Understanding the Backward Slices of Performance Degrading Instructions

Craig B. Zilles and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison
1210 West Dayton Street, Madison, WI 53706-1685, USA
{zilles, sohi}@cs.wisc.edu

Abstract ingly, microarchitectural techniques have focused on reducing the

For many applications, branch mispredictions and cache misses frequency and observed latency of these performance degrading
limit a processor's performance to a level well below its peak events. Although frequency reduction techniques have been effec-
instruction throughput. A small fraction of static instructions, tive, they do not come close to eliminating the events completely.
whose behavior cannot be anticipated using current branch At the same time, more aggressive microarchitectures make the
predictors and caches, contribute a large fraction of such opportunity cost (in terms of instruction retirement opportunities)
performance degrading.events. This paper analyzes the dyna}micassociated with an event that much greater.
instruction stream leading up to these performance degrading A promising solution to this problem is to complement the fre-

instructions to identify the operations necessary to execute them ; : .)
early. The backward slice (the subset of the program that relates to qyency.reductlon techmques with a generic latency .tolerance tech-
the instruction) of these performance degrading instructions, if Mdue, likepre-executior[22]. In general, pre-execution amounts
small compared to the whole dynamic instruction stream, can be 0 guessing the existence of a future performance degrading
pre_executed to hide the instruction’s |atency_ To overcome instruction and eXeCUting it (Or what we think it will be) some time
conservative dependence assumptions that result in large slices,prior to its actual encounter in the machine, thereby at least par-
speculation can be used, resulting in speculative slices. tially hiding its latency. In this paper, we are not concerned with a
This paper provides an initial characterization of the backward particular pre-execution mechanism but rather with the properties
slices of L2 data cache misses and branch mispredictions, andof such instructions and their relationship to the program that
shows the effectiveness of techniques, including memory jetermine whether any pre-execution mechanism will be effective.
dependence prediction and control independence, for reducing the To be effective with respect to a given instruction, a pre-execu-

size of these slices. Through the use of these techniques, many. . . . o .
slices can be reduced to Ie%s than one tenth of the fu(I]I dynamic¥I0n tef:hnlqug needs threg things. First, ainmanon p0|.ntahead
instruction stream when considering the 512 instructions before Of te instruction’s execution, the pre-execution technique needs to
the performance degrading instruction. know that the performance degrading instructiditi be executed.
Second, it has to know which other instructions contribute to the
1 Introduction performance degrading instruction. Finally, these contributing
instructions must not comprise the entire program up to that point;
otherwise, pre-execution is tantamount to normal execution and no
djatency hiding will be achieved.

Program performance is difficult to characterize. Programs do
not perform uniformly well or uniformly poorly. Rather they have
stretches of good performance punctuated by performance degral
ing events. The overall observed performance of a given program The key to answering all of these questions lies in the backward
depends on the frequency of these events and their relationship tgslice of the performance degrading instruction. The backward slice
one another and to the rest of the program. comprises all of the instructions in the program that contribute,

Program performance is measured by retirement throughput. either directly or indirectly, to its computation, either through val-
Since retirement is sequential, the presence of a long Iatencyues or control decisions. Cast in terms of this definition, the key to

instruction blocks retirement and degrades performance. The Pre-execution is to minimize the size of the backward slice from
events we speak of, therefore, are these long latency, or perfor-the initiation point to the performance degrading instruction, with
mance degrading, instructions. There are many ways an instruction"®SPECt t0 the size of the entire program over that same period.

can degrade performance, but branch mispredictions and instruc- DPue to the prevalence of ambiguous control and data depen-
tion and data cache misses account for the majority. Not surpris- dences, conservative construction of slices leads to slices that are
comparable in size to the full program. At the other extreme, a

slice can be reduced to an arbitrarily small size, but the ability to
Permission to make digital or hard copies of all or part of this work for predict the behaVIor of the original program_WIII be lOSt_' we
personal or classroom use is granted without fee provided that explore the region between these extremes, using speculation tech-
copies are not made or distributed for profit or commercial advantage nigues to minimize the slice’s size while maximizing its ability to

and that copies bear t_his notice anq the full citation on the first accurately pre-execute an event. By observing program behavior,
page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. speculation can be applied only where it is likely to succeed.
ISCA 00 Vancouver, British Columbia Canada In this paper, we focus on two issues. First, we perform an
Copyright (c) 2000 ACM 1-58113-287-5/00/06-172 $5.00 empirical analysis to determine the statistical nature of slices of

172

Alan Berenbaum
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada
Copyright (c) 2000 ACM 1-58113-287-5/00/06-172 $5.00

Alan Berenbaum
172

performance degrading instructions. Then, we explore techniquesidentifying the backward slices of instructions which contribute
for exploiting program structure to speculatively reduce the size of significantly to the CPI and pre-executing these slices, the perfor-
slices that are too big to support pre-execution. mance impact of these events can potentially be reduced.

We perform this analysis by extracting the dynamic backward 21 Allln

.) . . . i _ structions are not Created Equal
slices from instruction traces leading up to instructions which fre- . .
) . . Performance degrading events are not distributed evenly across
quently cause branch mispredictions or data cache misses. We

. - . . ; static instructions. Previous studies [1] have shown that a fraction
classify the instructions in the slice based on the role they play: [1]

.) .. .~ of static instructions are responsible for the majority of cache
value, address, existence, and control flow. This classification is . o : . .
.) L ; misses. Branches demonstrate a similar behavior; particular static
described in detail in Section 3.

5 t the differi ‘ ; h ‘ h branches are harder to predict than others. Some recently proposed
be<|:_aus§ ° i (_a (;grlhgln? ure; Ot Zact' cog’lforlﬁn, elac branch prediction mechanisms exploit this by partitioning
Sub-s !ce ?S optimized in isolation. First (Section 5.1), the va ug branches based on predictability and allocate more resources to

sub-slice is shown to be small and close to the event except in

h di d'in Section 6.1 hard-to-predict branches [7, 9]. Predicting the particular dynamic
casesw .ere recurrences (discusse .|n ec |o.n ’ ,) occur.. instances of these instructions that degrade performance has been
The size of the address sub-slice (studied in Section 5.2)

shown to be possible with moderate accuracy [11, 16].

exceeds that of the value sub-slice when built conservatively, but it
can be optimized effectively by identifying stable memory depen- 2.2 Program Slicing
dences and removing address calculations through speculative reg- Program slicing is a technique that was proposed as an aid for
ister allocation. Memory dependences which cannot be treated inunderstanding programs, specifically during debugging [27]. It
this way often unnecessarily contribute significant overhead to the allows the user to focus on the portion of the program responsible
slice; in many cases this overhead can be avoided by careful selecfor a particular phenomenon. In this section, we briefly touch on
tion of where to initiate the pre-computation. some of the major issues in slicing that relate to this paper; more

Control dependences are found in slices for two purposes. details can be found in program slicing surveys [3, 24].
Those that dictate whether the performance degrading instruction A slice is expressed with respect toriterion, typically consist-
will execute (which make up the existence sub-slice discussed ining of a value (or a set of values) and a position in the program. A
Section 5.3) are infrequent when control independence is exploitedslice contains the set of all statements which are related to the cri-
and can be removed if the branch is highly biased. Control depen-terion. In this paper, the criterion is always a performance degrad-
dences which resolve the dataflow (the control flow sub-slice ing instruction, and the terms will be used as synonyms. The
which is presented in Section 5.4) can be substantial and thesebackward slice consists of all statements which could affect the
branches tend to be less biased than existence branches. Full opticomputation of the criterion, and a forward slice contains all state-
mization of the control flow sub-slice requires analysis to detect ments which could be affected by the criterion. Figure 1 shows a

equivalent paths. small example program and its backward (Figure 1a) and forward

In Section 6, we briefly touch on some issues related to con- (Figure 1b) slices. Pre-execution is concerned only with backward
structing slices as a whole before concluding in Section 7. slices.

A static program slice contains all statements in the program

2 Background and Related Work that could affect any dynamic instance of the criterion. Dynamic

Limit studies [8, 26] have shown that, in the presence of a per- Program slices (the focus of this paper) consider a particular exe-

fect memory system and fully resolved control flow, the available Cution of the program (i.e., for a given inpuf) and contain only
instruction level parallelism, even in integer programs, is often those statements that affect a particular dynamic instance of the

many multiples of what is necessary to saturate modern proces-cfiterion.
sors. However, perfect memory systems and predictors cannot bep 3 pre-execution
realistically built, and processors therefore tend to retire instruc- An obvious approach to tolerating latency is to initiate long

tions at only a fraction of their peak rate due to branch mispredic- latency operations early. Software memory pre-fetching has been
tions and problems with instruction and data value availability. By successfully practiced for decades, especially in scientific applica-

tions. Techniques for pre-computing branch outcomes (including

o b . prepare-to-branch, and hardware techniques [10, 20]) have like-
a) 1. inti=0;) 1. inti=0;) .)
2. intsum = 0 2. intsum = O wise been proposed. The general tgara-executiorapplies to all
3. while (i< 8) { 3. while (i< 8) { of these techniques, although the exact manifestation depends
4. sum+=i; 4. sum +=i; upon the particular technique. The composition of the slice used
> } S 1 by a pre-execution technique depends both on the technique in use
6. print sum; 6. print sum; as well as the event being pre-executed.

Figure 1. The backward (a) and forward (b) slices for an When using pre-execution to prefetch instructions, the associ-

example program using the value of i at statement 5 as the ated slice consists of only the operations which resolve control
criterion. flow to the extent that we know whether or not a block of instruc-

173

Alan Berenbaum
173

tions is going to be executed; this corresponds to dkistence been proposed for specific problem domains [19, 20]. Many
sub-slicedescribed in Section 3. These pre-fetches are non-bind- embodiments of pre-execution are possible; most notably, the use
ing, in that mis-speculation only causes cache pollution. of “subordinate” threads [5, 23, 28] seems to be a natural fit. How-
Data memory values can be similarly pre-fetched, but in this ever, rather than focus on a particular implementation, we instead
case the slice consists of the operations necessary to generate thetudy the characteristics of the slices and techniques for reducing
cache block’s address. These pre-fetches can also be non-bindingslice size which can benefit many implementations.
The inclusion of the existence sub-slice can reduce the number of .
unused pre-fetches. 3 Four Components of a Slice
Pre-execution of branches is like data memory pre-fetching in ~ We find it useful to logically break up a slice into multiple com-
that the slice needs to compute the input operands of the branch inponents, or sub-slices. This categorization is based on the role each
order to evaluate the branch. Unlike the previous two cases, thisinstruction plays in the slice and suggests techniques that can be
pre-executed branch outcome (and perhaps target) needs to besed to reduce the size of slices. Many such categorizations are
bound to a particular dynamic branch instance to fully benefit from possible. Our categorization recognizes four sub-slices:
the pre-execution. This process of binding is non-trivial [5, 10, 20, e value (VAL)
22]. In general, it may be necessary to have a very accurate exist-, Address (ADR)
ence sub-slice to correctly correlate pre-executed branch outcomes .
. . . ® Existence (EX)
with branches as they are fetched. In addition, since pre-executed
branch outcomes override predicted outcomes, mis-speculations in Control flow (CF)
pre-execution can translate into mis-predicted branches requiring The value sub-sliceconsists of the arithmetic and logic opera-
the slice to be at least as accurate as the hardware predictor. tions which directly manipulate values that are ultimately used to
In this paper, we are concerned with identifying and optimizing compute the input operands of the criterif)n.instrucFion. Given the
these backward slices. Typically, the identification is performed by Pranch outcomes (and hence the dynamic instruction stream) and

software, but hardware techniques for slice identification have € resolution of memory dependences, these are the instructions
in the data dependence chain leading up to the criterion.

a) b) 1. beqrl, A: # if (condition != 0) goto A:
1.long long *F, *G; 2. s8addqr2,r3,r4 #rd = &F[i]
2. if (condition == 0) { 3. Idqr5, 0(r4) # load F[i] into r5
3. F[i] ++; 4. addqrs, 1,r5 # increment r5
4.} 5. stqr5, 0(r4) # store r5 into F[i]
A: 5.if ((flags & 0x18) == 0x8) { A: 6. andr6,0x18,r7 #r7 =flags & 0x18
6. If(G[F[i]1!'=0){ 7. xorr7,0x8, r7 #r7 = (flags & 0x18) == 0x8
7. [* do something */ 8. bner7,B: # if ((flags & 0x18) == 0x8) goto B:
8. } [mispredicted branch | 9. s8addqrz, 13,19 #r9 = &FJi]
9.} 10. Idq r10, 0(r9) # load FI[i] into r10
B: \ 11. s8addq r10, r4, r11# r1l = &G[F]i]]
12.1dq r12, 0(r11) # load G[F[i]] into r12
13. bne rl2, B: # if (G[F[i]] == 0) goto B:
B:

) 1. beqrl, A CF

2. sBaddqrz, r3,r4
3. ldgr5, 0(r4) ADR

, 15 VAL/ADR

5. stqr5, 0(r4) ADR

6. and r6, 0x18, r7
7. Xorr7,0x8,r7

8. bner7, B:

9. s8addqrz, r3, r9

10. Idq r10, 0(r9)

11. s8addq r10, r4, r11
12.1dgqrl12, 0(r1l) ADR
13. bnerl2, B: Criterion

Figure 2. lllustrative Slicing Example: Shown in high-level language source (a) and in Alpha assembly (b). Instruction 13 (a frequently
mispredicted branch) serves as the criterion instruction for slicing. The dependebeemté, A=address, C=control) between
instructions are shown in (c); the dashed arc between nodes 12 and 5 is required for possible aliasing between arrays F and G. Each
instruction is allocated to a sub-slic®¥AL=value, ADR=address,CF=control flow, EX=existence) based on the chain of dependences
which leads from the criterion instruction to it, using the state machine shown in (d). The assembly instructions are allocated to
sub-slices (e); note that, because two different paths lead to the non-memory instruction 4, it is in both the VAL angl&BR sub-

174

Alan Berenbaum
174

Theaddress sub-slicis the set of instructions involved in calcu- An instruction can be part of multiple sub-slices if multiple depen-
lating memory addresses for the value sub-slice. We include the dence paths exist between it and the criterion instruction.
loads and stores themselves with their address calculations The sub-slice allocation for our example is shown in Figure 2e.
because of their immediate offset. By computing these addresses|nstruction 4 is in both the VAL and ADR sub-slices. This occurs
we identify memory dependences (load/store pairs) which commu- because there is a path consisting of only data dependences from
nicate values. instruction 4 to the criterion, as well as one including an address

Branch instructions in slices can play two roles: existence and dependence.
control flow. Anexistencéranch determines whether the criterion
instruction is going to be executed (i.e., there exist paths starting 4 MethOdOIOQy
from that branch which include the criterion and those which do e study dynamic slices from the SPEC95 integer benchmarks,
not include it). More precisely, existence branches are not compiled for the Alpha AXP using Compag’s optimizing C com-
post-dominated [17] by the criterion. piler and peak flags (typically -arch ev6 -O4) with static linkage

A control flowbranch has multiple paths which lead to the crite- (which is necessary for our simulator infrastructure).
rion instruction, but those paths contribute differently to the data e focus on instructions that cause branch mispredictions and
dependence of the slice; hence the branch must be resolved to corcache misses as tlogiteria for the slices generated. Using a large
rectly generate the inputs to the criterion instruction. (64K bits of storage) YAGS predictor [9], a large (32K bits of stor-

This categorization of a branch is specific to a criterion; the age) cascaded indirect branch predictor [7], and a 4-way set-asso-
same static branch may play different roles in different slices, or ciative 1MB L2 data cache, we identified the static instructions
play no role whatsoever. If a branch does play one of these roles, itwhich caused the most branch mispredictions and cache misses in
and the instructions in its backward slice are put in the existence or full runs of the benchmarks. For benchmarks which had negligible
control flow sub-slices, accordingly. An indirect branch that has numbers of L2 cache misses, instructions which caused the most
three or more targets could conceivably play both existence andmisses in a 2-way set-associative 64KB L1 data cache were
control flow roles, simultaneously. selected.

We allocate instructions to sub-slices based on the chain of To keep the study manageable, only the worst behaving
dependences that connects them to the criterion instruction. Generbranches and memory instructions (less than 10 each) were
ally, two classes of dependences are recognized: data and controlselected for each benchmark. These instructions account for
Data dependencesxist between an instruction that creates a value between 7 and 60 percent of the events in the benchmarks. It
and an instruction that uses the valuec@ntrol dependencexists should be noted that this selection, in many cases, biases our slices
between an instruction and a branch if the outcome of the branchtoward instructions which are in inner loops, but these are the
determines whether or not the instruction gets executed. Our clas-instructions which represent the most opportunity. For each crite-
sification further sub-divides the class of data dependences. If arion instruction, we select a region of 100M instructions in length
data dependence to a memory instruction contributes to addressn which that instruction is active (some benchmarks required mul-
generation, we classify it as address dependence tiple regions to be selected to cover different phases of execution).

These dependences are demonstrated in Figure 2. Our example At the core of our infrastructure is a functional simulator built
program is shown both in high-level language (Figure 2a) and from the Alpha AXP version of the SimpleScalar Toolkit [4]. This
Alpha assembly (Figure 2b) formats. In this example, ittetate- simulator generates traces of the user level portions of the bench-
ment in line 6 (assembly statement 13) is a hard to predict branchmarks. Our simulator makes two passes over the instructions: the
which we would like to pre-execute, and hence it becomes our cri- first pass collects statistics about the dependences and constructs
terion instruction. Figure 2¢ graphically shows the dependencesand analyzes control-flow and control-dependency graphs. The
between the assembly instructions. Note that the dashed arcsecond pass gathers statistics about the slices.
between instructions 12 and 5 must be conservatively included if \we limit the scope of our dynamic slices to a window of 512
we cannot prove that arrays A and B do not overlap. Instructions 2 dynamic instructions leading up to the criterion. We reason that a
through 5 and 9 through 13 are control dependent on the outcomespre-fetch distance of 512 instructions should enable on the order of
of branch instructions 1 and 8, respectively. Dependences whosez hundred cycles of latency to be hidden while retiring multiple
sources were executed before instruction 1 (i.e., sourcek o2, instructions per cycle.
r3, r6 and memory) are not shown. In the slices presented, artificial dependences on the stack

A simple finite-state machine (FSM) (shown in Figure 2d) is pointer and global pointer are ignored. For fairness, all stack and
used for sub-slice allocation. Starting at the criterion instruction global pointer computations are ignored when counting distances
(in the “criterion” state), the type of dependence edge traversed in the dynamic instruction stream. Likewise, all nops (inserted by
dictates a transition in the state machine. Each instruction is allo- the compiler for branch alignment and scheduling purposes) are
cated to the sub-slice based on the state of the FSM. The Onecompletely ignored.
exception is that loads and stores are allocated to the same pye to space limitations, we cannot include all of our data. We
sub-slice as their address dependences due to the immediate offsefave selected specific examples, which we include as figures, to

175

Alan Berenbaum
175

demonstrate the important phenomena. We plot slices showing the For the vast majority of slices observed, the VAL sub-slice is a
cumulative number of instructions in the slice (the y axis) vs. dis- very small fraction (less than 2% at a distance of 512 of the whole
tance from the criterion in the dynamic instruction stream (the x dynamic instruction stream). Typically, much, if not all, of the
axis). For example, the point (512, 50) on one of these plots indi- sub-slice is concentrated near the criterion instruction (within the
cates that only 50 of the 512 instructions preceding the criterion first 10-20 instructions). In general, there is very little variability in
(or about 10%) contribute to its execution. These plots include a the size of the VAL sub-slice.
“100% line” to allow comparisons to the full dynamic instruction Figure 3b shows a different static event where the maximum
stream up to that point. In addition to explaining these examples in slice size is much larger than either the average or minimum sizes.
the text, we summarize data not included in the figures to describe When there is a lot of size variability in a VAL sub-slice, generally
general trends we have observed. it is due to different control flow paths. In the above instance, the
different behaviors are associated with different calling contexts.
5 Results In the rare cases when the VAL sub-slice is large, it is due to a
Our analysis begins in Section 5.1 with the VAL sub-slice recurrence. Figure 3c shows a case where one fifth of our window
because the operations in the data dependence chain dictate whicbf 512 instructions is in the VAL sub-slice. Recurrences are dis-
instructions are found in the ADR and CF sub-slices. We focus our cussed in Section 6.1.
speculative techniques on the ADR, EX, and CF sub-slices in Sec- The small size of VAL slices is somewhat an artifact of our defi-
tions 5.2, 5.3, and 5.4, respectively. These sub-slices account fornition of the VAL sub-slice, but the general trend is supported by
the vast majority of the instructions in a conservatively constructed previous parallelism studies [2, 12, 26]. Because of the small sizes,
slice. we are not directly concerned with further reducing the size of the
VAL sub-slice. As will be seen in the next sections, much of the

5.1 Value Sub-slices > , SRR -
. . . . computation in these integer applications is present to identify the
In conservatively generated slices, the value sub-slice typically . . .
values on which to operate and which operations to perform.

contributes the smallest component to a slice, and many of these
instructions are clustered close to the event. Figure 3a shows a5.2 Address Sub-slices
VAL sub-slice from a single static event that is representative of A load in a dynamic slice reads a value which was either created
many of the slices observed in these benchmarks. Three curvespefore the slice began or stored by a store in the slice. In the first
mark the maximum, average, and minimum size of the sub-slice case, the address must be generated to retrieve the value from
over all dynamic instances (of a particular event-causing static memory; in the second, the address is generated to identify the
instruction) in the observed interval. store which supplies the value. In many cases, it is difficult to
prove anything about the communication patterns between stores
I and loads, leading to ambiguous memory dependences. Before
4_,' S meimum dealing with this ambiguity, we characterize the ADR sub-slice
: / — average assuming an oracle that only includes the required loads and
24— e minimum stores. We call this the unambiguous ADR sub-slice.
0—- - - - 100% The average size of these sub-slices is quite a bit larger than
0 100 200 300 400 500 VAL sub-slices. The slice shown in Figure 4a is representative,
although there is a lot of variation between benchmarks as well as
50 - ; b) A VAL sub-slice with size variability within a benchmark. On average, unambiguous ADR sub-slices
404 P Rt eerTTTTIIIIIEE consist of 4-10% of the 512 instructions before an event.
304 o Two other characteristics are demonstrated by Figure 4a: a lot of
204 , variability between maximum and minimum slice sizes, and the
g appearance of a gradual ramp up (indicating an even distribution of
instructions from the slice). Figure 4b shows a sampling of
0 100 200 300 400 500 dynamic instances which make up the aggregate slice shown in
Figure 4a. It can be seen that the spectrum between minimum and
maximum is continuously populated rather than being concen-
100 / trated at the extremes. Also, the individual slices are bursty (the
gradual ramp shown in Figure 4a is merely an aggregate behavior),
consisting of regions that affect the slice separated by flat regions
which do not contribute. This is a reflection of the fact that a pro-
gram is an interleaving of partially independent computations.
0 100 200 300 400 500 As previously mentioned, the unambiguous ADR sub-slices are
distance (in dynamic instructions) optimistic. In general, we cannot identify which stores contribute
Figure 3. Dynamic sizes of value (VAL) sub-slices. to the VAL sub-slice without computing all addresses. In fact,

| a) A representative VAL sub-slice

cumulative dice size

c) A large VAL sub-dlice caused by arecurrence
/7 Lol

176

Alan Berenbaum
176

without any information, there are two possible policies: conserva- saved to and restored from the stack. There are some slices which
tive (assume dependence) and naive speculation (assume indepercontain no stores within 512 instructions, and there are some slices
dence). The conservative policy assumes that any store could bewhich are always misspeculated past a distance of 50.

part of the slice, forcing all store address computations into a con-
servatively large ADR sub-slice. Naive speculation predicts that no

stores will affect the slice, and suffers from data dependence))) .
with some information about past behavior, the unambiguous

mis-speculation when stores should be included in the slice.) . .
. . ADR sub-slice can be approximated by a speculative ADR
Figure 4c demonstrates the consequences of the conservative

.) . S sub-slice. Although memory allows any store to potentially com-
policy for the same slice considered in Figure 4a. On average, the g y y p y

. . municate with any load, in practice the active dependences are
ADR sub-slice has increased to 30% of the full program (around y p L P .
. . only a small subset of all possible communication arcs. During any
60% in the worst case), compared to 5% for the unambiguous

ADR sub-slice program execution, a majority of static loads are fed by a single
Ei ad h the mi lati e for th . | static store [6, 13, 14]; the rest are fed by a small set of stores. This
" Igure : f 0\:\/s € mlﬁ-specu "’; |ontra € fo(;_ te nalyeCispecu _a— behavior seems to be inherent to the program'’s structure, because
_|ort1 (spi_ecu "’; € avtv;ys) '?0 _|cy, _asta utr_lc |onq |::,hance in yl_namlc the same dependences are exercised across different data inputs.
mt? ruc 'c_)l_nhs_ rOT E cn etrrllonl_l;sl_;]uc :;)?h(utswt]g: et same ts 'CetﬁstThis suggests that profiling can be used to identify memory depen-
above). This ra e_ shows the '_ €lihoo f"l a egs one store thal o nces with high accuracy, as proposed by Reinman, et al. [18].
affects the VAL slice would be ignored. This data is somewhat pes-

Using these profiles, we can reduce the size of the ambiguous

simistic in that even if the store would not change the value in i . .)

) . L . . ADR sub-slice. Stores in the dynamic instruction stream that are
memory (i.e., a silent store) it is marked as a mis-speculation.) .

. . . o .. not in the store sets of any of the loads already in the ADR
Increasing the pre-execution distance rapidly increases the likeli- . . .
L) . sub-slice can be ignored. Only when the profile is inaccurate does
hood that a memory communication will be required to compute . i
a mis-speculation occur.

the criterion. Large windows are likely to include entire functions . t benchmark q q fil d th
and therefore it is not uncommon for values in the VAL slice to be | or most benchmar S memory dependence protiies re .uce €
size of the ADR sub-slice to close to that of the unambiguous

5.2.1 Profiling Store Sets
Clearly, neither of these naive policies is sufficient. However

80
Q . e a) Representative unambiguous ADR sub-slice
‘B 60 O e - - - - 100%
8 40 T maximum
@ i A ——— average
g 204 7 e minimum
o 4 7 e e
04—+ ———————— ————————— ————————— ————————— —
0 100 200 300 400 500
50 - b) a sampling from the above sub-slice to demonstrate long regions without contributions
@ /
/
N 40- ,
8 30- ,/ - — —- 100%
D 0 - // slice
g 10 - // —
o
o¥¢¥X————— T T T T :
(6] 100 200 300 400 500
c) Effect of conservative "assume dependence” policy on the same ADR sub-slice (note change in scale)
8 300- -
D - - —-100%
E_§ 2005 = s T T e maximum
@ ——— average
€ 1004 =TT aeemmTTTT e eeeaaee e minimum
=
o
(6]
£ 100 - - " - " oAl :
< 0] d) Misspeculation rate for "assume independence” policy, for the same slice
c]
S 60
(_U 4
= 40—
8 4
7 20
€ ol ———————— ———————— ————————— ——————— ,
100 200 300 400 500
distance (in dynamic instructions)

Figure 4. Dynamic sizes of address (ADR) sub-slices.

177

Alan Berenbaum
177

ADR sub-slice. On average, the ADR sub-slices are less than 105.2.2 Speculative Register Allocation to Remove
instructions larger than the unambiguous version at a distance of Unnecessary Address Calculations
512. The fact that this disparity is so small indicates that often only Previous research has shown that many memory dependences
one store from the store set exists in the window of 512 instruc- are satisfied by thenost recent storérom its store set [13, 15, 18,
tions. 25]. In fact, static loads can be categorized into two groups: those
Typically, when the disparity is large, there are many dynamic that are very likely to be satisfied by the most recent store from
instances of the same static store in the window (because of atheir store set, and those that are very unlikely. Figure 5 shows the
loop), and the store set mechanism must generate all of theirdistribution of these likelihoods across all benchmarks, weighted
addresses to select the correct producer. For this reason, usindy the execution frequency of the associated static load. The distri-
speculation to remove infrequently used stores from the store setbution is distinctly bimodal, in that highly-biased (at least a 95%
provides only modest benefit. Usually, such stores do not contrib- bias) static instructions represent almost 90% of dynamic loads
ute significantly to the store set because they are rarely executedexecuted.
However, the induced mis-speculation rate is also modest (except This behavior is not limited to loads whose store sets consist of
in cases of recurrences discussed in Section 6.1), implying that, ina single static store (Figure 5b), but exists also for loads with mul-
most cases, it is sufficient to identify the dominant dependences; tiple stores in their store sets (Figure 5c). Given these extreme ten-
hence a sampling technique can be used. dencies, it should be easy to categorize loads into these two
Overall, store set profiling is successful at reducing the ADR groups, even with incomplete data.
sub-slice to the size of the unambiguous ADR sub-slice, but the Once control flow has been resolved and the stores that could be
size of the ADR sub-slice still dominates that of the VAL in the ADR sub-slice have been identified, loads that exhibit this
sub-slice. In the next section we exploit another common behavior “most recent store” behavior can be accurately paired with stores
of memory dependences to further reduce ADR sub-slice size. without the need for address generation [13, 15, 18, 25]. If a regis-
ter can be (speculatively) allocated for the communication in the

061 a) all loads slice, then both the load and store can be removed with all of the
04 instructions in their address calculations. In most of the bench-
0.2 B marks, this can significantly reduce the size of the ADR sub-slice.
§ 0.0 - Some of the slices we consider consist exclusively of loads with
= o8 0 20 40 60 80 100 “most recent store” behavior, causing the ADR sub-slice to disap-
% 0:6_- b) (store set size == 1) pear entirely. A majority of the remaining slices are significantly
S 04 reduced, often cut in half. Figure 6 shows the average sizes of a
g 0.2 representative ADR sub-slice when constructed with the tech-
S 00 F ———— niques discussed.
= 20 40 60 80 100 When a memory dependence does not have a “most recent
= 0.4 . store” behavior, we have found that it is often inefficient to include
C) (storeset size>1) . . .
. its store set in the slice. Two such cases are prevalent. If only one
0.2] dynamic instance of a store from the store set appears in the win-
0.0 - | . | . | . dow, it is unlikely to cause a mis-speculation if we ignore it (by
0 20 40 60 80 100 definition). The other common case is when multiple stores are in
% dyn. loadsfrom most recent store the window because they are in a tight loop (as shown in the illus-
Figure 5. Bimodal distribution of a static load’s likelihood to trative example in Figure 7). In this case, address generation and
use the most recently stored value from its store set. loop control (which would need to be in the full slice as well) are a
.g 150—: T s =TT - —— 100%
8 100 //// =TT —-—- conservative
w] -7 T iieeesemmeenteeeeees Store sets
£ 50 7 e unambiguous
3] //’//_,-—--/ __________________________ ——— spec. reg aloc
0T T T
0 100 200 300 400 500
distance (in dynamic instructions)

Figure 6. Address (ADR) sub-slice average size by identification techniopreservativancludes all store address calculatiorstpre
setsincludes only those from store sets of loads in the VAL sub-slicepyaathbiguousincludes only those stores which affect the
criterion. Speculative register allocatiomemoves the load and store address calculation of memory dependences which exhibit the
“most recent store” behavior.

178

Alan Berenbaum
178

significant portion of the loop. Inclusion of these instructions in ered removing branches with biases greater than 98 percent and
the slice can significantly impact its size; a better solution in this found that the benefit varied between benchmarks. By exploiting
second case may be to initiate the pre-execution immediately afterthis statistical or speculative control independence, around half the
the loop completes. This more efficient slice comes at the cost of slices we observed were reduced to one half to one third of their
decreased pre-execution distance. sizes. The other half were for the most part untouched.

One common existence branch is a null pointer test before a
dereference. This branch can be removed by recognizing exception
conditions as the end of a pre-execution. However, because the
associated pointer value usually occurs in one of the other
sub-slices, this optimization does not significantly reduce total
slice size.

5.3 Existence Slices
Without control independence analysis, all branch targets need
to be resolved to determine whether the criterion will be executed.
In many cases this requires executing 80% of the 512 instructions
before a criterion. With control independence analysis, the EX
sub-slice is much smaller but still can be substantial, even if we
only consider control flow arcs which are exercised at least once. 5.4 Control Flow Slices
On average, the EX sub-slices are in the range of 10-12% (about In the conservative case, the CF sub-slice is the largest contribu-
50-60 instructions at a pre-fetch distance of 512), but can be astor to many of the backward slices and is also the one we have had
high as 20-30% (100-150 instructions at a distance of 512) when the least success optimizing due to the limitations of our current
the criterion is in a loop. infrastructure. There is significant variability; a number of criteria
Like VAL and ADR sub-slices, the EX sub-slice’s instructions have non-existent CF sub-slices, but in some of the control-inten-
tend to be clustered toward the criterion. This is not surprising sive benchmarks the conservative CF sub-slice can be as large as
given that the farther the criterion is from a branch, the more likely 50 to 60 percent of the 512 instruction window we considered.
it is that there is a reconvergent point between the two. Similar to the EX case above, the CF sub-slices include memory
Often more than half of the instructions in the EX sub-slice are dependences, and their contributions can likewise be reduced
memory dependences (in the same vein as the ADR sub-slice). Byusing the techniques presented in Section 5.2. Unlike the EX
applying our memory dependence techniques, we can remove asub-slice, however, speculating that highly biased branches
significant portion of these. Frequently, the remaining EX memory (greater than 98% bias) will always follow their bias does not lead
dependences are already present in the ADR sub-slice. For thisto a substantial reduction of the sub-slice size, in general. In many
reason, the memory dependences from the EX sub-slice seldomcases, these branches are less biased, so a larger mis-speculation
contribute significantly to the total size of the slice. rate must be tolerated for slice reduction. Also, unlike VAL, ADR,
The same cannot be said for the non-memory dependences inand EX sub-slices which tend to be more concentrated near the cri-
the EX sub-slice. In general, there is little overlap between these terion, CF sub-slices are more evenly distributed throughout the
instructions and any other slice. They tend to directly contribute to dynamic instruction stream.
the size of the total slice. Upon closer inspection, we determined that some of the control
The impact of the EX sub-slice on the slice as a whole can be dependences that we identified were false dependences. In these
reduced by ignoring highly biased existence branches. We consid-cases, instructions that are control dependent on the branch appear
to be part of the slice, but all paths from the branch are symmetric

a) int A[NJ; with respect to the criterion. A common example of this is a condi-
Qfor (inti=0;i<N;i++){ tional function call (shown in Figure 8) which saves and restores a
Al =T register value in the slice. The function call performs a net null
Q.. operation on the register, but our current infrastructure cannot

detect this. We have identified other less trivial instances of this

j;_._;k:_._; . . .

if (Al == K { CRITERION phenomena py inspecting slices by hand, but we have not been
b) able to quantify the effect of these false dependences.
g 100%.. -~ - -
B gl) 6 Discussion
z? ,/'/ In this section, we briefly discuss some characteristics of the
3 | - (5) slices and the process of constructing slices.

T T T T 1

6 distance (in dynamic instructions) A= i .
Figure 7. lllustrative example of an inefficient slice due to a if 63){ funggeg(})o_{
memory dependence (source code (a) and backward slice (b)). functon(; '
Assuming j is evenly distributed between O and (N-1), each } restore A:
store in the loop has a 1/N chance of contributing to the if (A) { <«—— CRITERION
criterion. Including the loop in the slice impacts the slice’s
size, but removing it entirely causes mis-speculation if a Figure 8. Example of a false control dependence. Both paths
pre-execution is initiated before (A). Initiating it at (B) avoids through the example are equivalent with respechtdecause
this trade-off, but reduces the latency that can be tolerated. the path througfiunction() has a net null effect oh.

179

Alan Berenbaum
179

6.1 Overlapping Slices and Recurrences 6.3 ldentifying Slices

It is not uncommon for the backward slices of more than one The effort required to identify slices depends significantly on
criteria to share instructions. In these cases, it may be beneficial tomany aspects of a program, not least of which is its representation.
merge the slices to reduce the pre-execution overhead. A specialn this paper, we took a low-level approach, analyzing the program
case of this is when one criterion is in the slice of a second, in at the instruction level, as a processor might analyze it. Without the
which case the second criterion’s slice is often a superset of the high-level information available from the source level, our infra-
first criterion’s slice. An unpredictable branch based on the result structure needed to rediscover some of the information that was
of a cache-missing load is a repeating theme. Since the latency ofknown to the compiler.
these two events is serialized, the initiation of the pre-execution This process is occasionally aggravated by the compiler; the
must be scheduled appropriately. most noteworthy example is code replication. Techniques like loop

A special case of overlapping slices is when multiple slices from unrolling and trace scheduling require the slice construction algo-
the same static criterion overlap. This occurs when a criterion rithm to reconcile the replicated blocks with each other. Also, it is
instruction is in a tight loop. Each iteration will have one or more not uncommon for the criterion instructions to be replicated,
recurrences that appear in its backward slice. These recurrencepotentially requiring multiple slices to pre-execute what is logi-
can be address, data, or control. They can make the backward sliceally a single operation. Only when the different instances of a
look deceptively large, but in such a slice there are many instancesblock have radically different behavior (with respect to the crite-
of the criterion evaluated, so the incremental slice size is small rion) does the slice benefit from such replication. Programmers
(less than or equal to the size of a loop iteration). can likewise be a source of replication if they unroll loops by hand

These incremental slices can only be exploited if we enable a or otherwise replicate code.
pre-execution to evaluate the criterion multiple times. At this The slice construction routine operates most efficiently on the
point, the decision must be made as to how many iterations shouldsmallest representation of the program. This requirement often
be executed. Typically, highly biased branches are speculatively conflicts with many performance optimizations performed by the
removed from the existence sub-slice, but if the loop back-edge is compiler.
removed, the pre-execution could iterate forever. To reduce the .
incremental slice size, complicated existence slices can be 7 Conclusion
replaced with simple control which executes a fixed number of |nstructions whose behavior cannot be anticipated by branch
iterations (either USing a |00p or static UnrO”ing), or feedback from predictors or caches can Significanﬂy degrade processor perfor-
the main computation can be used to throttle or terminate a mance. In the future, this will be further aggravated as processor
pre-execution computation. microarchitecture continues the trend to higher clock speeds and

When the incremental backward slice makes up a significant deeper pipelines. This study finds that, in many cases, the behavior
portion of a loop iteration, the benefit of latency tolerance must be of these instructions can be represented by a reduced form of the
derived from the distance between the initiation of the pre-execu- program, specialized to compute the outcome of these instructions.
tion and the first iteration of the loop. If the long latency event If executed in parallel with the whole program, these reduced pro-
itself is part of the recurrence (as in pointer chasing), then the initi- grams can initiate long latency events early so that they have com-
ation must be scheduled to tolerate the serial latencies. Such techpleted by the time they are encountered by the whole program’s
nigues, including root jumping, are discussed in [21]. execution.

Speculation has to be used very carefully on dependences inthe These reduced programs are constructed by identifying the
recurrence. If an incorrect value is computed on the recurrence backward slice of the instruction to be pre-executed. In many inte-
path, then it will be propagated to all future iterations. ger benchmarks, the conservative backward slice consists of a
large fraction of the program. The key to reducing slice size is

6.2 Traditional Optimizations lation: by treafing it of ; v hint
. . . .speculation; reating the result of a pre-execution as only a hint,
Once a slice has been reduced to its essential elements, tradi- P y 9 P y

. . . N infrequent and ambiguous dependences can be ignored. This spec-
tional compiler techniques can be used to further optimize it. In .) . . .)

. . . . - . ulation must be guided by profiling the application to identify
addition to the speculative register allocation discussed in . . .

. . . . dominant paths and dependencies and by analysis to coalesce
Section 5.2.2, we have seen opportunities for loop invariant code

. . . paths which are equivalent with respect to the slice.
motion, the removal of register moves, strength reduction, and the

conversion of indirect branches into direct branches. In many IZytheXplogllng ctcmtrol;lzldedpe?den;e, hlghly biased branchb?s,t
instances, these techniques could not be applied to the originalan € stable nalure of load-store dependences, we were able 1o

. 0 .
program due to ambiguous memory dependences, infrequently;educe_ mant)/ sllt(_:es otlown t? Ietis thgr:j 10 /ofc;flt:? fl:” ptr.ograms
executed branches, o register pressure. ynamlc instruction stream for the vym ow 0 . instructions we
o . - . considered. In almost all cases, mis-speculation rates below 5%
Similarly, dynamic compilation techniques could be used to

) were maintained. There were some slices for which the techniques
generate slices which exploit invariant run-time values. Since these

. . L we investigated were insufficient, often due to complex memory
pre-execution computations are speculative, it is not necessary to

verify that these run-time values are truly constant.

180

Alan Berenbaum
180

dependences or slices which necessitated much of the control flow [11] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning confi-

to be resolved.

The techniques considered here are by no means an exhaustive

list. Future work includes investigating if additional program

behaviors and speculation techniques can be used to further reduce

these slices. Path profiles might allow further refinement of the
control flow sub-slice by enabling different instances of the same
static branch to be treated differently. Also, value prediction has
the potential to break data dependences, possibly removing full
computation chains from the slice.

8 Acknowledgements

Many of the ideas in this paper, as well as the writing, have ben-
efitted from discussions with Amir Roth. In addition, we would
like to thank Manoj Plakal, Dan Sorin, and the anonymous review-
ers for their comments on earlier drafts of this paper. This work
was supported in part by National Science Foundation grants
MIP-9505853 and CCR-9900584 and an equipment grant from
Intel Corp. Craig Zilles was supported by NSF and Intel fellow-
ships during the academic years 1998 and 1999, respectively.

9 References

[1] S. Abraham, R. Sugumar, D.Windheiser, B.Rau, and
R. Gupta. Predictability of Load/Store Instruction Latencies.
In Proc. 26th International Symposium on Microarchitecture
pages 139-152, Dec. 1993.

[2] T. Austin and G. Sohi. Dynamic Dependency Analysis of Or-

dinary Programs. IfProc. 19th International Symposium on

Computer ArchitectureMay 1992.

D. Binkley and K. GallagherAdvances in Computershapter

34: Program Slicing. Academic Press, San Diego, CA, 1996.

D. Burger and T. Austin. The SimpleScalar Tool Set, Version

2.0. Technical Report CS-TR-97-1342, University of Wiscon-

sin-Madison, Jun. 1997.

R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Si-

multaneous Subordinate Microthreading (SSMT). Rroc.

26th International Symposium on Computer Architecture

May 1999.

G. Chrysos and J. Emer. Memory Dependence Prediction us-

ing Store Sets. IProc. 25th International Symposium on

Computer Architecturgpages 142-153, Jun. 1998.

K. Driesen and U. Hoelzle. The Cascaded Predictor: Econom-

ical and Adaptive Branch Target Prediction.Rroc. 31st In-

ternational Symposium on Microarchitectupages 249-258,

Dec. 1998.

K. Ebcioglu, E. Altman, S. Sathaye, and M. Gschwind. Opti-

mizations and Oracle Parallelism with Dynamic Translation.

In Proc. 32nd International Symposium on Microarchitecture

pages 284—295, Nov. 1999.

[9] A.Eden and T.Mudge. The YAGS Branch Prediction
Scheme. IrProc. 31nd International Symposium on Microar-
chitecture pages 69-77, Nov. 1998.

[10] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow Anal-
ysis of Branch Mispredictions and Its Application to Early
Resolution of Branch Outcomes. Rroc. 31st International
Symposium on Microarchitectyrpages 5968, Dec. 1998.

(3]

(4]

(5]

(6]

[7]

(8]

181

dence to conditional branch predictionsHroc. 29th Interna-

tional Symposium on MicroarchitectyiBec. 1996.

[12] M. Lam and R. Wilson. Limits of control flow on parallelism.

In Proc. 19th International Symposium on Computer Architec-

ture, May 1992.

[13] A. MoshovosMemory Dependence PredictioBh.D. thesis,
University of Wisconsin-Madison, 1998.

[14] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dy-
namic Speculation and Synchronization of Data Dependences.
In Proc. 24th International Symposium on Computer Architec-
ture, pages 181-193, Jun. 1997.

[15] A. Moshovos and G. Sohi. Streamlining Inter-Operation
Communication via Data Dependence Prediction.Phoc.
30th International Symposium on Microarchitectugages
235-245, Dec. 1997.

[16] T. Mowry and C.-K. Luk. Predicting Data Cache Misses in
Non-Numeric Applications Through Correlation Profiling. In
Proc. 30th International Symposium on Microarchitecture
Dec. 1997.

[17] S. Muchnick.Advanced Compiler Design and Implementa-
tion. Morgan Kaufman, San Francisco, CA, 1997.

[18] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin.
Classifying Loads and Store Instructions for Memory Renam-
ing. In Proc. 1999 International Conference on Supercomput-
ing, Jun. 1999.

[19] A. Roth, A. Moshovos, and G. Sohi. Dependence Based
Prefetching for Linked Data Structures. Broc. 8th Confer-
ence on Architectural Support for Programming Languages
and Operating Systemgages 115-126, Oct. 1998.

[20] A. Roth, A. Moshovos, and G. Sohi. Improving Virtual Func-
tion Call Target Prediction via Dependence-Based Pre-Com-
putation. In Proc. 1999 International Conference on
Supercomputingpages 356—364, Jun. 1999.

[21] A. Roth and G. Sohi. Effective Jump-Pointer Prefetching for
Linked Data Structures. IRroc. 26th International Sympo-
sium on Computer Architectyrpages 111-121, May 1999.

[22] A. Roth and G. Sohi. Speculative Data Driven Sequencing for
Imperative Programs. Technical Report CS-TR-2000-1411,
University of Wisconsin, Madison, Feb. 2000.

[23] Y. Song and M. Dubois. Assisted Execution. Technical Re-
port #CENG 98-25, Department of EE-Systems, University of
Southern California, Oct. 1998.

[24] F. Tip. A survey of program slicing techniquekurnal of
Programming Language¥(3):121-181, 1995.

[25] G. Tyson and T. Austin. Improving the Accuracy and Perfor-
mance of Memory Communication Through Renaming. In
Proc. 30th International Symposium on Microarchitecture
pages 218-227, Dec. 1997.

[26] D. Wall. Limits of Instruction Level Parallelism. IRroc. 4th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systefpsil 1991.

[27] M. Weiser. Program SlicindEEE Transactions on Software
Engineering 10(4):352-357, 1984.

[28] C. Zilles, J. Emer, and G. Sohi. The Use of Multithreading for
Exception Handling. IrProc. 32nd International Symposium
on Microarchitecturepages 219-229, Nov. 1999.

Alan Berenbaum
181

