bit longword-
integers; plus, some instructions can perform operations on 64-bit quad-
word-integers. Additionally, the Native Mode instruction set includes
floating point operations, character string manipulations, packed decimal
aritimetic, and many instructions which improve the performance and
memory utilization of systems and applications software. Some of these
directly implement frequently used higher-level language constructs, such
as DO loop control and the FORTRAN COMPUTED GO TO statement.
There are also a number of operations which can be performed on vari-
able-length bit fields, a new data type for the -11 family.

The other significant feature of the VAX-11 architecture is that unlike 2
very large class of computer systems, addressing for instructions is very
nearly arbitrary. This means that there are no fixed formats—no restric-

tions as to the location of an operand for a particular instruction or even

1-1

the instruction itself. Thus, operands and instructions can begin on any
byte address—odd or even. It is quite reasonable to express the location
of any operand as being a register or a pair of registers in memory or
by using indirection in memory. The result of this flexibility is that higher-
level language compilers, such as FORTRAN, can generate code that is
very small, very efficient, and easy to manipulate in the compiler's data
structures. This means greater performance and lower memory utiliza-
tion to accomplish the same task than on other computer systems in the
same price class. These are but a few of the key features of the VAX-11/
780’s hardware architecture. The VAX/VMS operating system makes ali
the hardware work together as one unit to provide the VAX-11/780 with
its multi-user, multiprogramming, virtual memory capabilities.

But before discussing the VAX-11/780’s virtual memory capabilities more
closely, a few definitions of some important terms will be valuable. One
of the advantages of a virtual memory system is that an entire program
does not have to be resident in main memory at one time. This means
that portions of a program can be on the system disk and other portions
in main memory. Programs are divided into small pieces called pages
—512 bytes. A process is a collection of pages which runs a program; it
consists of an address space plus both hardware and software context.
That part of a process which is resident in main memory is calied the
process' working set. At any given point in time, there are many pro-
cesses running on the system. The assemblage of processes which are
resident in main memory is called the balance set. The action of bring-
ing pages into and out of main memory is called paging; that of bringing
complete working sets into and out of main memory is called swapping.

In order to control the simultaneous processing of many large programs,
the VAX-11/780 incorporates sophisticated virtual memory management
capabilities. VAX-11 memory management system is a tightly coupled
hardware/software function. The hardware performs the task of trans-
lating from virtual addresses into physical ones. The VAX/VMS operating
system provides the capabilities for paging, swapping, overlaying, pro-
tection, and sharing. Despite the fact that VAX/VMS performs these
functions, the user can exert considerable control over the environment
in which programs operate, i.e., the amount of paging and swapping that
occurs during the execution of a program. Pages can be locked, or fixed,
i.e., not candidates for removal, in a process’ working set; pages can
also be locked in main memory, and an entire working set can be locked
in the balance set. Additionally, a user can specify that not one, but a
number of pages be brought into main memory when a reference is
made to a page which is not currently in main memory. This is called
clustering. All of these tools allow a user to manipulate the environment
in which a program executes to produce predictable performance—to
provide fast, guaranteed response to external conditions.

Protection and sharing were key considerations in the development of
the VAX-11 architecture. Both protection and sharing are at the page
level. In a computer system, security and privacy are achieved by a
combination of operations management and applications design. VAX/
VMS complements this by providing the necessary system level reli-

1.2

ability and protection. Reliability is achieved by taking advantage of the
hardware “‘firewalls.” These “firewalls” include the four memory man-
agement access modes and the process structure.

One of the most important forces at work during the design and devel-
opment of the VAX-11/780 system was an extensive reliability, avail-
ability, maintainability program (RAMP). This program affected all as-
pects of the product—the design of the basic hardware and software
architectures right through to the end result—the VAX-11/780. Some
of the significant RAMP features of the VAX-11 architecture and VAX/
VMS are listed below. [Refer also to Chapter 2 and Volume 2 for details
on the VAX-11/780 processor-specific RAMP features.]

1. Memory Management
e 512 byte pages (protection, sharing, allocation)
o four hierarchical access modes
e read/write access control for each protection mode
* access control violation produces a fault

2. Consistency and Error Checking
e arithmetic traps for over- and underfiow plus division by zero
e limit checking traps to ensure the range referenced by certain in-
structions is valid
e reserved operand trap to detect unacceptable data
o interrupt return checks for detecting system malfunctions
o string length checks

3. Special Instructions
e Cyclic redundancy check (CRC) which provides a consistent method
for performing software check-summing
e CALL/RETurn provides a uniform standard for interfacing between
local subroutines and system services

4, Maintenance Devices
¢ high-resolution programmable real-time clock for scheduling and
for diagnostics
« processor identification register contains the processor’s serial
number and its latest hardware update status
o time-of-year clock in conjunction with VAX/VMS enables unattended
automatic restart in cases of power failure or fatal software error

5. Software

¢ system software consistency checks detect and log operating sys-
tem malfunctions and determine the validity of system control
information

¢ device interrupt timeout on all input/output avoids system hang if
the interrupt is lost

o disk bad block handling protects the integrity of data stored on
disks

o automatic retry on 1/0 errors

¢ redundant recording of critical disk structures helps prevent the
loss of the entire disk

o error logging of hardware and software errors

1-3

¢ automatic restart capabilities
¢ on-line diagnostics for verification of peripherals while the oper-
ating system is performing other tasks

All of these capabilities—uvery large virtual address space, elegant and
powerful instruction set, data types, and addressing modes, arbitrary
byte addressing, full virtual memory paging with user control, integral
protection and sharing, and extensive RAMP—have been combined in
the VAX-11/780 to produce a product which can be applied to a wide
range of demanding high-performance applications.

1.2 VAX-11/780 HANDBOOK SET

The VAX-11/780 handbooks comprise a three-volume set of detailed in-
formation on the system architecture, the VAX-11/780 system compo-
nents, and the VAX-VMS virtual memory operating system. Each hand-
book concludes with an extensive glossary of terms commonly used in
that handbook. This handbook, Volume 1, describes the entire hardware
architecture needed by an assembly language programmer who writes
non-privileged programs, i.e., those which do not directly use memory
management or perform direct /0. It provides information on the ad-
dressing modes, data representations, and the instruction set in suffi-
cient depth to design and write applications and compilers. An overview
of memory management, input/output programming, and an introduc-
tion to the VAX-11/780 processor components is provided.

Volume 2 provides documentation on VAX-11/780 hardware necessary
to write privileged programs—details on memory management, process
switching, input/output, processor registers, and compatibility mode.
The chapters on input/output provide full programming details on the
UNIBUS and MASSBUS adaptors. There is a chapter on the integral
LSI-11 diagnostic console and the console command language. RAMP is
covered in some detail and the peripherals supported by the VAX-11/780
system are described.

Volume 3 provides a uniform, cohesive description of the VAX-11 soft-
ware—the VAX/VMS virtual memory operating system and its supported
products. Primarily, it acts as an introduction to the VAX-11 software.
It contains information on memory management, 1/0 file services, util-
ities and high-level languages, interprocess communication, process
scheduling and context switching, command language, system services,
plus interrupts, handlers, and asynchronous system traps.

1.3 NOTATIONAL CONVENTIONS

This section provides information on notational conventions used
throughout the handbook set. Representations of memory, both physical
and virtual, begin with low memory at the top of the diagram and pro-
gress toward higher addresses:

1-4

55555

78786

Unless otherwise noted, all numerical quantities are shown in decimal
representation; decimal is the default radix of the system. Other repre-
sentations are shown by the radix of the number as a subscript:

56A4C;6

Operations notation uses an ALGOL-like format. For example, the ADWC
instruction (add with carry) is represented as follows:

sum <« sum 4 add + C

This shows the operation of adding the quantities ‘“sum,” “add,” and
“C’ (for carry) and placing the result in “sum.” Full details of this
notation are given in Appendix E.

1-5

CHAPTER 2

VAX-11/780 INTRODUCTION

2.1 HARDWARE ARCHITECTURE

The VAX-11/780 computer system consists of the central processing unit
(with integral floating point, packed decimal, and character string instruc-
tions), the console subsystem, the-main memory subsystem, and the
I/0 subsystem. The 1/0 subsystem includes the Synchronous Backplane
Interconnect (SBl)—an internal connection path which links the CPU
with its subsystems.

These elements are illustrated in Figure 2-1.

2.2 THE SYNCHRONOUS BACKPLANE INTERCONNECT

As Figure 2-1 shows, all major hardware components are connected
through the SBI, an internal synchronous path. This connection path,
along with the VAX-11/780 central processor and the SBI devices (the
adaptors and controllers shown in the figure), operates on clocked
200 nanosecond cycles. Thus, all transactions in the system are synchro-
nized and occur at defined points in time.

The SBI is the primary control and data transfer path in the VAX-11/780
system. The SBI has a physical address space of 1 gigabyte (30 bits
of address).

Physical address space is all possible memory and 1/0O addresses that
a processor can access. In the VAX-11/780 system, half of the physical
address space is for memory addresses and half for 1/0 addresses, as
shown in Figure 2-2.

Of the 512 million bytes of memory which can be addressed, up to 2
million bytes may be connected to a VAX-11/780 system. 1/0 registers
and memory can be addressed by instructions just as on the other
PDP-11 family machines.

The SBI is capable of an aggregate data throughput rate of 13.3 million
bytes/second and it cycles at 200 nanoseconds.

Each SBI device (i.e., CPU, MASSBUS adaptor, UNIBUS adaptor, mem-
ory controller) has a unique priority. When a device wants to transmit
on the SBI, it asserts a unique request line. At the end of the current
200 nanosecond cycle, each SBI device wanting to use the SBI examines
the SBI request lines for higher priority devices. The highest priority
device uses the next cycle, while other devices must wait. Whenever
possible, an SBI device currently in control of the SBI will free the SBI
so that a new transaction may occur on the next cycle. This commu-
nication protocol enables:

e Distributed arbitration. Since each device connected to the SBI de-
termines whether or not it will receive the next cycle (rather than a

2-1

¢c

CONSOLE

SUBSYSTEM

CENTRAL PROCESSING UNIT

PORT FOR |
REMOTE
DIAGNOSIS

LSI-

H

MICRO-

COMPY

TER

FPA = FLOATING POINT ACCELERATOR

| 1
ONSOLE
TERMINAL

FLOPPY
DISK

WDCS = WRITABLE DIAGNOSTIC CONTROL STORE

Figure 2-1

CACHE MEMORY

INSTRUCTIONS

| -7

! i

| CPU 1
w! WITH FULL !
o! FLOATING POINT, F :
c ! DECIMAL,AND P
S | CHARACTER STRING Al
|

| l

I

MEMORY _SUBSYSTEM

L

l e
[}
MEMORY 128KB | 11
CONTROLLER ECC MOS | H
- UP TO 2M BYTES
MAXIMUM
r-———-—=—-=-= bl Fo-—== =
SF=T1 MEMORY [~~"7 128KB |
Bl __1] CONTROLLER L--JIECC MOS!
1 |, _ | g
1/0 _SUBSYSTEMS
B0 {1.5MB/sec)
ADAPTOR UNIBUS .>
(13.3 (2.0MB/sec)
MB/sec) MASSBUS MASSBUS
ADAPTOR

UP TO 4 TOTAL

VAX-11/780 Hardware Architecture

. i
512MB
PHY (2MB INITIALLY
HYSICAL MEMORY AVAILABLE)
1GB 7
(30 BITS) 312
1/G REGISTERS 512M8B
~
1G8

Figure 2-2 SBI Physical Address Space

central arbitrator making the decision), signals need travel the length
of the SBI only once with the advantage of increased speed. Addi-
tionally, devices perform a parity check on the control information to
assure that the arbitration is proceeding correctly.

e Single 32-bit and two back-to-back 32-bit transfers. The SBI data
path is 32 bits wide. The protocol allows single (32-bit) and double
(64-bit) data transfers as transactions. (The 1/0 adaptors always try
data in 64-bit quadwords.)

Every transaction on the SBI (i.e., data transfer, address transfer, or
command transfer) is parity checked and confirmed by the receiver. in
addition, substantial protocol checking occurs on every cycle for high
data integrity. This means the SBI preserves the integrity of the data it
receives and transmits. (Data which is transferred from MASSBUS de-
vices also includes parity; data from UNIBUS devices does not.)

Finally, a history of the last 16 SBI cycles is maintained by the CPU.
This is an extremely useful aid in isolating system failures.

2.3 THE VAX-11/780 CENTRAL PROCESSING UNIT

The VAX-11/780 central processor is a high-speed, microprogrammed
32-bit computer that supports many of the features usually found only
in larger systems (for example, support of many data types and vir-
tual memory capabilities). The VAX-11/780 central processor executes
VAX-11 variable length instructions in native mode, and non-privileged
PDP-11 instructions in compatibility mode. The processor can directly
address 4 gigabytes of virtual address space, and provides a complete
and powerful instruction set that includes integral decimal, character
string, and floating point instructions. The VAX-11/780 includes an 8K
byte cache, integral memory management, sixteen 32-bit general regis-
ters, 32 interrupt priority levels, and an intelligent console (LSI-11).

Figure 2-3 illustrates the elements of the central processing unit.

2.4 NATIVE INSTRUCTION SET

The VAX-11 instructions are an extension of the PDP-11 instruction set;
the VAX-11 instruction set provides 32-bit addressing, 32-bit |/O opera-
tion on the SBI, and 32-bit arithmetic. Instructions can be grouped into
related classes based on their function and use:

2-3

1.

CPU WITH

T

i

| FULL
W : FLOATING POINT,
D | DECIMAL,AND
G
S

CONSOLE
SUBSYSTEM CHARACTER STRING

INSTRUCTIONS

»on
|

CACHE MEMORY

S
B
I

Figure 2-3 VAX-11/780 Central Processor

Instructions to manipulate arithmetic and logical data types—These
include integer and floating point instructions, packed decimal instruc-
tions, character string instructions, and bit and field instructions.

The data type identifies how many bits of storage are to be treated
as a unit and how the unit is to be interpreted. Data types that may
be used are:

Data Type Represented As
Integer byte (8 bits), word (16 bits), longword (32
bits), quadword (64 bits)
Floating point 4-byte floating or 8-byte double floating
Packed decimal string of bytes (up to 31 decimal digits, 2
digits per byte)
Character string string of bytes interpreted as character codes;

a numeric string is a character string of
codes for decimal numbers (up to 64K bytes)

Bits and bit-fields field length is arbitrary and is defined by the
programmer (O to 32 bits in length)

Integer, floating point, packed decimal, and character data may be
stored on an arbitrary byte boundary. Bit and bit-field data does not
necessarily start on a byte boundary; this data type allows a collec-
tion of data structures to be packed together to use less storage
space.

. Instructions to manipulate special kinds of data—These include

queue manipulation instructions (for example, those that insert and
remove queue entries), address manipulation instructions, and user-
programmed general register load and save instructions. These in-
structions are used extensively by the VAX/VMS operating system.

. Instructions to provide basic program flow control—These include

branch, jump, and case instructions, subroutine call instructions, and
procedure call instructions.

. Instructions to quickly perform special operating system functions—

These include process control instructions (such as two special con-
text switching instructions which aliow process context variables to be

2.4

loaded and saved using only one instruction for each operation), and
the Find First instruction which (among other uses) allows the operat-
ing system to locate the highest priority executable process. These
instructions contribute to rapid and efficient rescheduling.

5. Instructions provided specifically for high-level language constructs—
During the design of the VAX-11 architecture, special attention was
given to implementing frequently used, higher-level language con-
structs as single VAX-11 instructions. These instructions contribute
to decreased program size and increased execution speed. Some of
the constructs which have become single instructions on the VAX-
11/780 include:

e the FORTRAN computed GOTO statement (translates into the CASE
instruction)

e the loop construct (for example, add, compare, and branch trans-
lates into the ACB instruction)

¢ an extensive CALL facility (which aligns the stack on a longword
boundary, saves user-specified registers, and cleans up the stack
on return; the CALL facility is used compatibly among all native
mode languages and operating system services).

VAX-11/780 instructions and data are variable length. They need not be
aligned on longword boundaries in physical memory, but may begin at
any byte address (odd or even). Thus, instructions that do not require
argument use only one byte, while other instructions may take two,
three, or up to 30 bytes depending on the number of arguments and
their addressing modes. The advantage of byte alignment is that instruc-
tion streams and data structures can be stored in much less physical
memory.

The VAX-11/780 processor offers nine addressing modes that use the
general registers to identify the operand location:

register

register deferred

autoincrement

autoincrement deferred

autodecrement

displacement ... (same as the PDP-11 index mode)

displacement deferred ... (same as the PDP-11 index deferred mode)

index (uses a second register scaled according to data type to
provide true post-indexing capability)

literal (used for greater efficiency to specify small integer or
floating point constants)

The hardware implements 8-, 16-, and 32-bit displacement for each of
displacement and displacement deferred. This uses the minimal space
for any memory reference. By combining modes, the programmer can
achieve more addressing flexibility.

The instruction set is very consistent and the assembler mnemonics are
25

clear. Programmers who are already familiar with the PDP-11 instruction
set will find the VAX-11 instruction formats similar, as well as the data
formats and the use of addressing modes, general purpose registers, and
stacks. Thus, the amount of programmer retraining that is required is
minimized. Those programmers who are not familiar with the PDP 11
programming style should find that the consistency and power of the
VAX-11 instruction set allows them to be producing efficient executable
code quickly.

Because the instruction set is so flexible, fewer instructions are required
to perform any given function. The result is more compact and efficient
programs, faster program execution, faster context switching, more pre-
cise and faster math functions, and improved compiler-generated code.

2.5 COMPATIBILITY MODE INSTRUCTION SET

In addition to its 32-bit native mode instruction set, the VAX-11/780
processor can concurrently execute a subset of the PDP-11 instruction
set in compatibility mode. This is not done by emulation or simulation;
both instruction sets are built into the microcode and logic of the pro-
cessor.

The PDP-11 instruction set implementation is a subset of the PDP-
11/70’s. Specifically, it contains all instructions except those which per-
form the foliowing functions:

1. Execution of floating-point instructions.
2. Use of both instruction (1) space and data (D) space.
3. Execution of privileged functions such as:

e HALT, RESET and special instructions, such as traps and WAIT,
which are normally reserved for operating system usage

e Direct access to internal processor registers such as the Processor
Status Word and the Console Switch Register

* Direct access to the trap and interrupt vectors which must be ini-
tialized for interrupt servicing

* Execution in any mode other than User mode along with the cor-
responding access to the alternate general register set

2.6 GENERAL REGISTERS AND STACKS

The VAX-11/780 CPU provides sixteen 32-bit general registers which can
be used for temporary storage, as accumulators, index registers, and base
registers. Although all can be used as general-purpose registers, four
have special significance depending on the instruction being executed:
Register 12 (the CALL argument pointer); Register 13 (the CALL frame
pointer); Register 14 (the stack pointer); and Register 15 (the program
counter).

Stacks are associated with the processor’'s execution state. The processor
may be in a process context (in one of four modes, kernel, executive,
supervisor, or user; see the Memory Management section below), or in
the system-wide interrupt service context. A stack pointer is associated
with each of these states. Whenever the processor changes from one
state to another, Register 14 (the stack pointer) is updated accordingly.

2-6

2.7 CACHES
The VAX-11/780 CPU provides three ‘‘cache” systems—the memory
cache, an address translation buffer, and an instruction buffer.

2.7.1 Memory Cache

The memory cache (typically 95% hit rate) provides the central proces-
sor with high-speed access to main memory. The memory cache reduces
main memory read access time to an effective 290 nanoseconds, and
has a cycle time of 200 nanoseconds. The memory cache also provides
32 bits of lookahead. On a cache miss, 64 bits are read from main mem-
ory—32 bits to satisfy the miss and 32 bits of lookahead.

The memory cache stores 8K bytes and is implemented as a two-way set-
associative write-through cache. This cache also watches 1/0 transfers
on the SB! and updates itself appropriately. Thus, no operating system
overhead is needed to synchronize the cache with 1/0 operations, since
the cache resolves all these stale data problems.

For reliability reasons the VAX-11/780's memory cache uses the write-
through technique for updating main memory. With this method, when-
ever a write reference occurs, the data is not only stored in the cache
itself, but is also immediately copied into the backing store (main mem-
ory). This means that main memory always contains a valid copy of all
data in the cache. Normally this would mean that the CPU would have to
suspend processing until main memory has accepted the write data. In
the VAX-11/780, however, the central processor’s interface to the SBI
includes a 32-bit write buffer. Therefore, when a write reference occurs,
the CPU stores the write data in the buffer, initiates a write transfer to
main memory, and continues with the next instruction.

2.7.2 Instruction Buffer

The instruction buffer consists of an 8-byte buffer that enables the CPU
to fetch and decode the next instruction while the current instruction
completes execution. The instruction buffer in combination with the paral-
lel data paths (which can perform integer arithmetic, floating point oper-
ations, and shifting all at the same time) significantly enhances the
VAX-11/780’s performance.

2.7.3 Translation Buffer

The VAX-11/780 provides an address translation buffer that eliminates
extra memory accesses during virtual-to-physical address translations the
majority of the time (typically 97% hit rate). The address translation
buffer contains 128 likely-to-be-used virtual-to-physical address transia-
tions.

Standard Schottky TTL Logic The VAX-11/780 system uses Schottky
TTL logic circuits, proven technology that combines fast switching speed
with moderate power consumption. Emitter-coupled logic circuits and
custom large-scale integrated circuits have been used where appropriate
to optimize system performance and reliability.

Clocks The standard VAX-11/780 CPU includes two clocks—a high-
precision, programmable real-time clock used by system diagnostics and

2-7

by the VAX/VMS operating system for accounting and scheduling, and a
time-of-year clock, which insures the correct time of day and date. The
time-of-year clock additionally includes a battery which provides backup
for over 150 hours. The time-of-year clock is used by the operating sys-
tem to enable unattended automatic restart following any service inter-
ruption, including a power failure.

Writable Diagnostic Control Store (WDCS) 12K bytes (plus parity) of
WDCS are provided to allow the Diagnostic Console Microcomputer to
verify the integrity of crucial parts of the system (for example, the key
parts of the CPU, the intelligent console, the SBI, and the memory con-
troller). In addition, the WDCS can be used to implement updates to the
VAX-11/780's microcode. In this way, DIGITAL can keep customers up-
to-date with corrections.

Memory Management Memory management is the key for the develop-
ment of virtual memory cperating systems. The VAX-11/780 memory
management hardware enables the VAX/VMS operating system to pro-
vide a flexible and efficient virtual memory programming environment.
Hardware memory management, in conjunction with the operating sys-
tem, provides facilities for paging (with user control) and swapping.

In addition, the VAX-11/780 memory management provides four hier-
archial access modes: kernel, executive, supervisor, and user, with
read/write access control for each mode.

The memory management hardware facilitates the sharing of programs
and data, and allows larger program size and better performance.

2.8 HIGH PERFORMANCE FLOATING POINT ACCELERATOR

The VAX-11/780 floating point accelerator option operates in parallel
with the CPU and transparently to programs. It executes the standard
floating point instruction set, add, subtract, multiply, and divide, in both
single- and double-precision formats, plus three additional instructions.
These are extended multiply and integerize (EMOD), polyonomial evalu-
ation (POLY), single- and double-precision formats for both instructions,
and 32-bit integer multiply (MULL). EMOD is used for fast, accurate
range reduction of mathematical function arguments. POLY is used ex-
tensively by the math library in the evaluation of such mathematical
functions as sine, cosine, etc. Subscript calculations can be done fast
and efficiently using the MULL instruction.

An additional 12K bytes (or 1,024 microwords — 96 data bits plus three
parity bits) of writable control store is available for customer applica-
tions. There are, however, no software tools or supporting documentation
for this option.

29 THE MEMORY SUBSYSTEM
The main memory subsystem consists of ECC MOS memory, which is

connected to the SBI via the memory controlier, as illustrated in Figure
2-4,

MOS memory may be added in increments of 128K byte units to a maxi-
mum of 1 million bytes per controller. Two memory controllers may be

2-8

CENTRAL
PROCESSOR
p—— = A
oo 1!
h
——— _ MEMORY 128KB |11
CONTROLLER ECC MOS |
s {IMB PER CONTROLLER)
B (TOTAL 2MB)
1 roTooC !
rTToo oo re——--7,
--4 MEMORY —---d 128k3 |
—~— CONTROLLER l-—__4ECC MOS ,}
J | e — | SR 4

Figure 2-4 VAX-11/780 Memory Subsystem

connected to a VAX-11/780 system, for a total of 2 million bytes of
physical memory. (The minimum memory requirement is 128K bytes.)

The VAX-11/780 physical memory is built using 4K MOS RAM chips. It is
organized in quadwords (64 bits) plus an 8-bit ECC (Error Correcting
Code), which allows the correction of all single-bit errors, and the detec-
tion of all double-bit errors and approximately 70% of greater than
double-bit errors, providing a ten-fold improvement in MTBF.

The memory cycle time is 600 nanoseconds. This is equal to the memory
access time, since MOS memory has non-destructive read-out. Read ac-
cess time at the central processor (including SBI overhead) is 1800
nanoseconds. This is measured from the time the processor transmits a
read request until the processor receives all 64 bits of data. (The central
processor always reads 64 bits from memory.) In spite of the 1800
nanosecond memory access time, the VAX-11/780 processor realizes an
effective average operand access time of 290 nanoseconds, because of
its large optimized memory cache.

The memory controllers allow the writing of data in full 32- and 64-bit
units. Also, upon command from an SBI device, individual bytes (or a
single byte) may be written. Each memory controller buffers up to four
memory access requests. This ‘‘request buffer’” substantially increases
memory throughput and overall system throughput and decreases the
need for interleaving for most configurations. With this buffer, memory
bandwidth essentially matches that of the SBI—13.33 million bytes/
second, including time for refresh cycles. This is because a number of
transactions may occur concurrently. For example, the memory controlier
may accept a WRITE command from a MASSBUS adaptor while it is
reading previously requested data by the processor for increased
throughput. Were it not for the request buffer, there would be about a
509% degradation in memory bandwidth, making interleaving necessary
to approach the SBI bandwidth.

Interleaving is possible with two controllers and equal amounts of mem-
ory on each. Interleaving is enabled/disabled under program control.
It is performed at the quadword level (each 64 bits) because of the
memory organization.

2-9

The integrity of data in the VAX-11/780's ECC MOS memory is retained
upon power interruption in two ways. Firstly, the memory modules are
connected to an unswitched power supply so that when the system is
turned off, refreshing is continued.

Secondly, in the case of a temporary power failure, the contents of MOS
memory may be protected using optional battery backup. Each DIGITAL-
supplied option preserves 1 million bytes of memory for a maximum of
ten minutes. If the system has less than 1 miilion bytes of memory, the
battery supplies longer backup time. In addition, customer-supplied bat-
tery backup may be used with the DIGITAL option to prolong backup
time.

2.10 THE INPUT/OUTPUT SUBSYSTEMS

The VAX-11/780's 1/0 subsystems consist of the UNIBUS and MASSBUS
and their respective adaptors through which 1/0 devices communicate.
As shown in Figure 2-5, each VAX-11/780 system has one UNIBUS
adaptor and can have up to four MASSBUS adaptors.

CENTRAL
PROCESSOR
1.5M BYTES/SECOND
T UNisus UNIBUS
s ADAPTOR
B
N 2.0M BYTES/SECOND
e).

T
1
i
b
UP TO 4 TOTAL

Figure 2-5 VAX-11/780 I/0 Subsystem

2.10.1 The UNIBUS

General-purpose and customer-developed devices are connected to the
VAX-11/780 system via the VAX-11/780's UNIBUS. Since the SBI deals
in 30-bit addresses (1 gigabyte), 18-bit UNIBUS addresses must be trans-
lated to 30-bit SBI addresses. This mapping function is performed by the
UNIBUS adaptor, a special interface between the SBI and the UNIBUS,
which translates UNIBUS addresses, data, and interrupt requests to their
SBI equivalents, and vice versa.

The UNIBUS adaptor does priority arbitration among devices on the
UNIBUS, a function handied by logic in the PDP-11 CPUs. The address
translation map permits contiguous disk transfers to and from noncon-

2-10

tiguous pages of physical memory (these are called scatter/gather oper-
ations).

The UNIBUS adaptor allows two kinds of data transfers: program inter-
rupt and direct memory access. To make the most efficient use of the
SBI bandwidth, the UNIBUS adaptor facilitates high-speed DMA transfers
by providing buffered DMA data paths for up to 15 high-speed devices.
Each of these channels has a 64-bit buffer (plus byte parity) for holding
four 16-bit transfers to and from UNIBUS devices. The result is that only
one SBI transfer (64 bits) is required for every four UNIBUS transfers.
The maximum aggregate data transfer rate through the Buffered Data
Paths is 1.5 million bytes/second. In addition, on SBI-to-UNIBUS trans-
fers, the UNIBUS adaptor anticipates upcoming UNIBUS requests by
pre-fetching the next 64-bit quadword from memory as the last 16-bit
word is transferred from the buffer to the UNIBUS. The result is in-
creased performance. By the time the UNIBUS device requests the next
word, the UNIBUS adaptor has it ready to transfer,

Any number of unbuffered DMA transfers are handled by one direct DMA
data path. Every 8- or 16-bit transfer on the UNIBUS requires a 32-bit
transfer on the SBI (although only 16 bits are used). The maximum
transfer rate through the Direct Data Path is 750 thousand bytes/second.

The UNIBUS adaptor permits concurrent program interrupt, unbuffered
and buffered data transfers. The aggregate throughput rate of the Direct
Data Path plus the 15 Buffered Data Paths is 1.5 million bytes/second.

2.10.2 The MASSBUS(es)

High-performance mass storage devices, such as the RP series and RM
moving head disks, are connected to the VAX-11/780 system using a
MASSBUS adaptor. The MASSBUS adaptor is the interface between the
MASSBUS and the SBI and performs all control, arbitration, and buffer-
ing functions. Address mapping is similar to that performed by the UNI-
BUS adaptor.

There may be a total of four MASSBUS adaptors on each VAX-11/780
system. Each adaptor can accommodate data transfers of 128K bytes
maximum to and from noncontiguous pages in physical memory (scat-
ter/gather). The VAX/VMS operating system supports transfers of 65KB
maximum to be consistent with other devices.

Each MASSBUS adaptor uses a 32-byte silo data buffer, which permits
transfers at rates up to 2 million bytes/second to and from physical
memory (8MB/second with all four). As in the UNIBUS adaptor, data is
assembled in 64-bit quadwords (plus byte parity) to make maximum
efficient use of the SBI bandwidth.

On memory-to-MASSBUS transfers, as on memory-to-UNIBUS transfers,
the adaptor anticipates upcoming MASSBUS data transfers by pre-fetch-
ing the next 64 bits of data from memory.

The combination of UNIBUS and MASSBUS transfer rates gives a maxi-
mum throughput of 9.5 million bytes/second to and from the SBI. Thus,
there is ample bandwidth remaining (3.8 million bytes/second) to handle
the central processing unit (which typically uses 1 million bytes/second).

2-11

2.11 THE CONSOLE SUBSYSTEM

The VAX-11/780's integral console consists of an LSI-11 microcomputer
with 16K bytes of read/write memory and 8K bytes of ROM (used to
store the LS! diagnostic, the LS| bootstrap, and fundamental console
routines), a floppy disk (for the storage of basic diagnostic programs and
for software updates), a terminal, and a 20mA serial line interface (for
the console terminai). Remote access by a DIGITAL Diagnostic Center is
available.

CENTRAL
PROCESSOR
4
LSI-11
- M FLOPPY
N\ MICRO
FREmMOTE U | COMPUTER o DISK
DIAGNGCSIS §

CONSOLE
TERMINAL

Figure 2-6 VAX-11/780 Console Subsystem

The console subsystem serves as a VAX/VMS operating system terminal,
the system console, and as a diagnostic console. As a VAX/VMS ter-
minal, it is used by authorized system users for normal system operations.
As the svstem console, it is used for operational control (i.e., bootstrap-
ping, initialization, software update). As a diagnostic console, it can
access the central processor's major buses and key control points
through a special internal diagnostic bus. The console allows operator
diagnostic operations through simple keyboard commands.

A floppy disk is included with every VAX-11/780 system. It is used for
a variety of functions:

* During system installation, it acts as a load device. The LSI-11 ROM
bootstrap reads a file from the floppy which, in turn, is used to load
the operating system.

o It stores the system hard-core diagnostics, namely the hardware veri-
fication programs for the LSI-11 itself, CPU, SBI, a memory controller,
and a memory module.

These diagnostics are run upon command at power-up time to verify
the integrity of the system hard-core. On-line diagnostics, which run
under the VAX/VMS operating system, are then run to verify other sys-
tem components.

¢ The floppy is also used to distribute updates, or modifications, to the
system software. The updates are provided in machine-readable form

2-12

so that with a few simple commands from the system console, the in-
formation on the floppy can be automatically read in and used by
VAX/VMS to update itself.

2.12 RELIABILITY-AVAILABILITY-

MAINTAINABILITY PROGRAM (RAMP)

Major consideration was given to product quality (i.e., reliability, usabil-
ity, serviceability, etc.) throughout the planning and development stages
of the VAX-11/780 project. The system designers early adopted a policy
of quality “insurance” (build the right features into the product) in addi-
tion to quality “assurance’ (check to see that they are there). In particu-
lar, their goal was to build a product that is:

e extremely reliable
¢ highly available (i.e., with minimal down-time)

¢ with improved hardware and software warranty/maintenance proce-
dures

Their method was to design a system with better, more complete, and
easier-to-use diagnostics, documentation, system safeguards, and mainte-
nance procedures than currently exist in any minicomputer competitive
product.

VAX-11/780 RAMP features are summarized below under four major
categories: Hardware Architecture, Improved Packaging, Diagnostic Aids,
and Software Architecture. For greater detail refer to Volume 2.

2.12.1 Hardware Architecture

o Four Hierarchical Access Modes (kernel, executive, supervisor, and
user) protect system information and improve system reliability and
integrity.

e A Diagnostic Console, consisting of an LSI-11 microcomputer, floppy
diskette, and console terminal, provides both local and remote diag-
nosis of system errors and simplifies system bootstrap and software
updates. Simple console commands replace lights and switches. The
diagnostic console provides faster and easier maintenance procedures
and increases availability.

e Automatic Consistency and Error Checking detects abnormal instruc-
tion uses and illegal arithmetic conditions (overflow, underflow, and
divide by zero). Continual checking by the hardware (and uniform ex-
ception handling by the software) increases data reliability.

« Special Instructions, such as CALL and RETURN, provide a standard
program calling interface for increased reliability.
e Integral Fault Detecticn and Maintenance Features, including:

ECC on memory corrects all single-bit errors and detects all double-bit
errors to increase availability and aid in maintenance.

ECC on the RMO3, RP05, RP06, and RKO6 disks detects all erfors up
to 11 bits and corrects errors in a single error burst of 11 bits.

An SBI history silo maintains a history of the sixteen most recent
cycles of bus activity and may be examined to aid in probem isolation.

2-13

Maintenance registers permit forced error conditions for diagnostic
purposes.

A high resolution programmable real-time clock permits testing of
time-dependent functions.

Extensive parity checking is performed on the SBI, MASSBUS, and
UNIBUS adaptors, memory cache, address translation buffer, micro-
code, writable diagnostic control store, and key CPU buses and regis-
ters.

A watchdog timer in the LSI-11 diagnostic console detects hung ma-
chine conditions and allows crash/restart recovery actions.

Clock margining provides diagnostic variation of the clock rate and
aids in problem isolation.

Disabling of the memory management and the cache aids in isolating
hardware problems.

* Fault Tolerance Features, including:

Detection and recording of bad blocks on disk surfaces to increase
the reliability of the medium.

Write-verify checking hardware in peripherals available to verify all in-
put and output disk and tape operations and to ensure data reliability.
Track offset retry hardware to enable programmed software recovery
from disk transfer errors.

2.12.2 Improved Packaging

e The VAX-11/780 System meets Underwriters Laboratory (U.S.A.), Ca-
nadian Standards Association and IEC requirements for data process-
ing equipment. It has been designed for easy access and serviceability.

* Improved Air Flow increases system reliability while permitting easier
on-line access to components needing maintenance. Servicing will not
cause cooling problems.

* Power Loss, Temperature, and Air Flow Sensors detect emergency
conditions and protect the system from damage. Indicators aid in diag-
nosis and maintenance.

* Subassembly Replacement of the power supply, logic subassembly, or
blowers can be done by one person with common tools in less than 20
minutes.

e Cabling is located away from modules and fixed in cable troughs for
greater protection from damage and less interference with cooling.

¢ A Modular Power Supply, with malfunction indicator lights, provides
easier problem isolation.

2.12.3 Improved Diagnostic Aids

* Optional Remote Diagnosis capabilities (performed with the cus-
tomer’s permission) allow the field service engineer to examine the
error log file, and load, run, and control all level diagnostics from a
remote terminai, for reduced maintenance time and costs.

» System Verification Test Packages test device interactions and system
integrity.

2-14

Functional and Fault Isolation Diagnostics perform tests (upon re-
quest) of the ‘“‘crucial” parts of the hardware, run device diagnostics,
and verify the reliability of the hardware, to aid preventative mainte-
nance and repair procedures.

2.12.4 Software Architecture

Operating System Consistency Checks detect and log system maifunc-
tions and determine the validity of system control information for in-
creased system reliability.

Redundant Recording of Critical Information (i.e., the home block and
index file header) for increased volume reliability.

Uniform Exception Handling, performed for both hardware and soft-
ware exceptions, improves system reliability.

On-Line Error Logging monitors hardware and software and notes error
occurrences in a log file which can be examined and used as a main-
tenance aid.

Unattended Automatic Restart Capabilities increase availability by
bringing the system up automatically following a system crash or a
power failure (operator can override).

On-Line Software Update and Maintenance operations can be per-
formed concurrently with other system activities for increased system
availability.

2-15

CHAPTER 3

ARCHITECTURE

3.1 INTRODUCTION

This chapter describes the application programming environment, spe-
cifically that seen by the assembly language programmer. It is intended
to introduce the programmer to those features of the VAX-11 architecture
which directly affect the design of VAX-11 programs.

The VAX-11 architecture is intended to support multiprogramming, which
is the concurrent execution of a number of processes in a single com-
puter system. A process, loosely defined, is a single stream of machine
instructions executed in sequence.

The virtual address space (that is, the memory space as it appears to
a process) is mapped onto the physical address space (that is, the mem-
ory space which actually exists in the hardware) by the memory man-
agement logic in the processor. This logic also supports paging, by which
the system keeps in physical memory only those parts of a process’
virtual memory actively in use.

A VAX-11 process exists in and operates on a memory space of 2%*32
(about 4.3 giga) bytes. Some addresses and data are kept in sixteen 32-
bit general registers. A small number of processor state variables are
kept in a special register called the Processor Status Longword, or PSL.
This set of information (memory, general registers, and PSL) defines a
process. This chapter will cover each in some detail, while subsequent
chapters will describe the instructions and data which make up a VAX-11
process.

3.2 MEMORY

The memory space addressable by any program is 2*%%32 bytes (that
is, virtual addresses are 32 bits long). Of that space, one half (that with
the most significant bit set) is referred to as system space, because it is
the same for all processes in the system. It is used for the operating
system software and system-wide data. System space is shared by all
processes to facilitate interrupt handling and system service routines.

The other half of the virtual address space (that with the most signif-
icant address bit clear) is separately defined for each process; it is
therefore referred to as process space. Process space is further sub-
divided (on the next most significant address bit) into PO space, in
which program images and most of their data reside; and P1 space, in
which the system allocates space for stacks and process-specific data.
Because P1 space is used for stacks, which grow toward lower addresses,
it is unique in that it is allocated from high addresses downward. PO and
P1 space together constitute a process’ working memory. Except for
special cases of sharing, each process has its own PO and P1 spaces,
independent of others in the system. Figure 3-1 illustrates the address
spaces of several processes in a multiprogramming system. Each pro-

31

cess space is independent of the others, while the system space is
shared by alli.

PROCESS 1 PROCESS 2 PROCESS 3

PO SPACE
{GROWS TOWARD
HIGHER ADDRESSES)

t

ADDRESS | —
SPACE

7FFFEFFF
80000000

I it N el
i
!
j
1
1
1
|
A
N

P1 SPACE
{GROWS TOWARD
LOWER ADDRESSES)

1 SYSTEM SPACE
(GROWS UPWARD, BUT
GENERALLY STATIC)

————————

/

Figure 3-1 Address Spaces in Process Context

The basic addressable unit in VAX-11 is the 8-bit byte. Larger units are
built up by doubling: a word is two bytes; a longword is four bytes; a
quadword is eight bytes. These four sizes are the units in which VAX-11
memory stores data, even though the processor sometimes interprets
operands in other units, such as half bytes, or nibbles, for decimal digits,
or variable-sized bit fields.

In general, the memory system processes only requests for naturally
aligned data. In other words, a byte can be obtained from any address,
but a word can only come from an even address, a longword can only
come from an address which is a multiple of 4, and a quadword can
only come from an address which is a multiple of eight. All VAX-11 pro-
cessors have a provision for converting an unaligned request into a se-
quence of requests that can be accepted by the memory. Users, how-
ever, should be aware that this conversion has a serious impact on per-
formance, and should design their data structures in such a way that
the natural alignment of operands is preserved wherever possible.

The VAX-11 memory management logic serves the following purposes:

e It allows a number of processes to occupy main memory simulta-
neously, all freely using process space addresses, but referring inde-
rendently to their own programs and data.

¢ |t allows the operating system to keep selected parts of a process and
its data in memory, bringing in other parts as needed, without ex-

3-2

plicit intervention by the program. Large programs can be run in re-
duced memory space without recoding or overlays visible to the
programmer.

e It allows the operating system to scatter pieces of programs and data
wherever space is available in memory, without regard to the apparent
contiguity of the program. It is never necessary for the system to
shuffle memory in order to collect contiguous space for another pro-
cess to be brought into memory.

¢ |t allows cooperating processes to share memory in a controlled way.
Two or more processes may communicate through shared memory
in which both have read/write access. One process may be granted
read access to memory being modified by others; or a number of
processes may share a single copy of a read-only area.

e It allows the operating system to limit access to memory according
to a privilege hierarchy. Thus, within any address space, privileged
software can maintain data bases which it can access, but which less
privileged routines cannot.

o |t provides the means for the operating system to grant or inhibit
access to control, status, and data registers in peripheral devices
and their controllers. Since those registers are part of the physical
address space, access to them is achieved by creation of a page table
entry (described below) whose page frame number field selects the
desired device or controller address in the I/0 portion of the physical
address space. References to the registers are then under control of
the access control field of the page table entry. Thus the same
privilege mechanisms which control access to sensitive data in mem-
ory are used to control access to 1/0 devices.

For the purposes of memory management (specifically protection and
translation of virtual to physical addresses) the unit of memory is the
512-byte space. Pages are always naturally aligned (that is, the ad-
dress of the first byte of a page is a multiple of 512).

3 30 29 9 8

o
‘ PAGE TABLE INDEX J l BYTE IN PAGE

N — SELECT PO, P1,OR SYSTEM SPACE

Figure 3-2: Virtual Address Format

Virtual addresses are 32 bits long, and are divided up by the memory
management logic as shown in Figure 3-2. The nine low-order bits select
a byte within a page, and are unchanged by the address translation pro-
cess. The two high-order bits select the PO, P1, or system portion of
the address space. The remaining 21 bits are used to obtain a Page
Table Entry (PTE) from the PO, P1, or system page table as appropriate.
The page table entry contains the following pieces of information:

e protection code, specifying which, if any, access modes are to be per-
mitted read or write access to the page

33

e page frame number, identifying the 512-byte page of physical mem-
ory to be used on references to the virtual address

« valid bit, indicating that the page frame number is valid (that is, that
it identifies a page in memory, rather than one in the swapping space
on a disk) :

¢ modification flag, set by the processor whenever a write to the page
occurs

In concept, the process of obtaining a page table entry occurs on every
memory reference. In practice, however, the processor maintains a trans-
lation buffer. The translation buffer is a special-purpose cache of recently
used page table entries. Most of the time, the translation buffer already
contains the page table entries for the virtual addresses used by the
program, and the processor does not need to go to memory to obtain
the PTE (Page Table Entry).

There is one page table entry for each existing page of the virtual ad-
dress space. A length register associated with each region specifies how
many pages exist in that region of the address space. The System Page
Table (SPT), which contains page table entries for addresses greater
than 80000000 (hex), is allocated to contiguous pages in physical mem-
ory. Since the size of system space is relatively constant and can be de-
termined at system startup time, allocating a fixed amount of physical
memory to the SPT poses no problems. Process space page tables, how-
ever, change quite dynamically and can become very large. Because it
would be awkward for the operating system to have to keep the process
page tables in contiguous areas of physical memory, VAX-11 defines the
process space page tables, POPT and PIPT, to be allocated in contiguous
areas of system space—that is, virtual memory. Thus, the mapping for
process space addresses involves two memory references—one to trans-
late the process space address into a physical memory address, and the
second to translate the system virtual address of the table containing
the first translation. However, it is important to notice that even if the
translation buffer does not have the mapping for the process space ad-
dress, it is likely to have that for the page table, and thus can save one
of the references.

3.3 GENERAL REGISTERS

VAX-11 provides sixteen general registers for temporary address and
data storage. Registers are denoted Rn, where n is a decimal number in
the range O through 15. Registers do not have memory addresses, but
are accessed either explicitly by inclusion of the register number n in an
operand specifier, or implicitly by machine operations which make refer-
ence to specific registers. Certain registers have specific uses, and have
special names always used by software:

PC R15 is the Program Counter (PC). The processor updates it
to address the next byte of the program; PC is therefore not
used as a temporary, accumulator, or index register.

SP R14 is the Stack Pointer (SP). Several instructions make im-
plicit references to SP, and most software assumes that SP
points to memory set aside for use as a stack. There is no

3-4

restriction on the explicit use of other registers (except PC)
as stack pointers, though those instructions which make im-
plicit references to the stack always use SP.

FP R13 is the Frame Pointer (FP). The VAX-11 procedure call
convention builds a data structure on the stack called a stack
frame. The CALL instructions load FP with the base address
of the stack frame, and the RETurn instruction depends on
FP containing the address of a stack frame. Further, VAX-11
software depends on maintenance of FP for correct reporting
of certain exceptional conditions.

AP R12 is the Argument Pointer (AP). The VAX-11 procedure call
convention uses a data structure called an argument list,
and uses AP as the base address of the argument list. The
CALL instructions load AP in accordance with that conven-
tion, but there is no hardware or software restriction on the
use of AP for other purposes.

R6—R11 Registers R6 through R11 have no special significance either
to hardware or the operating system. Specific software will
assign specific uses for each register.

RO-R5 Registers RO through R5 are generally available for any use
by software, but are also loaded with specific values by those
instructions whose execution must be interruptable—the
character string, decimal arithmetic, RC, and POLY instruc-
tions. The specific instruction descriptions identify which
registers are used, and what values are loaded into them.

The general philosophy of DIGITAL software governing the allocation of
registers is that high-numbered registers should have the most global sig-
nificance, and low-numbered registers are used for the most temporary,
local purposes. While there is no technical basis for this rule, it is a
matter of convention followed by both hardware and system software.
Thus high-numbered registers are used for pointers needed by all soft-
ware and hardware, and low-numbered registers are used for the working
storage of string-type instructions. Similarly, the VAX-11 procedure call
convention regards RO and R1 as so temporary that they are not even
saved on calls.

3.4 STACKS
Stacks, also called pushdown lists or last-in-first-out queues, are an im-
portant feature of DIGITAL's -11 family architecture. They are used for:

e saving the general registers including PC at entry to a subroutine, for
restoration at exit.

¢ saving PC, PSL, and general registers at the time of interrupts and ex-
ceptions, and during context switches.

e creating storage space for temporary use or for nesting of recursive
routines.

A stack is implemented in VAX-11 by a block of memory and a general
register which addresses the ‘‘top” of the stack—that is, that location in

3-5

Table 3-1 Special Register Usage

Conventional Software

Register Hardware Use Use

RO - Results of POLY,CRC; length Results of functions, status
counter in character & decimal of services (not saved or
instructicns restored on procedure call)

R1 Result of POLYD; address Result of functions (not
counter in character & decimal saved or restored on pro-
instructions cedure call)

R2, R4 Length counter in character any
& decimal instructions

R3, R5 Address counter in character any
& decimal instructions

R6-R11 None any

AP (R12) Argument pointer saved & Argument pointer (base
loaded by CALL, restored address of argument list)
by RET

FP(R13) Frame pointer saved & loaded Frame pointer; condition
by CALL, used & restored signalling
by RET

SP (R14) Stack pointer Stack pointer

PC (R15) Program ccunter Program counter

the block which contains the next candidate for removal. An item is
added to the stack (“pushed on”) by decrementing the register which
serves as the stack pointer, and storing the item at the address in the
updated register. The pointer is decremented by the length of the item
added to the stack, to allow enough room for it. Conversely, the top item
is removed (“‘popped off"') by adding the length of the item to the stack
pointer after the last use of the item. These operations are built into the
basic addressing mechanisms of VAX-11 instructions; thus any instruc-
tion can operate on the stack, and it is seldom necessary to devote sep-
arate instructions to maintenance of the stack pointer. See Chapter 5 for
details of the addressing modes of VAX-11 instructions.

A stack is usually bounded by inaccessable pages, in order to catch the
common programming errors associated with stacks: pushing on more
data than there is space to store; and popping off more than was pushed.
By placing the stack in a block of memory between inaccessible pages,
the programmer can be confident of finding such errors.

Many VAX-11 processor operations make use of the stack implicitly (that
is, without explicit specification of SP in an operand specifier). This oc-
curs in instructions used in calling and returning from subroutines, and
in the processor sequences which initiate and terminate interrupt or
exception service routines. In all such cases, the processor uses the
stack addressed by R14.

3-6

This does not mean that exceptions, interrupts, and system services are
performed on the same stack as is used by user-mode programs. The
processor maintains five internal registers as pointers to separate blocks
of memory to be used as stacks, and uses one or another as SP depend-
ing on the current access mode and interrupt stack bit in the processor
status longword. Whenever the current access mode and/or interrupt
stack bits change, the processor saves the contents of SP into the in-
ternal register selected by the old value of those bits, and loads SP from
the register selected by the new value. There is one interrupt stack for
the entire system, but the kernel, executive, supervisor, and user mode
stacks are different for each process in the system. Figure 3-3 illustrates
the relationships of the five stacks and multiple processes.

PROCESS 1 PROCESS 2 PROCESS 3
USER USER 2
STACK STACK

SUPERVISOR 1 SUPERVISOR 2

GREATER STACK STACK
MODE
{LESSER
PRIVILEGE)
EXEC 1 EXEC 2
STACK STACK
KERNEL 1 KERNEL 2
STACK STACK

INTERRUPT STACK
(ALL PROCESSORS)

Figure 3-3 Stacks by Mode vs. Processes

This multiple-stack mechanism offers a number of advantages over a
single stack:

User mode programs are not subject to sudden and non-reproduceable
changes in the data beyond the end of their stack. While it is bad prac-
tice to depend on such data, it would also be poor design to make it
difficult to debug programs which did depend on such data, either in-
tentionally or through programming error.

The integrity of a privileged mode program cannot be compromised by a
less privileged caller. Even if the caller has completely filled its own
stack, the privileged code is in no danger of running out of space, be-
cause separate blocks of memory are allocated to the stack associated
with each mode.

37

Privileged mode programs are not vulnerable to accidental (or malicious)
destruction of the stack pointer by less privileged programs. Even if the
user program uses SP as a floating point accumulator, privileged code
can still depend on it as a stack pointer, because the processor saves the
floating point value and loads the pointer value when a mode change
occurs.

By allocating separate stacks for each mode, VAX-11 can dynamically
page most stack space, while ensuring the availability of space for in-
terrupt and page fault service. Interrupt service routines and the page
fault handler may be invoked at any time, and must have a small amount
of stack available immediately, without waiting for it to be paged in.
User programs, on the other hand, may need very large stack spaces,
making it desirable to page out those regions which are not in active use.

3.5 PROCESSOR STATUS LONGWORD

There are a number of processor state variables associated with each
process, which VAX-11 groups together into the 32-bit Processor Status
Longword or PSL. Bits 15-0 of the PSL are referred to separately as the
Processor Status Word (PSW). The PSW contains unprivileged informa-
tion, and those bits of the PSW which have defined meaning are freely
controllable by any program. Bits 31-16 of the PSL contain privileged
status, and while any program can perform the REI instruction (which
loads PSL), REl will refuse to load any PSL which would increase the
privilege of a process, or create an undefined state in the processor.

31 3029 28 27 26 25 24 23 22 2

e e et

Figure 3-4 Processor Status Longword

Bits 3-0 of the PSL are termed the condition codes; in general they re-
flect the result status of the most recent instruction which affects them.
Refer to the individual instruction descriptions in chapters 6 to 11 for
details of how each instruction affects the condition codes. The condition
codes are tested by the conditional branch instructions.

N—aBit 3 is the Negative condition code; in general it is set by instruc-
tions in which the result stored is negative, and cleared by instructions
in which the result stored is positive or zero. For those instructions which
affect N according to a stored result, N reflects the actual result, even
if the sign of the result is algebraically incorrect as a result of overflow.

Z—Bit 2 is the Zero condition code; in general it is set by instructions
which store a result that is exactly zero, and cleared if the result is not
zero. Again, this reflects the actual result, even if overflow occurs.

V—Bit 1 is the oVerflow condition code; in general it is set after arith-
metic operations in which the magnitude of the algebraically correct re-
sult is too large to be represented in the available space, and cleared
after operations whose result fits. Instructions in which overflow is im-
possible or meaningless either clear V or leave it unaffected. Note that

3-8

all overflow conditions which set V can also cause traps if the appro-
priate trap enable bits are set.

C—Bit 0 is the Carry condition code; in general it is set after arithmetic
operations in which a carry out of, or boirow into, the most significant
bit occurred. C is cleared after arithmetic operations which had no carry
or borrow, and either cleared or unaffected by other instructions. The C
bit is unique in that it not only determines the operation of conditional
branch instructions, it also serves as an input variable to the ADWC
(Add with Carry) and SBWC (Subtract with Carry) instructions used to
implement mulitiple-precision arithmetic.

Bits 4-7 of the PSL are trap-enable flags, which cause traps to occur
under special circumstances:

T—Bit 4 is the Trace bit; when set, it causes a trace trap to occur after
execution of the next instruction. This facility is used by debugging and
performance analysis software to step through a program one instruction
at a time. If any instruction is traced and causes an arithmetic trap, the
trace trap occurs after the arithmetic trap.

IV—Bit 5 is the Integer oVerflow trap enable; when set, it causes an
integer overflow trap after any instruction which produced an integer re-
sult that could not be correctly represented in the space provided. When
bit 5 is clear, no integer overflow trap occurs. The V condition code is set
independently of the state of IV (bit 5).

FU—BIt 6 is the Floating Underflow trap enable. When set, it causes a
floating underflow trap after the execution of any instruction which pro-
duced a floating result too small in magnitude to be represented. When
FU is clear, no floating underflow trap occurs. The result stored is zero
when floating underflow occurs, regardless of the state of FU.

DV—aBit 7 is the Decimal oVerflow trap enable. When set, it causes a
decimal overflow trap after the execution of any instruction which pro-
duces a decimal result whose absolute value is too large to be repre-
sented in the destination space provided. When DV is clear, no decimal
overflow trap occurs. The result stored consists of the low-order digits
and sign of the algebraically correct result.

NOTE
There are other trap conditions for which there
are no enable flags—division by zero and float-
ing overflow.

Bits 8-15 of the PSL are unused, and reserved.

IPL—Bits 16-20 represent the processor’s Interrupt Priority Level. An
interrupt, in order to be acknowledged by the processor, must be at a
priority higher than the current IPL. Virtually all software runs at IPL O,
so the processor acknowledges and services interrupt requests at any
priority. The interrupt service routine for any request, however, runs at
the IPL of the request, thereby temporarily blocking interrupt requests
of lower or equal priority. Refer to Volume 2 for full details. Briefly, there
are 31 priority levels above zero, numbered in hex 01 through 1F. Inter-

39

rupt levels 01 through OF exist entirely for use by software. Levels 10
through 17 are for use by peripheral devices and their controllers, though
present systems support only 14 through 17. Levels 18 to 1F are for use
for urgent conditions, including the interval clock, serious errors, and
power fail.

Previous Mode—Bits 22-23 are the previous mode field, which contains
the value from the current mode field at the most recent exception which
transferred from a less privileged mode to this one. Previous mode is of
interest only in the PROBE instructions, which enable privileged routines
to determine whether a caller at the previous mode is sufficiently priv-
ileged to reference a given area of memory.

Current Mode—Bits 24-25 are the current mode field, which determines
the privilege level of the currently executing program. The values of
mode are:

O—Kernel; most privileged, including the ability to perform all instruc-
tions

1—Executive

2—Supervisor

3—User; least privileged

Privileged is granted in two ways by the mode field—certain instructions
(HALT, Move To Processor Register, and Move From Processor Register)
and not performed unless the current mode is kernel. The memory man-
agement logic controls access to virtual addresses on the basis of the
program'’s current mode, the type of reference (read or write), and a pro-
tection code assigned to each page of the address space.

IS—Bit 26 is the interrupt Stack flag, which indicates that the processor
is using the special “interrupt stack’’ rather than one of the four stacks
associated with the current mode. When IS is set, the current mode is
always kernel; thus software operating ‘‘on the interrupt stack™ has full
kernel-mode privileges.

FPD—BIt 27 is the First Part Done flag, which the processor uses in cer-
tain instructions which may be interrupted or page faulted in the middle
of their execution.

If FPD is set when the processor returns from an exception or interrupt,
it resumes the interrupted operation where it left off, rather than restart-
ing the instruction.

TP—BIt 30 is the Trace Pending bit, which is used by the processor to
ensure that one, and only one, trace trap occurs for each instruction
performed with the Trace bit (bit 4) set. See Chapter 12 for a full discus-
sion of TP.

CM—Bit 31 is the Compatability Mode bit. When CM is set, the pro-
cessor is in PDP-11 compatability mode, and executes PDP-11 instruc-
tions. When CM is clear, the processor is in native mode, and executes
VAX-11 instructions.

3-10

CHAPTER 4
DATA REPRESENTATION

The VAX-11 instruction set deals directly with several data types. These
can be separated into the integer, floating point, variable length bit field,
character string, and decimal string classes. Most of these types can be
subdivided into data types of differing sizes and formats.

The integer data types are used to represent in a binary format quantities
that have a fixed scaling. These quantities can be treated as either signed
or unsigned. When treated as signed quantities, integers are represented
in twos complement form. This means that a negative number is one
greater than the bit-by-bit complement of its positive counterpart. When
treated as unsigned quantities, integers range from O through 2%*n
where there are n bits in the representation. VAX-11 supports in the in-
struction set integer data types of 8, 16, 32, and 64 bit sizes. These are
termed byte, word, longword, and quadword integers respectively.

The floating point data types are used to represent approximations to
quantities for which the scaling is not specified in the program. Floating
point data is stored in a scientific notation as a power of two times a
fraction in the range .5 (inclusive) to 1.0 (exclusive). The data repre-
sentation consists of three fields, the sign, the power of two exponent,
and the fractional magnitude. VAX-11 supports in the instruction set
floating point data types of 32 and 64 bit sizes. These are termed float-
ing and double floating respectively.

The variable length bit field is a data type used to store small integers
packed together in a larger data structure. This saves memory when
many small integers are part of a larger structure. A specific case of the
variable bit field is that of one bit. This form is used to store and access
individual flags efficiently.

The character string is a data type used to represent strings of charac-
ters such as names, data records, or text. Rather than performing arith-
metic or logical operations on character strings, the important operations
include copying, concatenating, searching, and translating the string.

The decimal string data types are used to represent fixed scaled quan-
tities in a form close to their external representation. For programs that
are input/output intensive rather than computation intensive, this rep-
resentation is frequently more efficient. The decimal string data types
include formats in which each decimal digit occupies one byte (charac-
ter) and a more compact form in which two decimal digits are packed
into one byte. These are termed numeric and packed decimal strings re-
spectively. Because the numeric string form represents many external

41

data arrangements exactly, it appears in several representations. The
most significant distinguishing characteristic is whether the sign, if any,
appears before the first digit or whether it is superimposed on the final
digit. These are termed leading separate and trailing numeric strings
respectively.

4.1 BYTE
A byte is 8 contiguous bits starting on an addressable byte boundary.
The bits are numbered from the right O through 7:

7 1]

[-

A byte is specified by its address A. When interpreted arithmetically, a
byte is a twos complement integer with bits of increasing significance
going O through 6 and bit 7 the sign bit. The value of the integer is in
the range —128 through 127. For the purposes of addition, subtraction,
and comparison, VAX-11 instructions also provide direct support for the
interpretation of a byte as an unsigned integer with bits of increasing
significance going O through 7. The value of the unsigned integer is in
the range O through 255.

4.2 WORD
A word is 2 contiguous bytes starting on an arbitrary byte boundary. The
bits are numbered from the right O through 15:

15 0

|+

A word is specified by its address A, the address of the byte containing
bit 0. When interpreted arithmetically, a word is a twos complement in-
teger with bits of increasing significance going 0 through 14 and bit 15
the sign bit. The value of the integer is in the range —32,768 through
32,767. For the purposes of addition, subtraction and comparison,
VAX-11 instructions also provide direct support for the interpretation of
a word as an unsigned integer with bits of increasing significance going
0 through 15. The value of the unsigned integer is in the range O
through 65,535.

4.3 LONGWORD
A longword is 4 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right O through 31:

N 0

C i

A longword is specified by its address A, the address of the byte con-
taining bit 0. When interpreted arithmetically, a longword is a twos com-
plement integer with bits of increasing significance going O through 30
and bit 31 the sign bit. The value of the integer is in the range

4.2

—2,147,483,648 through 2,147,483,647. For the purposes of addition,
subtraction, and comparison, VAX-11 instructions also provide direct
support for the interpretation of a longword as an unsigned integer with
bits of increasing significance going O through 31. The value of the un-
signed integer is in the range O through 4,294,967,295.

Note that the longword format is different from the longword format de-
fined by the PDP-11 FP-11. In that format, bits of increasing significance
go from 16 through 31 and O through 14. Bit 15 is the sign bit. Most
DIGITAL software and in particular PDP-11 FORTRAN uses the VAX-11
longword format.

4.4 QUADWORD
A quadword is 8 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right O through 63:

kil (]

63 R

A quadword is specified by its address A, the address of the byte con-
taining bit 0. When interpreted arithmetically, a quadword is a twos
complement integer with bits of increasing significance going O through
62 and bit 63 the sign bit. The value of the integer is in the range
—2%*63 to 2%*63-1. The quadword data type is not fully supported by
VAX-11 instructions.

4.5 FLOATING
A floating datum is 4 contiguous bytes starting on an arbitrary byte
boundary. The bits are labelled from the right O through 31.

15 M 7 6 ()
s EXP I FRACTION A

FRACTION

A floating datum is specified by its address A, the address of the byte
containing bit 0. The form of a floating datum is sign magnitude with
bit 15 the sign bit, bits 14:7 an excess 128 binary exponent, and bits
6:0 and 31:16 a normalized 24-bit fraction with the redundant most
significant fraction bit not represented. Within the fraction, bits of in-
creasing significance go from 16 through 31 and O through 6. The 8-bit
exponent field encodes the values O through 255. An exponent value of
0 together with a sign bit of O, is taken to indicate that the floating
agatum has a value of 0. Exponent values of 1 through 255 indicate true
binary exponents of —127 through +4127. An exponent vaiue of O, to-
gether with a sign bit of 1, is taken as reserved. Floating point instruc-
tions processing a reserved operand take a reserved operand fault (See
Chapters 6 and 12). The value of a floating datum is in the approximate
range .29*%10%*_—38 through 1.7%*10%*38. The precision of a floating
datum is approximately one part in 2%%23, i.e., typically 7 decimal digits.

43

4.6 DOUBLE FLOATING
A double floating datum is 8 contiguous bytes starting on an arbitrary
byte boundary. The bits are labelled from the right O through 63:

15 14 7 6 0
s [ExP FRACTION A

FRACTION

FRACTION

FRACTION l

A double floating datum is specified by its address A, the address of the
byte containing bit 0. The form of a double floating datum is identical
to a floating datum except for an additional 32 low significance fraction
bits. Within the fraction, bits of increasing significance go 48 through
63, 32 through 47, 16 through 31, and O through 6. The exponent con-
ventions, and approximate range of values is the same for double float-
ing as floating. The precision of a double floating datum is approximately
one part in 2**55, i.e., typically 16 decimal digits.

4.7 VARIABLE LENGTH BIT FIELD

A variable bit field is O to 32 contiguous bits located arbitrarily with
respect to byte boundaries. A variable bit field is specified by three
attributes: the address A of a byte, a bit position P that is the starting
location of the field with respect to bit 0 of the byte at A, and a size S
of the field. The specification of a bit field is indicated by the following
where the field is the shaded area.

L

P+S PrS-1 P P-l [

5-1 0

The position is in the range —2%*31 through 2¥%31—1 and is conven-
iently viewed as a signed 29-bit byte offset and a 3-bit bit-within-byte
field:

3 3 2 0
BYTE OFFSET bwb [

The sign extended 29-bit byte offset is added to the address A and the
resulting address specifies the byte in which the field begins. The 3-bit
bit-within-byte field encodes the starting position (0 through 7) of the
field within that byte. The VAX-11 field instructions provide direct sup-
port for the interpretation of a field as a signed or unsigned integer.
When interpreted as a signed integer, it is twos complement with bits
of increasing significance going O through S—2; bit S—1 is the sign bit.
When interpreted as an unsigned integer, bits of increasing significance
go from O to S—1. A field of size O has a value identically equal to 0;
it contains no bits and no memory is referenced; hence, the address
need not be valid.

4-4

A variable bit field may be contained in zero to five bytes. From a mem-
ory management point of view only the minimum number of bytes nec-
essary to contain the field is actually referenced.

4.8 CHARACTER STRING

A character string is a contiguous sequence of bytes in memory. A char-
acter string is specified by two attributes: the address A of the first byte
of the string, and the length L of the string in bytes. Thus the format of
a character string is:

C P

The address of a string specifies the first character of a string. Thus
“XYZ" is represented:

X TA
A Al
z D A*2

The length L of a string is in the range O through 65,535. A string
with length O is termed a null string; it contains no bytes and no memory
is referenced; hence, the address need not be valid.

4.9 TRAILING NUMERIC STRING

A trailing numeric string is a contiguous sequence of bytes in memory.
The string is specified by two attributes: the address A of the first byte
(most significant digit) of the string, and the length L of the string in
bytes.

All bytes of a trailing numeric string, except the least significant digit
byte, must contain an ASCII decimal digit character (0-9). The represen-
tation for the high order digits is:

digit decimal hex ASCII character
0 48 30 0
1 49 31 1
2 50 32 2
3 51 33 3
4 52 34 4
5 53 35 5
6 54 36 [
7 55 37 7
8 56 38 8
9 57 39 9

4-5

The highest addressed byte of a trailing numeric string represents an
encoding of both the least significant digit and the sign of the numeric
string. The VAX-11 numeric string instructions support any encoding;
however there are three preferred encodings used by DIGITAL software.
These are (1) unsigned numeric in which there is no sign and the least
significant digit contains an ASCH decimal digit character, (2) zoned
numeric, and (3) overpunched numeric. Because the overpunch format
has been used by compilers of many manufacturers over many years,
and because various card encodings are used, several variations in
overpunch format have evolved. Typically, these alternate forms are
accepted on input. The valid representations of the digit and sign in
each of the later two formats is shown in Table 4-1.

Table 4-1
Representation of Least Significant Digit and Sign
Zoned Numeric Format Overpunch Format
deci- ASCII deci- ASCII char.
digit mal hex char. mal hex norm alt.
0 48 30 0 123 7B { [?
1 49 31 1 65 41 A a
2 50 32 2 66 42 B b
3 51 33 3 67 43 C c
4 52 34 4 68 44 D d
5 53 35 5 69 45 E e
6 54 36 6 70 46 F f
7 55 37 7 71 47 G g
8 56 38 8 72 48 H h
9 57 39 9 73 49 1 i
—0 112 70 p 125 7D } IR
-1 113 71 g 74 4A J i
-2 114 72 r 75 4B K k
-3 115 73 s 76 4C L |
—4 116 74 t 77 4D M m
-5 117 75 u 78 4E N n
—6 118 76 v 79 4F 0 o
-7 119 77 w 80 50 P p
-8 120 78 X 81 51 Q q
-9 121 79 y 82 52 R r

The length L of a trailing numeric string must be in the range O to 31
(0 to 31 digits). The value of a O length string is identically O; it con-
tains no bytes and no memory is referenced; hence, the address need
not be valid.

The address A of the string specifies the byte of the string containing
the most significant digit. Digits of decreasing significance are assigned
to increasing addresses. Thus ‘123" is represented:

46

ZONED FORMAT OR UNSIGNED OVERPUNCH FORMAT

and *'—123” is represented

ZONED FORMAT OVERPUNCH FORMAT

4 4 3 Q 7 4

3) PA 3

3 2 T A 3

7 3 A2 4

4.10 LEADING SEPARATE NUMERIC STRING

A leading separate numeric string is a contiguous sequence of bytes in
memory. A leading separate numeric string is specified by two attri-
butes: the address A of the first byte (containing the sign character),
and a length L that is the length of the string in digits and NOT the
length of the string in bytes. The number of bytes in a leading separate

numeric string is L4-1.

The sign of a separate leading numeric string is stored in a separate

byte. Valid sign bytes are:

sign decimal hex
+ 43 2B
+ 32 20
— 45 2D

ASCII character

+
<blank>

The preferred representation for ‘4" is ASCIl “4”. All subsequent

bytes contain an ASCII digit character:

digit decimal hex
0 48 30
1 49 31
2 50 32
3 51 33
4 52 34
5 53 35
6 54 36
7 55 37
8 56 38
9 57 39

ASCI! character

CONOOTGARWNHO

The length L of a leading separate numeric string must be in the range
0 to 31 (0 to 31 digits). The value of a O length string is identically O;

it contains only the sign byte.
4-7

The address A of the string specifl:es the byte of the string containing
the sign. Digits of decreasing significance are assigned to bytes of in-
creasing addresses. Thus “4123" is:

and “—123" is:

4.11 PACKED DECIMAL STRING

A packed decimal string is a contiguous sequence of bytes in memory.
A packed decimal string is specified by two attributes: the address A
of the first byte of the string and a length L that is the number of digits
in the string and NOT the length of the string in bytes. The bytes of a
packed decimal string are divided into two 4-bit fields (nibbles) that
must contain decimal digits except the low nibble (bits 3:0) of the last
(highest addressed) byte which must contain a sign. The representation
for the digits and sign is:

digit or sign decimal hex

| +00ONOUARWNRO
VCONOULRWN-O
WONOURWNRO

10, 12, 14 or 15
1l1or13

E orF
D

w>
o0

- -

The preferred sign representation is 12 for “4’" and 13 for “—"". The
length L is the number of digits in the packed decimal string (not
counting the sign) and must be in the range O through 31. When the
number of digits is odd, the digits and the sign fit in L/2 (integer part
only) + 1 bytes. When the number of digits is even, it is required that

4.8

an extra “0” digit appear in the high nibble (bits 7:4) of the first byte
of the string. Again the length in bytes of the string is L/2 + 1. The
value of a O length packed decimal string is identically O; it contains
only the sign byte which also includes the extra “‘0" digit.

The address A of the string specifies the byte of the string containing
the most significant digit in its high nibble. Digits of decreasing signifi-
cance are assigned to increasing byte addresses and from high nibble
to low nibble within a byte. Thus “4123" has length 3 and is repre-
sented:

and “—12'" has length 2 and is represented:

7 4 3 0

49

CHAPTER 5

INSTRUCTION FORMATS and
ADDRESSING MODES

5.1 INTRODUCTION

This chapter describes the addressing modes used in programming the
VAX-11 computer. The addressing modes, together with a set of 16
general-purpose registers, provide a convenient method of accessing
and manipulating data stored in memory. The addressing modes specify
how the selected registers are used to access, manipulate, and store
data and instructions.

5.2 GENERAL REGISTERS
The VAX-11 general-purpose registers can be used with an instruction
in any of the following ways:

e As accumulators. The data to be processed is contained in the register.

e As pointers. The contents of the register are the address of the oper-
and, rather than the operand itself. This form is often referred to as
a base register because it frequently contains the base address of a
data structure.

e As pointers which automatically step through memory locations. Auto-
matically stepping forward through consecutive locations is known as
autoincrement addressing; automatically stepping backwards is known
as autodecrement addressing. These modes are particularly useful for
processing tabular data and manipulating stacks and are described
in subsequent paragraphs in this chapter.

e As index registers. When used as an index register, an offset is gen-
erated and is added to the base operand address to yield the indexed
location. This is described under Index Mode addressing in this chap-
ter.

One of the general-purpose registers is designated a stack pointer and
provides temporary storage for data which is frequently accessed. In
the VAX-11 any register can be used as a stack pointer under pro-
gram control; however, certain instructions associated with subroutine
linkage and interrupt service (both of which require storage of linkage
information) automatically use register R14 as a “hardware stack
pointer.” For this reason, R14 is frequently referred to as the ““SP’. The
stack pointer addresses decrease as items are added to the stack. This
is conveniently done by decrementing the address and “pushes’ data
on the stack. This is referred to as autodecrement addressing. The
stack pointer addresses increase as items are removed from the stack.
This is conveniently done by incrementing the address and ‘‘pops’ data
from the stack. This is referred to as autoincrement addressing. Con-
sequently, the stack pointer always points to the lowest addressed end
of the stack. The hardware stack is used during exception or interrupt
handling to store breakpoint information, allowing the processor to re-
turn to the main program.

5-1

R15 is used by the processor as the program counter (PC) which points
to the next instruction in the program to be executed. Whenever an in-
struction is fetched from memory, the program counter is automatically
incremented by the number of bytes in the instruction.

5.3 INSTRUCTION FORMAT

The VAX-11 instruction set has a variable length instruction format
which may be as short as one byte and as long as needed depending
on the type of instruction. The general instruction format is shown in
Figure 5-1. Each instruction consists of an opcode followed by O to 6
operand specifiers whose number and type depend on the opcode.
Every operand specifier is of the same format—i.e., an address mode
plus additional information. This additional information contains up to
two register designators and addresses, data, or displacements. The
operand usage is determined implicitly from the opcode, and is termed
the operand type. The operand type includes both the access type and
the data type. Figure 5-2 shows several examples of VAX-11 instruction
formats.

OPCODE (1 OR 2 BYTES)
OPERATION CODE

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

N
t

Y
—
s ® o & e

OPERAND SPECIFIER N

Figure 5-1 General VAX-11 Instruction Format

5.3.1 Assembler Notation

The radix of the assembler is in decimal notation. To express a hexa-
decimal number in assembler notation it is required to precede the
number by “X. For example, the assembler interprets the 3456 in
“MOVW #3456, —(SP)"”" as a decimal number. If it is to be expressed
as a hexadecimal number, it would be

5-2

MOVW #°X 3456, —(SP).

Examples of hexadecimal numbers and conversion between hex and
decimal are provided in Appendix A.

A. MOVE LONG INSTRUCTION

MOVL &{R1),R5 ;SIX 1S ADDED TO R, THE RESULT USED AS AN
; ADDRESS AND THE CONTENTS OF THAT ADDRESS
;1S MOVED TO RS

BYTE
1 MOVL OPCODE
2 (RY)
3 3 OPERAND SPECIFIER 1
4 RS OPERAND SPECIFIER 2

B. MOVE WORD INSTRUCTION
MOVW # "X3456,- (SP) ; THE NUMBER 3456 IS PUSHED ON THE
1 STACH

1 STACK
BYTE
1 MOVW OPCODE
2 (PC) + OPERAND SPECIFIER }
3 56 IMMEDIATE DATA {56 STORED IN BYTE 3)
4 34 (34 STORED IN BYTE 4)
5 —(SP) OPERAND SPECIFIER 2

C. ADD LONG INSTRUCTION ({3 OPERAND)
ADDL3 (SP)+, R4, R5 ; NUMBER ON THE STACK IS
; ADDED TO THE CONTENTS OF
; R4 AND RESULT IS STORED

; IN RS
BYTE
1 ADDL 3 OPCODE
2 (sp} + OPERAND SPECIFIER 1
3 R4 OPERAND SPECIFIER 2
4 (R5) OPERAND SPECIFIER 3

Figure 5-2 Examples of Instruction Format

5.3.2 Operation Code (OPCODE)

Each VAX-11 instruction contains an opcode which specifies the desired
operation to be performed. The opcode may be one or two bytes long,
depending on the instruction. The presently available instruction set
only uses a one-byte opcode. Figure 5-3 shows the opcode format.

5-3

1 BYTE OPCODE
7 0
OPCODE

FC-FF
{1111 100 1111 111

2 BYTE OPCODE

Figure 5-3 Opcode Format

5.3.3 Operand Types

The operand types in an instruction specify how the operand asso-
ciated with an instruction is used. An instruction may have no oper-
ands, a single operand or multiple operands. The information derived
from the opcode includes the data type of each operand and how the
operand is accessed. The data types include:

Byte—38-bits

Word—16-bits

Longword—-32-bits

Floating—32-bit single-precision floating point (same as longword for
addressing mode considerations).

Quad word—64-bit

Double—64-bit double-precision floating point (same as quad word
for addressing mode considerations).

An operand may be accessed in one of the following ways:

Read—The specified operand is read only.
Write—The specified operand is written only.

Modify—The specified operand is read, may or may not be modified
and is written.

Address—Address calculation occurs until the actual address of the
operand is obtained. In this mode, the data type indicates the operand
size to be used in the address calculation. The specified operand is
not accessed directly although the instruction may subsequently use
the address to access that operand.

Variable field—If just Rn is specified, the field is in the general reg-
ister R[n] or in registers R[n+4-1] ' R[n] (i.e., registers R[n+1] con-
catenated with R[n]). Otherwise, address calculation occurs until the
actual address of the operand is obtained. This address specified the
base to which the field position (offset) is applied.

Branch—No operand is accessed. The operand specifier itself is a
branch displacement. In this specifier, the data type indicates the size
of the branch displacement.

5-4

5.3.4 Operand Specifier

An operand specifier gives the information needed to locate the operand.
For the literal modes, the operand specifier actually includes the value
of the operand. Every operand specifier (except branch operands) has
the same format and interpretation. The format includes a field that is
the address mode. Depending on the mode, this field is 2, 4, or 8 bits.
Most address modes include additional information. Depending on the
mode up to two register designators are included.

The specifier can also include a displacement address to some location
other than the base-register memory location; or the specifier extension
can contain immediate data or an absolute address.

5.4 ADDRESSING MODES

VAX-11 addressing can be broadly divided into general mode addressing
and branch addressing. The two types of branch addressing are de-
signated byte displacement and word displacement. Section 5.5 describes
the general mode addressing and Section 5.8 describes branch mode
addressing.

Table 5-1 shows the mode specifier for each addressing mode in hex-
adecimal and decimal notation, the assembler notation, the access types
which may be used with the various modes, the effect on the program
and stack pointer, and which modes may be indexed. For example, in
literal mode only a read access may occur. Any other type of access
results in a reserved addressing mode fault. The program counter and
stack pointer are not referenced in this mode and are logically impos-
sible. If indexing is attempted in this mode, a reserved addressing mode
fault will occur.

Following the description of each address mode is an example of how
the mode is implemented. The examples show the opcode and operand
type notation (opcode src.rx, for example). The src designates source.
The r designates that only a read to the source can occur and the x
indicates any one of the available data types according to the instruc-
tion opcode.

5.5 GENERAL MODE ADDRESSING
5.5.1 Register Mode

Assembler
Syntax: Rn

Mode
Specifier: 5

Operand
Specifier
Format:

5-5

Description:

Special
Comments:

EXAMPLE:

Instruction
Format:

R[nh+1] * R[n]. The operand is the contents of Rn for
quad, double floating and certain field operands used in
the variable bit length field instructions.

Operand = Rn if one register, or
R[n4-1]’ R[n] if two registers

With register mode, any of the general registers may be
used as simple accumulators and the operand is con-
tained in the selected register. Since they are hardware
registers within the processor, they provide speed ad-
vantages when used for operating on frequently-accessed
variables.

This mode can be used with operand specifiers using read,
write or modify access but cannot be used with the ad-
dress access type; otherwise, an illegal addressing mode
fault results. The program counter (PC) cannot be used
in this mode. If the PC is read, the value is unpredictable;
if the PC is written, the next instruction executed or the
next operand specified is unpredictable. If PC is used in
a write operand that takes two registers, the contents of
RO is also unpredictable.

The stack pointer (SP) cannot be used in this mode for
an operand which takes two adjacent registers since that
would imply a direct reference to the PC and the results
are unpredictable.

REGISTER MODE, MOVE WORD INSTRUCTION

MOVW R1, R2 Instruction moves a 16-
bit word of data from
R1 to R2.

BEFORE INSTRUCTION EXECUTION

RO Rl

Lelelalofo e fof [efedelofofefe]e]

AFTER INSTRUCTION EXECUTION

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000
00003001
00003002

8O OPCODE FOR MOVE WORD INSTRUCTION
51 OPERAND SPECIFIER, SOURCE; REGISTER MODE 1
52 OPERAND SPECIFIER, DESTINATION; REGISTER MODE 2

This example shows a Move Word instruction using reg-
ister mode. The contents of R1 is the operand and the
Move Word instruction causes the least significant half
of R1 to be transferred to the least significant half of
register R2. The upper half of register R2 is unaffected.

Table 5-1 Summary of Addressing Modes

GENERAL REGISTER ADDRESSING

Dec Name Assémbler

Hex rmwav PC SP Indexable?
0-3 0-3 literal S"# literal y ffff — — f
4 4 indexed i [Rx] yyyyy f y f
5 5 register Rn yyyfy u uqg f
6 6 register deferred (Rn) Yyyyy u y y
7 7 autodecrement —(Rn) Yyyyyy u y ux
8 8 autoincrement (Rn)+ YYYYyYYyYy p y ux
9 9 autoincrement

deferred @ (R)+ Yyyyy p y ux
A 10 byte displacement B"D (Rn) YyYyyyy p y y
B 11 byte displacement

deferred @BDR®R) yyyyy p y y
C 12 word displacement W'D (Rn) YYYYYyY p y y
D 13 word displacement

deferred @WDM®n) yyyyy p y y
E 14 longword displacement LD (Rn) YyYYYYyYy p y y
F 15 longword displacement

deferred @UDRn) yyyyy p oy y

PROGRAM COUNTER ADDRESSING

Hex Dec Name Assembler rmwav PC SP Indexable?
8 8 immediate I"Zconstant y uuyy — — y
9 9 absolute @#address y y y y y — — ¥
A 10 byte relative B address Yyyyy — — y
B 11 byte relative @Baddress y y y y y — — y

deferred
o] 12 word relative W-address yyyyy — — y
D 13 word relative @Waddress yyyyy — — y

deferred
E 14 longword relative L address yyyyy — — y
F 15 longword relative @Laddress y y yyy — — y

deferred

D — displacement
i — any indexabte addressing mode
— — logically impossible
f — reserved addressing mode fauit
p — Program Counter addressing
u — Unpredictable
ug — Unpredictable for quad and double (and field if position - size greater
than 32)
ux — Unpredictable for index register same as base register
y — yes, always valid addressing mode
r — read access
m — modify access
w — write access
a — address access
v — field access

5-7

5.5.2 Register Deferred Mode

Assembler
Syntax:

Mode
Specifier:

Operand
Specifier
Format:

Description:

Special
Comments:

EXAMPLE:

Instruction
Format:

(Rn)

6

The register deferred mode provides one level of indirect
addressing over register mode; that is, the general reg-
ister contains the address of the operand rather than the
operand itself. The deferred modes are useful when deal-
ing with an operand whose address is calculated.

The PC cannot be used in register deferred mode addres-
sing as the resuits will be unpredictable.

REGISTER DEFERRED MODE, CLEAR QUAD INSTRUC-
TION

CLRQ (R4)

BEFORE INSTRUCTION EXECUTION

00001010
00001011
00001012
00001013
00001014
00001015
00001016
00001017

ADDRESS

SPACE R4

AB ofolotol1r|lofl1]o0
co

EF
12
34
56
76
65

5-8

AFTER INSTRUCTION EXECUTION

00001010
00001011
00001012
00001013
00001014
00001015
00001016
00001017

MACHINE CODE:

00003000
00003007
00003002

ADDRESS
SPACE Ra
00 oftofoflo]1v]o]r]|o
00
00
00
00
00
00
00

ASSUME STARTING LOCATION 00003000

7¢C OPCODE FOR CLEAR QUAD INSTRUCTION
64 OPERAND SPECIFIER FOR REGISTER DEFERRED MODE, R4

This example shows a Clear Quad instruction using Reg-
ister Deferred Mode. Register R4 contains the address of
the operand and the instruction specifies that this ad-
dress plus the following seven byte addresses are to be
cleared.

5.5.3 Autoincrement Mode

Assembler
Syntax:

Mode
Specifier:

Operand
Specifier
Format:

Description:

(Rnm)+

8

In autoincrement mode addressing, the contents of Rn
contains the address of the operand. After the operand
address is determined, the size of the operand (which is
determined by the instruction) in bytes (1 for byte, 2 for
word, 4 for longword or floating and 8 for quad word
or double floating) is added to the contents of register
Rn and the contents of Rn is replaced by the result. This
mode provides for automatic stepping of a pointer
through sequential elements of a table of operands. It
assumes the contents of the selected general register to
be the address of the operand. Contents of registers are

5-9

Special

Comments:

EXAMPLE:

Instruction
Format:

incremented to address the next sequential location. The
autoincrement mode is especially useful for array pro-
cessing and stacks. It will access an element of a table
and then step the pointer to address the next operand
in the table., Although most useful for table handling,
this mode is completely general and may be used for a
variety of purposes.

If the PC is used as the general register, this addressing
mode is designated immediate mode and has special
syntax which is described in paragraph 5.7.1.

AUTOINCREMENT MODE, MOVE LONG INSTRUCTION

MOVL (R1)+4, R2 This instruction will
move a longword of
data (32 bits) to R2.

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE

RI R2
ooomovo} [ﬂoooooo |

00001010 00

00001011 B OPERAND

00001012 22

00001013 33

00001014 44

00001015 53 SOURCE OPERAND ADDRESS = 00001010

AFTER INSTRUCTION EXECUTION

ADDRESS
SPACE RI R2
00001010 | 00 [oooomu | [33221100 I

00001011 11
00001012 22
00001013 33
00001014 44
00001015 55

MACHINE CODE: ASSUME STARTING LOCATION 3000

00003000 DO OPCODE FOR MOVE LONG WORD INSTRUCTION
00003001 81 AUTOINCREMENT MODE, REGISTER R1
00003002 52 REGISTER MODE , REGISTER R2

00003003

This example shows a Move Long instruction using auto-
increment mode. The contents of register R1 is the effec-
tive address of the source operand. The operand is a
32-bit longword and, therefore, four bytes are transferred
to register R2. R1 is then incremented by 4 since the
instruction specifies a longword data type.

5-10

5.5.4 Autoincrement Deferred Mode

Assembler

Syntax: @ (Rn)+4

Mode

Specifier: 9

Operand

Specifier

Format:

7 4 3 0
9 Rn

Description: In autoincrement deferred addressing, register Rn con-
tains a longword address which is a pointer to the oper-
and address. After the operand address has been deter-
mined, 4 is added to the contents of register Rn and the
contents of register Rn is replaced with the result. The
quantity 4 is used since there are 4 bytes in an address.

Special

Comments: If the PC is used as the general register, this addressing
mode is designated absolute mode and is described in
paragraph 5.7.2.

EXAMPLE: AUTOINCREMENT DEFERRED MODE, MOVE WORD IN-
STRUCTION

Instruction

Format: MOVW @(R1)+4, R2

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R1 R2
00001010 | o0 00001010] | 00000000

00001011 1 OPERAND ADDRESS
00001012 22 33221100

00001013 33
00001014 44
00001015 55

L

33221100 34
33221101 5F
33221102 00
33221103 00

AFTER INSTRUCTION EXECUTION

RI R2
Loooomla I roooos::aa]

5-11

VMACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 BO OPCODE FOR MOVE WORD INSTRUCTION
00003001 21 AUTOINCREMENT DEFERRED MODE, REGISTER R)
00003002 52 REGISTER MODE, REGISTER R2

This example shows a Move Word instruction using auto-
increment deferred mode. The contents of register R1 is
a pointer to the operand address. Since a word length
instruction is specified, the byte at the effective address
and the byte at the effective address plus 1 are loaded
into the low-order half of register R2 with the upper half
of R2 unspecified. R1 is then incremented by 4 since it
contains a 32-bit address.

5.5.5 Autodecrement Mode

Assembler
Syntax:

Mode
Specifier:

Operand
Specifier
Format:

Description:

Special
Comments:

EXAMPLE:

—(Rn)

7

The contents of Rn are decremented and then used as
the address of the operand.

With autodecrement mode, the size of the operand in
bytes (1 for byte, 2 for word, 4 for longword or floating
and 8 for quad word or double) is subtracted from the
contents of register Rn and the contents of register Rn
are replaced by the result. The updated contents of reg-
ister Rn is the address of the operand. The contents of
the selected general register are decremented and then
used as the address of the operand.

The PC may not be used in autodecrement mode. If it is,
the address of the operand is unpredictable and the next
instruction executed or the next operand specifier is
unpredictable.

AUTODECREMENT MODE, MOVE LONG INSTRUCTION
MOVL —(R3), R4

5-12

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R3 R4
00001014 | 10 1 | 00001018 | [00000000
50001015 32
00001016 54 CES43210
00001017 CE
AFTER INSTRUCTION EXECUTION R3 R4

LOOOO]OM J l CESASZIOJ

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 Do OPCODE FOR MOVE LONG INSTRUCTION

00003001 73 AUTODECREMENT MODE, REGISTER R3
00003002 54 REGISTER MODE, REGISTER R4

This example shows a Move Long instruction using auto-
decrement mode. The contents of register R3 is decre-
mented according to the data type specified in the op-
code (4 in this example because a longword is used).
The updated contents of register R3 is then used as the
address of the operand. The instruction causes the oper-
and to be fetched and loaded into register R4.

5.5.6 Literal Mode

Assembler
Syntax: S™# literal

Mode
Specifier: 0,1,20r3
(depending on literal value specified)

Operand
Specifier
Format:

0 0 LITERAL

The $” syntax can be used to force literal mode; otherwise,
the assembler will force literal or immediate mode, which-
ever is more appropriate.

5-13

Description: Literal mode addressing provides an efficient means of
specifying integer constants in the range from 0 to 63
(decimal). This is called short literal. Literal values above
63 can be obtained by immediate mode (autoincrement
mode using the PC). For short literal operands, the for-
mat is:

MODE SPECIFIER
7 -] 5 4 0
0 0

Bits 7 and 6, however, are always set to zero. The follow-
ing examples show some short literals; the literals are 14,
30, 46, and 62.

MODE
SPECIFIER=0
T
FIER =0
o o olo o 1 1 1 o :isAr(\)lE';]ES%F MODE SPECIFIER
1 1 A 1 1 1
Y _/
MODE Min=0
SPECIFIER=] 1070816
0 o olo 1 1 1 1 o lRSAI;IOG_%]?; MODE SPECIFIER = |
1 1 1 1 1 1
(N J
MODE .
SPECIFIER=2 30y = 1E
0 o ol1 o 1 1 1 o :QSAaNzG_Ea??; MODE SPECIFIER =2
1 1 . 1 IS 1
“ ./
MODE 46,0 = 2E
SPECIFIER= 3 10
2 |0 o1 1 1 1 1 o :QSAT;S-Eé :’OF MODE SPECIFIER= 3
i L : s " N 10
\ J
62 = 3E

Floating point literals as well as short literals can be
expressed. The floating point literals are listed in Table
5-2. For operands of the short floating type, the 6-bit
literal field in the operand specifier is composed of two
3-bit fields where EXP designates exponent and FRAC
designates fraction.

5-14

EXP FRAC

The 3-bit EXP field and 3-bit FRAC field are used to form

a fioating or double-floating operand as follows:

EXP FRAC
———
15 14 13 12 11 10 9 8 7 6 5 4 3 0
o[fofelele] [T [F—o—r

63 48

NOTE
Bits 32-63 are not present in single-precision
floating point operands.

Bits 3 through 5 of the EXP field are stored in bits 7
through 9, respectively, of the floating operand. Bits O
through 2 of the FRAC field are stored in bits 4 through
6, respectively, in the floating operand. The actual
decimal values which can be stored are given in Table
5-2.

The EXP field is expressed in ‘“‘excess 128" notation. In
this notation, an offset of 128 is actually added to the
exponent. For example, an exponent of zero is repre-
sented as 128 or 10000000 (binary), while an exponent
of three is represented as 131 or 10000011 (binary).

Assume it is desired to express the floating point literal
of 12. Table 5-2 shows this decimal literal of 12 to be
represented by a fraction of 4 and an exponent of 4.

LITERAL MODE
76543210

ojo|1tfojoj1(o|o

N .
154 B2 1109 8 265 4.3 0

0]1({010{0|0[1]0[0}1]10|0|=—0—=

31 16
o]

FLOATING OPERAND

5-16

Table 5-2 Floating Literals

Exponent FRACTION

0 1 2 3 4 5 6 7
0 L s % s 34 s 78 Yis
1 1 114 11, 134 11, 154 134 17
2 2 24, 2y, 23/, 3 3y, 3y, 33,
3 4 41/, 5 51, 6 6%, 7 7Y,
4 8 9 10 11 12 13 14 15
5 16 18 20 22 24 26 28 30
6 32 36 40 44 48 52 56 60
7 64 72 80 88 96 104 112 120

EXAMPLE: LITERAL MODE, MOVE LONG INSTRUCTION

MOVL S"# 9, R4

BEFORE INSTRUCTION EXECUTION

R4
00000000

AFTER INSTRUCTION EXECUTION
R4

00000009

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 DO OPCODE FOR MOVE LONG INSTRUCTION
00003001 09 LITERAL 9
00003002 54 REGISTER MODE, REGISTER R4

This example shows a Move Long instruction using literal
mode. The literal 9 is transferred to register R4 as a re-
sult of the instruction.

5.5.7 Displacement Mode

Assembler

Syntax: D(Rn)—general displacement syntax
B"D(Rn)—forces byte displacement
W*"D(Rn)—forces word displacement
L*D(Rn)—forces longword displacement

Mode

Specifier: A—(byte displacement)

C—(word displacement)
E—(longword displacement)

5-16

Operand
Specifier
Format:

15 8 7 4 3 0
T I
DISP. I A | Rn BYTE DISPLACEMENT MODE
23 8 7 4 3 0
[DISP. ‘ C | Ra l WORD DISPLACEMENT MODE
39 8 7 4 3 0
r DISP. | E] Rn ‘ LONG WORD DiSPLACEMENT MODE

Description:

EXAMPLE:

In displacement mode addressing, the displacement
(after being sign extended to 32 bits if it is a byte or
word) is added to the contents of register Rn and the
result is the operand address. This mode is the equiv-
alent of index mode in the PDP-11 series.

The VAX-11 architecture provides for an 8-bit, 16-bit or
32-bit offset. Since most program references occur with-
in small discrete portions of the address space, a 32-bit
offset is not always necessary and the 8- and 16-bit off-
sets will result in substantial economies of space (that
is, fewer bits are required).

If the PC is used as the general register, this mode is
called relative mode and is described in paragraph 5.7.3.

DISPLACEMENT MODE, MOVE BYTE INSTRUCTION
MOVB B*5(R4), B"3(R3)

BEFORE INSTRUCTION EXECUTION

A?&FESS R4 R3
00001015 00 [Roowlz] ’oooozo:o
00001016 00
00001017 06 | <— OPERAND
00001018 00 00001012 00002020
00001019 L—— +3 +3
00001017 00002023
 ————
00002021 00

00002022 00
00002023 00

__~

AFTER INSTRUCTION EXECUTION

00001015 00 IOOOOIOI'Z—l L0002020 |
00001016 00
00001017 06
00001018 _’0‘.;___
00001019
00002021 00
00002022 00

00002023 06 | -<— OPERAND
—"_/")

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 90 OPCODE FOR MOVE BYTE INSTRUCTION
00003001 A4 SIGNED BYTE DISPLACEMENT, REGISTER R4
00003002 05 SPECIFIER EXTENSION (DISPLACEMENT OF 5)
00003003 A3 SIGNED BYTE DISPLACEMENT, REGISTER R3

00003004 03 SPECIFIER EXTENSION (DISPLACEMENT OF 3)
L—

This example shows a Move Byte instruction using dis-
placement mode. A displacement of 5 is added to the
contents of Register R4 to form the address