
e
k
,
ch
h
m
n
e
t
i
b

e

d
n
o
th
a

r

d

ra
a
p

u
nc
h
fo
tio
ru
ris

the
ing

fec-
ly.
the
s)

-
ch-

ing
e
ar-
a

ies
at
ve.

u-

to

he
g

nt;
no

rd
ice
e,
l-
to
m
th

en-
are
a

Understanding the Backward Slices of Performance Degrading Instructions

Craig B. Zilles and Gurindar S. Sohi
Computer Sciences Department, University of Wisconsin - Madison

1210 West Dayton Street, Madison, WI 53706-1685, USA
{zilles, sohi}@cs.wisc.edu
Abstract
For many applications, branch mispredictions and cache miss

limit a processor’s performance to a level well below its pea
instruction throughput. A small fraction of static instructions
whose behavior cannot be anticipated using current bran
predictors and caches, contribute a large fraction of suc
performance degrading events. This paper analyzes the dyna
instruction stream leading up to these performance degradi
instructions to identify the operations necessary to execute th
early. The backward slice (the subset of the program that relates
the instruction) of these performance degrading instructions,
small compared to the whole dynamic instruction stream, can
pre-executed to hide the instruction’s latency. To overcom
conservative dependence assumptions that result in large slic
speculation can be used, resulting in speculative slices.

This paper provides an initial characterization of the backwar
slices of L2 data cache misses and branch mispredictions, a
shows the effectiveness of techniques, including mem
dependence prediction and control independence, for reducing
size of these slices. Through the use of these techniques, m
slices can be reduced to less than one tenth of the full dynam
instruction stream when considering the 512 instructions befo
the performance degrading instruction.

1 Introduction
Program performance is difficult to characterize. Programs

not perform uniformly well or uniformly poorly. Rather they have
stretches of good performance punctuated by performance deg
ing events. The overall observed performance of a given progr
depends on the frequency of these events and their relationshi
one another and to the rest of the program.

Program performance is measured by retirement throughp
Since retirement is sequential, the presence of a long late
instruction blocks retirement and degrades performance. T
events we speak of, therefore, are these long latency, or per
mance degrading, instructions. There are many ways an instruc
can degrade performance, but branch mispredictions and inst
tion and data cache misses account for the majority. Not surp
to
e
ech-

ior,

n
of
s

ic
g
m
o
f
e
e
s,

d
ry
e
ny
ic
e

o

d-
m
to

t.
y
e
r-
n
c-
-

ingly, microarchitectural techniques have focused on reducing
frequency and observed latency of these performance degrad
events. Although frequency reduction techniques have been ef
tive, they do not come close to eliminating the events complete
At the same time, more aggressive microarchitectures make
opportunity cost (in terms of instruction retirement opportunitie
associated with an event that much greater.

A promising solution to this problem is to complement the fre
quency reduction techniques with a generic latency tolerance te
nique, likepre-execution[22]. In general, pre-execution amounts
to guessing the existence of a future performance degrad
instruction and executing it (or what we think it will be) some tim
prior to its actual encounter in the machine, thereby at least p
tially hiding its latency. In this paper, we are not concerned with
particular pre-execution mechanism but rather with the propert
of such instructions and their relationship to the program th
determine whether any pre-execution mechanism will be effecti

To be effective with respect to a given instruction, a pre-exec
tion technique needs three things. First, at aninitiation pointahead
of the instruction’s execution, the pre-execution technique needs
know that the performance degrading instructionwill be executed.
Second, it has to know which other instructions contribute to t
performance degrading instruction. Finally, these contributin
instructions must not comprise the entire program up to that poi
otherwise, pre-execution is tantamount to normal execution and
latency hiding will be achieved.

The key to answering all of these questions lies in the backwa
slice of the performance degrading instruction. The backward sl
comprises all of the instructions in the program that contribut
either directly or indirectly, to its computation, either through va
ues or control decisions. Cast in terms of this definition, the key
pre-execution is to minimize the size of the backward slice fro
the initiation point to the performance degrading instruction, wi
respect to the size of the entire program over that same period.

Due to the prevalence of ambiguous control and data dep
dences, conservative construction of slices leads to slices that
comparable in size to the full program. At the other extreme,
slice can be reduced to an arbitrarily small size, but the ability
predict the behavior of the original program will be lost. W
explore the region between these extremes, using speculation t
niques to minimize the slice’s size while maximizing its ability to
accurately pre-execute an event. By observing program behav
speculation can be applied only where it is likely to succeed.

In this paper, we focus on two issues. First, we perform a
empirical analysis to determine the statistical nature of slices

Alan Berenbaum
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
ISCA 00 Vancouver, British Columbia Canada
Copyright (c) 2000 ACM 1-58113-287-5/00/06-172 $5.00

Alan Berenbaum
172

ue
o

rd
e
W
y

c
e

t

.2
t
n
re

th
le

es
tio

te
en
ce
e
o
c

n

er
le
n
e
t
c
ic
y

e
or-

oss
ion
e

atic
sed
g
s to
ic
een

for
It

ble
n
re

A
cri-
d-

he
he
te-

a
rd
rd

m
ic
xe-
ly
the

g
en

ca-
ng
performance degrading instructions. Then, we explore techniq
for exploiting program structure to speculatively reduce the size
slices that are too big to support pre-execution.

We perform this analysis by extracting the dynamic backwa
slices from instruction traces leading up to instructions which fr
quently cause branch mispredictions or data cache misses.
classify the instructions in the slice based on the role they pla
value, address, existence, and control flow. This classification
described in detail in Section 3.

Because of the differing natures of each component, ea
sub-slice is optimized in isolation. First (Section 5.1), the valu
sub-slice is shown to be small and close to the event excep
cases where recurrences (discussed in Section 6.1) occur.

The size of the address sub-slice (studied in Section 5
exceeds that of the value sub-slice when built conservatively, bu
can be optimized effectively by identifying stable memory depe
dences and removing address calculations through speculative
ister allocation. Memory dependences which cannot be treated
this way often unnecessarily contribute significant overhead to
slice; in many cases this overhead can be avoided by careful se
tion of where to initiate the pre-computation.

Control dependences are found in slices for two purpos
Those that dictate whether the performance degrading instruc
will execute (which make up the existence sub-slice discussed
Section 5.3) are infrequent when control independence is exploi
and can be removed if the branch is highly biased. Control dep
dences which resolve the dataflow (the control flow sub-sli
which is presented in Section 5.4) can be substantial and th
branches tend to be less biased than existence branches. Full
mization of the control flow sub-slice requires analysis to dete
equivalent paths.

In Section 6, we briefly touch on some issues related to co
structing slices as a whole before concluding in Section 7.

2 Background and Related Work
Limit studies [8, 26] have shown that, in the presence of a p

fect memory system and fully resolved control flow, the availab
instruction level parallelism, even in integer programs, is ofte
many multiples of what is necessary to saturate modern proc
sors. However, perfect memory systems and predictors canno
realistically built, and processors therefore tend to retire instru
tions at only a fraction of their peak rate due to branch mispred
tions and problems with instruction and data value availability. B
ke-

nds
ed
use

ci-
rol
c-
s
f

-
e

:
is

h

in

)
it
-
g-

in
e
c-

.
n

in
d
-

se
pti-
t

-

-

s-
be
-
-

identifying the backward slices of instructions which contribut
significantly to the CPI and pre-executing these slices, the perf
mance impact of these events can potentially be reduced.

2.1 All Instructions are not Created Equal
Performance degrading events are not distributed evenly acr

static instructions. Previous studies [1] have shown that a fract
of static instructions are responsible for the majority of cach
misses. Branches demonstrate a similar behavior; particular st
branches are harder to predict than others. Some recently propo
branch prediction mechanisms exploit this by partitionin
branches based on predictability and allocate more resource
hard-to-predict branches [7, 9]. Predicting the particular dynam
instances of these instructions that degrade performance has b
shown to be possible with moderate accuracy [11, 16].

2.2 Program Slicing
Program slicing is a technique that was proposed as an aid

understanding programs, specifically during debugging [27].
allows the user to focus on the portion of the program responsi
for a particular phenomenon. In this section, we briefly touch o
some of the major issues in slicing that relate to this paper; mo
details can be found in program slicing surveys [3, 24].

A slice is expressed with respect to acriterion, typically consist-
ing of a value (or a set of values) and a position in the program.
slice contains the set of all statements which are related to the
terion. In this paper, the criterion is always a performance degra
ing instruction, and the terms will be used as synonyms. T
backward slice consists of all statements which could affect t
computation of the criterion, and a forward slice contains all sta
ments which could be affected by the criterion. Figure 1 shows
small example program and its backward (Figure 1a) and forwa
(Figure 1b) slices. Pre-execution is concerned only with backwa
slices.

A static program slice contains all statements in the progra
that could affect any dynamic instance of the criterion. Dynam
program slices (the focus of this paper) consider a particular e
cution of the program (i.e., for a given input) and contain on
those statements that affect a particular dynamic instance of
criterion.

2.3 Pre-execution
An obvious approach to tolerating latency is to initiate lon

latency operations early. Software memory pre-fetching has be
successfully practiced for decades, especially in scientific appli
tions. Techniques for pre-computing branch outcomes (includi
prepare-to-branch, and hardware techniques [10, 20]) have li
wise been proposed. The general termpre-executionapplies to all
of these techniques, although the exact manifestation depe
upon the particular technique. The composition of the slice us
by a pre-execution technique depends both on the technique in
as well as the event being pre-executed.

When using pre-execution to prefetch instructions, the asso
ated slice consists of only the operations which resolve cont
flow to the extent that we know whether or not a block of instru
Figure 1. The backward (a) and forward (b) slices for an
example program using the value of i at statement 5 as the
criterion.

int i = 0;
int sum = 0;
while (i < 8) {
 sum += i;
 i ++;
}
print sum;

1.
2.
3.
4.
5.

6.

a) b) int i = 0;
int sum = 0;
while (i < 8) {
 sum += i;
 i ++;
}
print sum;

1.
2.
3.
4.
5.

6.

Alan Berenbaum
173

d

is
e
i

r

i
h
th

m
0
is

m
t
s
in

g
b
v

ny
use
w-
ad
ing

-
ach
be

are

-
to
he
and
ions
tions is going to be executed; this corresponds to theexistence
sub-slicedescribed in Section 3. These pre-fetches are non-bin
ing, in that mis-speculation only causes cache pollution.

Data memory values can be similarly pre-fetched, but in th
case the slice consists of the operations necessary to generat
cache block’s address. These pre-fetches can also be non-bind
The inclusion of the existence sub-slice can reduce the numbe
unused pre-fetches.

Pre-execution of branches is like data memory pre-fetching
that the slice needs to compute the input operands of the branc
order to evaluate the branch. Unlike the previous two cases,
pre-executed branch outcome (and perhaps target) needs to
bound to a particular dynamic branch instance to fully benefit fro
the pre-execution. This process of binding is non-trivial [5, 10, 2
22]. In general, it may be necessary to have a very accurate ex
ence sub-slice to correctly correlate pre-executed branch outco
with branches as they are fetched. In addition, since pre-execu
branch outcomes override predicted outcomes, mis-speculation
pre-execution can translate into mis-predicted branches requir
the slice to be at least as accurate as the hardware predictor.

In this paper, we are concerned with identifying and optimizin
these backward slices. Typically, the identification is performed
software, but hardware techniques for slice identification ha
-

the
ng.
of

n
in
is
be

,
t-
es
ed
in
g

y
e

been proposed for specific problem domains [19, 20]. Ma
embodiments of pre-execution are possible; most notably, the
of “subordinate” threads [5, 23, 28] seems to be a natural fit. Ho
ever, rather than focus on a particular implementation, we inste
study the characteristics of the slices and techniques for reduc
slice size which can benefit many implementations.

3 Four Components of a Slice
We find it useful to logically break up a slice into multiple com

ponents, or sub-slices. This categorization is based on the role e
instruction plays in the slice and suggests techniques that can
used to reduce the size of slices. Many such categorizations
possible. Our categorization recognizes four sub-slices:

• Value (VAL)

• Address (ADR)

• Existence (EX)

• Control flow (CF)

The value sub-sliceconsists of the arithmetic and logic opera
tions which directly manipulate values that are ultimately used
compute the input operands of the criterion instruction. Given t
branch outcomes (and hence the dynamic instruction stream)
the resolution of memory dependences, these are the instruct
in the data dependence chain leading up to the criterion.
ntly

. Each

d to
Figure 2. Illustrative Slicing Example: Shown in high-level language source (a) and in Alpha assembly (b). Instruction 13 (a freque
mispredicted branch) serves as the criterion instruction for slicing. The dependences (D=data, A=address,C=control) between
instructions are shown in (c); the dashed arc between nodes 12 and 5 is required for possible aliasing between arrays F and G
instruction is allocated to a sub-slice (VAL=value,ADR=address,CF=control flow,EX=existence) based on the chain of dependences
which leads from the criterion instruction to it, using the state machine shown in (d). The assembly instructions are allocate
sub-slices (e); note that, because two different paths lead to the non-memory instruction 4, it is in both the VAL and ADR sub-slices.

s8addq r10, r4, r11
ldq r12, 0(r11)

11.
12.

s8addq r2, r3, r9
ldq r10, 0(r9)

9.
10.

and r6, 0x18, r7
xor r7, 0x8, r7
bne r7, B:

6.
7.
8.

stq r5, 0(r4)5.

EX

ADR

ldq r5, 0(r4)

addq r5, 1, r5

3.

4.

beq r1, A:1.

long long *F, *G;
if (condition == 0) {
 F[i] ++;
}
if ((flags & 0x18) == 0x8) {

 if (G[F[i]] != 0) {
 /* do something */

 }
}
....

beq r1, A:
s8addq r2, r3, r4
ldq r5, 0(r4)
addq r5, 1, r5
stq r5, 0(r4)
and r6, 0x18, r7
xor r7, 0x8, r7
bne r7, B:
s8addq r2, r3, r9
ldq r10, 0(r9)
s8addq r10, r4, r11
ldq r12, 0(r11)
bne r12, B:

if (condition != 0) goto A:
r4 = &F[i]
load F[i] into r5
increment r5
store r5 into F[i]
r7 = flags & 0x18
r7 = (flags & 0x18) == 0x8
if ((flags & 0x18) == 0x8) goto B:
r9 = &F[i]
load F[i] into r10
r11 = &G[F[i]]
load G[F[i]] into r12
if (G[F[i]] == 0) goto B:

A:

....
B:

A:

B:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

mispredicted branch

a) b)

D
A

A
D

C

D

D

C

A

D

A

D
D

D

5

4

2
3

1

97

8

6

11

12

13

10

VAL

CF

ADR

EX

C

C D

C

1

A

C

1

Criterion

s8addq r2, r3, r4

bne r12, B:

2.

13.

CF

ADR
VAL/ADR

ADR

Criterion

e)

d)

c)

1.
2.
3.

5.
6.

4.

7.
8.
9.

C

Alan Berenbaum
174

th
on
se
u

n
n
in
o
o

-
ta
c

e
o
s,

o
as
n

o
ne
tr

ue

c
la
If
re

n

c
r
e
a

s

o

is
n
e

llo
on
m
ffs

-

e.
s
rom
ss

ks,
-
e

nd
e
-
so-
s
s in
le
ost

ere

ng
ere
for
. It
lices
he
te-
th
ul-
n).

lt

ch-
the
ructs
he

2
t a
r of
le

ack
nd
es

by
are

e
, to
Theaddress sub-sliceis the set of instructions involved in calcu-
lating memory addresses for the value sub-slice. We include
loads and stores themselves with their address calculati
because of their immediate offset. By computing these addres
we identify memory dependences (load/store pairs) which comm
nicate values.

Branch instructions in slices can play two roles: existence a
control flow. Anexistencebranch determines whether the criterio
instruction is going to be executed (i.e., there exist paths start
from that branch which include the criterion and those which d
not include it). More precisely, existence branches are n
post-dominated [17] by the criterion.

A control flowbranch has multiple paths which lead to the crite
rion instruction, but those paths contribute differently to the da
dependence of the slice; hence the branch must be resolved to
rectly generate the inputs to the criterion instruction.

This categorization of a branch is specific to a criterion; th
same static branch may play different roles in different slices,
play no role whatsoever. If a branch does play one of these role
and the instructions in its backward slice are put in the existence
control flow sub-slices, accordingly. An indirect branch that h
three or more targets could conceivably play both existence a
control flow roles, simultaneously.

We allocate instructions to sub-slices based on the chain
dependences that connects them to the criterion instruction. Ge
ally, two classes of dependences are recognized: data and con
Data dependencesexist between an instruction that creates a val
and an instruction that uses the value. Acontrol dependenceexists
between an instruction and a branch if the outcome of the bran
determines whether or not the instruction gets executed. Our c
sification further sub-divides the class of data dependences.
data dependence to a memory instruction contributes to add
generation, we classify it as anaddress dependence.

These dependences are demonstrated in Figure 2. Our exam
program is shown both in high-level language (Figure 2a) a
Alpha assembly (Figure 2b) formats. In this example, theif state-
ment in line 6 (assembly statement 13) is a hard to predict bran
which we would like to pre-execute, and hence it becomes our c
terion instruction. Figure 2c graphically shows the dependenc
between the assembly instructions. Note that the dashed
between instructions 12 and 5 must be conservatively included
we cannot prove that arrays A and B do not overlap. Instruction
through 5 and 9 through 13 are control dependent on the outcom
of branch instructions 1 and 8, respectively. Dependences wh
sources were executed before instruction 1 (i.e., sources ofr1, r2,
r3, r6 and memory) are not shown.

A simple finite-state machine (FSM) (shown in Figure 2d)
used for sub-slice allocation. Starting at the criterion instructio
(in the “criterion” state), the type of dependence edge travers
dictates a transition in the state machine. Each instruction is a
cated to the sub-slice based on the state of the FSM. The
exception is that loads and stores are allocated to the sa
sub-slice as their address dependences due to the immediate o
e
s
s,
-

d

g

t

or-

r
it
r

d

f
r-
ol.

h
s-
a
ss

ple
d

h
i-
s
rc
if
2
es
se

d
-
e
e
et.

An instruction can be part of multiple sub-slices if multiple depen
dence paths exist between it and the criterion instruction.

The sub-slice allocation for our example is shown in Figure 2
Instruction 4 is in both the VAL and ADR sub-slices. This occur
because there is a path consisting of only data dependences f
instruction 4 to the criterion, as well as one including an addre
dependence.

4 Methodology
We study dynamic slices from the SPEC95 integer benchmar

compiled for the Alpha AXP using Compaq’s optimizing C com
piler and peak flags (typically -arch ev6 -O4) with static linkag
(which is necessary for our simulator infrastructure).

We focus on instructions that cause branch mispredictions a
cache misses as thecriteria for the slices generated. Using a larg
(64K bits of storage) YAGS predictor [9], a large (32K bits of stor
age) cascaded indirect branch predictor [7], and a 4-way set-as
ciative 1MB L2 data cache, we identified the static instruction
which caused the most branch mispredictions and cache misse
full runs of the benchmarks. For benchmarks which had negligib
numbers of L2 cache misses, instructions which caused the m
misses in a 2-way set-associative 64KB L1 data cache w
selected.

To keep the study manageable, only the worst behavi
branches and memory instructions (less than 10 each) w
selected for each benchmark. These instructions account
between 7 and 60 percent of the events in the benchmarks
should be noted that this selection, in many cases, biases our s
toward instructions which are in inner loops, but these are t
instructions which represent the most opportunity. For each cri
rion instruction, we select a region of 100M instructions in leng
in which that instruction is active (some benchmarks required m
tiple regions to be selected to cover different phases of executio

At the core of our infrastructure is a functional simulator bui
from the Alpha AXP version of the SimpleScalar Toolkit [4]. This
simulator generates traces of the user level portions of the ben
marks. Our simulator makes two passes over the instructions:
first pass collects statistics about the dependences and const
and analyzes control-flow and control-dependency graphs. T
second pass gathers statistics about the slices.

We limit the scope of our dynamic slices to a window of 51
dynamic instructions leading up to the criterion. We reason tha
pre-fetch distance of 512 instructions should enable on the orde
a hundred cycles of latency to be hidden while retiring multip
instructions per cycle.

In the slices presented, artificial dependences on the st
pointer and global pointer are ignored. For fairness, all stack a
global pointer computations are ignored when counting distanc
in the dynamic instruction stream. Likewise, all nops (inserted
the compiler for branch alignment and scheduling purposes)
completely ignored.

Due to space limitations, we cannot include all of our data. W
have selected specific examples, which we include as figures

Alan Berenbaum
175

th
s
x

d
o

i
ib

e
h
u
e
f

e

ll
e
s
o

rv
ic
ti

a
le

he
n

m
es.
y
he
.

a
ow
is-

-
y
es,
he
e
he

ted
rst
rom
the
to
demonstrate the important phenomena. We plot slices showing
cumulative number of instructions in the slice (the y axis) vs. di
tance from the criterion in the dynamic instruction stream (the
axis). For example, the point (512, 50) on one of these plots in
cates that only 50 of the 512 instructions preceding the criteri
(or about 10%) contribute to its execution. These plots include
“100% line” to allow comparisons to the full dynamic instruction
stream up to that point. In addition to explaining these examples
the text, we summarize data not included in the figures to descr
general trends we have observed.

5 Results
Our analysis begins in Section 5.1 with the VAL sub-slic

because the operations in the data dependence chain dictate w
instructions are found in the ADR and CF sub-slices. We focus o
speculative techniques on the ADR, EX, and CF sub-slices in S
tions 5.2, 5.3, and 5.4, respectively. These sub-slices account
the vast majority of the instructions in a conservatively construct
slice.

5.1 Value Sub-slices
In conservatively generated slices, the value sub-slice typica

contributes the smallest component to a slice, and many of th
instructions are clustered close to the event. Figure 3a show
VAL sub-slice from a single static event that is representative
many of the slices observed in these benchmarks. Three cu
mark the maximum, average, and minimum size of the sub-sl
over all dynamic instances (of a particular event-causing sta
instruction) in the observed interval.
res
fore
e
nd

an
e,
as
es

t of
e
of

of
in

and
n-
he
or),
ns

o-

re
te
t,
e
-

i-
n
a

n
e

ich
r
c-
or
d

y
se
a

f
es
e
c

For the vast majority of slices observed, the VAL sub-slice is
very small fraction (less than 2% at a distance of 512 of the who
dynamic instruction stream). Typically, much, if not all, of the
sub-slice is concentrated near the criterion instruction (within t
first 10-20 instructions). In general, there is very little variability i
the size of the VAL sub-slice.

Figure 3b shows a different static event where the maximu
slice size is much larger than either the average or minimum siz
When there is a lot of size variability in a VAL sub-slice, generall
it is due to different control flow paths. In the above instance, t
different behaviors are associated with different calling contexts

In the rare cases when the VAL sub-slice is large, it is due to
recurrence. Figure 3c shows a case where one fifth of our wind
of 512 instructions is in the VAL sub-slice. Recurrences are d
cussed in Section 6.1.

The small size of VAL slices is somewhat an artifact of our defi
nition of the VAL sub-slice, but the general trend is supported b
previous parallelism studies [2, 12, 26]. Because of the small siz
we are not directly concerned with further reducing the size of t
VAL sub-slice. As will be seen in the next sections, much of th
computation in these integer applications is present to identify t
values on which to operate and which operations to perform.

5.2 Address Sub-slices
A load in a dynamic slice reads a value which was either crea

before the slice began or stored by a store in the slice. In the fi
case, the address must be generated to retrieve the value f
memory; in the second, the address is generated to identify
store which supplies the value. In many cases, it is difficult
prove anything about the communication patterns between sto
and loads, leading to ambiguous memory dependences. Be
dealing with this ambiguity, we characterize the ADR sub-slic
assuming an oracle that only includes the required loads a
stores. We call this the unambiguous ADR sub-slice.

The average size of these sub-slices is quite a bit larger th
VAL sub-slices. The slice shown in Figure 4a is representativ
although there is a lot of variation between benchmarks as well
within a benchmark. On average, unambiguous ADR sub-slic
consist of 4-10% of the 512 instructions before an event.

Two other characteristics are demonstrated by Figure 4a: a lo
variability between maximum and minimum slice sizes, and th
appearance of a gradual ramp up (indicating an even distribution
instructions from the slice). Figure 4b shows a sampling
dynamic instances which make up the aggregate slice shown
Figure 4a. It can be seen that the spectrum between minimum
maximum is continuously populated rather than being conce
trated at the extremes. Also, the individual slices are bursty (t
gradual ramp shown in Figure 4a is merely an aggregate behavi
consisting of regions that affect the slice separated by flat regio
which do not contribute. This is a reflection of the fact that a pr
gram is an interleaving of partially independent computations.

As previously mentioned, the unambiguous ADR sub-slices a
optimistic. In general, we cannot identify which stores contribu
to the VAL sub-slice without computing all addresses. In fac
Figure 3.Dynamic sizes of value (VAL) sub-slices.

0 100 200 300 400 500
0

2

4

6
a) A representative VAL sub-slice

maximum
average
minimum
100%

0 100 200 300 400 500
0

10

20

30

40

50

cu
m

ul
at

iv
e

sl
ic

e
si

ze b) A VAL sub-slice with size variability

0 100 200 300 400 500

distance (in dynamic instructions)

0

50

100

c) A large VAL sub-slice caused by a recurrence

Alan Berenbaum
176

a
p

n
n
c

t
th
n
u

l
i

a
h
s
in
n

e
te
s
e

hich
ces

er
us
R
-

are
ny
le
his
use
puts.
en-
].

us
re
R
es

the
s

without any information, there are two possible policies: conserv
tive (assume dependence) and naive speculation (assume inde
dence). The conservative policy assumes that any store could
part of the slice, forcing all store address computations into a co
servatively large ADR sub-slice. Naive speculation predicts that
stores will affect the slice, and suffers from data dependen
mis-speculation when stores should be included in the slice.

Figure 4c demonstrates the consequences of the conserva
policy for the same slice considered in Figure 4a. On average,
ADR sub-slice has increased to 30% of the full program (arou
60% in the worst case), compared to 5% for the unambiguo
ADR sub-slice.

Figure 4d shows the mis-speculation rate for the naive specu
tion (speculate always) policy, as a function of distance in dynam
instructions from the criterion instruction (using the same slice
above). This rate shows the likelihood that at least one store t
affects the VAL slice would be ignored. This data is somewhat pe
simistic in that even if the store would not change the value
memory (i.e., a silent store) it is marked as a mis-speculatio
Increasing the pre-execution distance rapidly increases the lik
hood that a memory communication will be required to compu
the criterion. Large windows are likely to include entire function
and therefore it is not uncommon for values in the VAL slice to b
-
en-
be
-

o
e

ive
e

d
s

a-
c
s
at
-

.
li-

saved to and restored from the stack. There are some slices w
contain no stores within 512 instructions, and there are some sli
which are always misspeculated past a distance of 50.

5.2.1 Profiling Store Sets
Clearly, neither of these naive policies is sufficient. Howev

with some information about past behavior, the unambiguo
ADR sub-slice can be approximated by a speculative AD
sub-slice. Although memory allows any store to potentially com
municate with any load, in practice the active dependences
only a small subset of all possible communication arcs. During a
program execution, a majority of static loads are fed by a sing
static store [6, 13, 14]; the rest are fed by a small set of stores. T
behavior seems to be inherent to the program’s structure, beca
the same dependences are exercised across different data in
This suggests that profiling can be used to identify memory dep
dences with high accuracy, as proposed by Reinman, et al. [18

Using these profiles, we can reduce the size of the ambiguo
ADR sub-slice. Stores in the dynamic instruction stream that a
not in the store sets of any of the loads already in the AD
sub-slice can be ignored. Only when the profile is inaccurate do
a mis-speculation occur.

For most benchmarks, memory dependence profiles reduce
size of the ADR sub-slice to close to that of the unambiguo
u

Figure 4.Dynamic sizes of address (ADR) sub-slices.

0 100 200 300 400 500
0

20

40

60

80

cu
m

. s
lic

e
si

ze a) Representative unambiguous ADR sub-slice
100%
maximum
average
minimum

0 100 200 300 400 500
0

10

20

30

40

50

cu
m

. s
lic

e
si

ze

b) a sampling from the above sub-slice to demonstrate long regions without contributions

100%
slice

0 100 200 300 400 500
0

100

200

300

cu
m

. s
lic

e
si

ze

c) Effect of conservative "assume dependence" policy on the same ADR sub-slice (note change in scale)

100%
maximum
average
minimum

100 200 300 400 500

distance (in dynamic instructions)

0

20

40

60

80

100

m
is

pe
cu

la
tio

n
ra

te d) Misspeculation rate for "assume independence" policy, for the same slice

Alan Berenbaum
177

1

l
c

ic
f
e
s
s
ib
te
e
,
e

R
h

io

ces

se
m
the
ed
tri-

ds

of
ul-
en-
two

be
is

res
is-
he
ADR sub-slice. On average, the ADR sub-slices are less than
instructions larger than the unambiguous version at a distance
512. The fact that this disparity is so small indicates that often on
one store from the store set exists in the window of 512 instru
tions.

Typically, when the disparity is large, there are many dynam
instances of the same static store in the window (because o
loop), and the store set mechanism must generate all of th
addresses to select the correct producer. For this reason, u
speculation to remove infrequently used stores from the store
provides only modest benefit. Usually, such stores do not contr
ute significantly to the store set because they are rarely execu
However, the induced mis-speculation rate is also modest (exc
in cases of recurrences discussed in Section 6.1), implying that
most cases, it is sufficient to identify the dominant dependenc
hence a sampling technique can be used.

Overall, store set profiling is successful at reducing the AD
sub-slice to the size of the unambiguous ADR sub-slice, but t
size of the ADR sub-slice still dominates that of the VAL
sub-slice. In the next section we exploit another common behav
of memory dependences to further reduce ADR sub-slice size.
he
h-
e.

ith
p-

ly
f a
h-

ent
e
ne
in-

y
in
s-

and
a

0
of
y
-

a
ir

ing
et
-
d.
pt
in
s;

e

r

5.2.2 Speculative Register Allocation to Remove
Unnecessary Address Calculations

Previous research has shown that many memory dependen
are satisfied by themost recent storefrom its store set [13, 15, 18,
25]. In fact, static loads can be categorized into two groups: tho
that are very likely to be satisfied by the most recent store fro
their store set, and those that are very unlikely. Figure 5 shows
distribution of these likelihoods across all benchmarks, weight
by the execution frequency of the associated static load. The dis
bution is distinctly bimodal, in that highly-biased (at least a 95%
bias) static instructions represent almost 90% of dynamic loa
executed.

This behavior is not limited to loads whose store sets consist
a single static store (Figure 5b), but exists also for loads with m
tiple stores in their store sets (Figure 5c). Given these extreme t
dencies, it should be easy to categorize loads into these
groups, even with incomplete data.

Once control flow has been resolved and the stores that could
in the ADR sub-slice have been identified, loads that exhibit th
“most recent store” behavior can be accurately paired with sto
without the need for address generation [13, 15, 18, 25]. If a reg
ter can be (speculatively) allocated for the communication in t
slice, then both the load and store can be removed with all of t
instructions in their address calculations. In most of the benc
marks, this can significantly reduce the size of the ADR sub-slic

Some of the slices we consider consist exclusively of loads w
“most recent store” behavior, causing the ADR sub-slice to disa
pear entirely. A majority of the remaining slices are significant
reduced, often cut in half. Figure 6 shows the average sizes o
representative ADR sub-slice when constructed with the tec
niques discussed.

When a memory dependence does not have a “most rec
store” behavior, we have found that it is often inefficient to includ
its store set in the slice. Two such cases are prevalent. If only o
dynamic instance of a store from the store set appears in the w
dow, it is unlikely to cause a mis-speculation if we ignore it (b
definition). The other common case is when multiple stores are
the window because they are in a tight loop (as shown in the illu
trative example in Figure 7). In this case, address generation
loop control (which would need to be in the full slice as well) are
Figure 5. Bimodal distribution of a static load’s likelihood to
use the most recently stored value from its store set.

0 20 40 60 80 100
0.0

0.2

0.4

0.6
a) all loads

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

fr
ac

tio
n

of
 d

yn
am

ic
 lo

ad
s

b) (store set size == 1)

0 20 40 60 80 100

% dyn. loads from most recent store

0.0

0.2

0.4 c) (store set size > 1)
the
Figure 6. Address (ADR) sub-slice average size by identification technique.Conservativeincludes all store address calculations,store
setsincludes only those from store sets of loads in the VAL sub-slice, andunambiguousincludes only those stores which affect the
criterion. Speculative register allocationremoves the load and store address calculation of memory dependences which exhibit
“most recent store” behavior.

0 100 200 300 400 500

distance (in dynamic instructions)

0

50

100

150

cu
m

. s
li

ce
 s

iz
e

100%
conservative
store sets
unambiguous
spec. reg alloc

Alan Berenbaum
178

in
is
ft
t o

e
d
n
X

ce
o
a
e

s
ng
ly

re
. B
e
ry
th
o

s
s
to

b
si

and
ng
the
eir

a
tion
the
er

tal

bu-
had
nt
a
n-

e as

ry
ced

X
es
d
ny

lation
,
cri-
he

rol
ese

pear
ric
significant portion of the loop. Inclusion of these instructions
the slice can significantly impact its size; a better solution in th
second case may be to initiate the pre-execution immediately a
the loop completes. This more efficient slice comes at the cos
decreased pre-execution distance.

5.3 Existence Slices
Without control independence analysis, all branch targets ne

to be resolved to determine whether the criterion will be execute
In many cases this requires executing 80% of the 512 instructio
before a criterion. With control independence analysis, the E
sub-slice is much smaller but still can be substantial, even if w
only consider control flow arcs which are exercised at least on
On average, the EX sub-slices are in the range of 10-12% (ab
50-60 instructions at a pre-fetch distance of 512), but can be
high as 20-30% (100-150 instructions at a distance of 512) wh
the criterion is in a loop.

Like VAL and ADR sub-slices, the EX sub-slice’s instruction
tend to be clustered toward the criterion. This is not surprisi
given that the farther the criterion is from a branch, the more like
it is that there is a reconvergent point between the two.

Often more than half of the instructions in the EX sub-slice a
memory dependences (in the same vein as the ADR sub-slice)
applying our memory dependence techniques, we can remov
significant portion of these. Frequently, the remaining EX memo
dependences are already present in the ADR sub-slice. For
reason, the memory dependences from the EX sub-slice seld
contribute significantly to the total size of the slice.

The same cannot be said for the non-memory dependence
the EX sub-slice. In general, there is little overlap between the
instructions and any other slice. They tend to directly contribute
the size of the total slice.

The impact of the EX sub-slice on the slice as a whole can
reduced by ignoring highly biased existence branches. We con
i-
a
ll
ot
is

een

he

).
er
f

d
.
s

e
.

ut
s
n

y
a

is
m

in
e

e
d-

ered removing branches with biases greater than 98 percent
found that the benefit varied between benchmarks. By exploiti
this statistical or speculative control independence, around half
slices we observed were reduced to one half to one third of th
sizes. The other half were for the most part untouched.

One common existence branch is a null pointer test before
dereference. This branch can be removed by recognizing excep
conditions as the end of a pre-execution. However, because
associated pointer value usually occurs in one of the oth
sub-slices, this optimization does not significantly reduce to
slice size.

5.4 Control Flow Slices
In the conservative case, the CF sub-slice is the largest contri

tor to many of the backward slices and is also the one we have
the least success optimizing due to the limitations of our curre
infrastructure. There is significant variability; a number of criteri
have non-existent CF sub-slices, but in some of the control-inte
sive benchmarks the conservative CF sub-slice can be as larg
50 to 60 percent of the 512 instruction window we considered.

Similar to the EX case above, the CF sub-slices include memo
dependences, and their contributions can likewise be redu
using the techniques presented in Section 5.2. Unlike the E
sub-slice, however, speculating that highly biased branch
(greater than 98% bias) will always follow their bias does not lea
to a substantial reduction of the sub-slice size, in general. In ma
cases, these branches are less biased, so a larger mis-specu
rate must be tolerated for slice reduction. Also, unlike VAL, ADR
and EX sub-slices which tend to be more concentrated near the
terion, CF sub-slices are more evenly distributed throughout t
dynamic instruction stream.

Upon closer inspection, we determined that some of the cont
dependences that we identified were false dependences. In th
cases, instructions that are control dependent on the branch ap
to be part of the slice, but all paths from the branch are symmet
with respect to the criterion. A common example of this is a cond
tional function call (shown in Figure 8) which saves and restores
register value in the slice. The function call performs a net nu
operation on the register, but our current infrastructure cann
detect this. We have identified other less trivial instances of th
phenomena by inspecting slices by hand, but we have not b
able to quantify the effect of these false dependences.

6 Discussion
In this section, we briefly discuss some characteristics of t

slices and the process of constructing slices.
Figure 7. Illustrative example of an inefficient slice due to a
memory dependence (source code (a) and backward slice (b)
Assuming j is evenly distributed between 0 and (N-1), each
store in the loop has a 1/N chance of contributing to the
criterion. Including the loop in the slice impacts the slice’s
size, but removing it entirely causes mis-speculation if a
pre-execution is initiated before (A). Initiating it at (B) avoids
this trade-off, but reduces the latency that can be tolerated.

j =; k =;

int A[N];
for (int i = 0 ; i < N ; i ++) {
 A[i] = i;
}

CRITERION

distance (in dynamic instructions)

cu
m

. s
lic

e
siz

e

A

B

C

....

....

if (A[j] == k) {

A

B

C

a)

b)
100%
Figure 8. Example of a false control dependence. Both paths
through the example are equivalent with respect toA, because
the path throughfunction() has a net null effect onA.

A =;
if (B) {
 function();
}
if (A) {

function() {
 save A;

 restore A;
}CRITERION

Alan Berenbaum
179

ne
l
c
in
th
u
y
o

m
o
e
c
l

ce
a

is
u
e

th
b
o
m

n
b
u
t

iti
c

t
c

a
In
i
d
th
n
in
nt

to
s

y

n
ion.
m
he
-
as

he
op
o-
is
d,
i-
a
-
rs
d

he
ten
e

ch
for-
sor
nd

vior
the
ns.

ro-
m-
’s

the
te-
f a
is
int,
pec-
y
sce

s,
le to
’s
e
5%
ues
ry
6.1 Overlapping Slices and Recurrences
It is not uncommon for the backward slices of more than o

criteria to share instructions. In these cases, it may be beneficia
merge the slices to reduce the pre-execution overhead. A spe
case of this is when one criterion is in the slice of a second,
which case the second criterion’s slice is often a superset of
first criterion’s slice. An unpredictable branch based on the res
of a cache-missing load is a repeating theme. Since the latenc
these two events is serialized, the initiation of the pre-executi
must be scheduled appropriately.

A special case of overlapping slices is when multiple slices fro
the same static criterion overlap. This occurs when a criteri
instruction is in a tight loop. Each iteration will have one or mor
recurrences that appear in its backward slice. These recurren
can be address, data, or control. They can make the backward s
look deceptively large, but in such a slice there are many instan
of the criterion evaluated, so the incremental slice size is sm
(less than or equal to the size of a loop iteration).

These incremental slices can only be exploited if we enable
pre-execution to evaluate the criterion multiple times. At th
point, the decision must be made as to how many iterations sho
be executed. Typically, highly biased branches are speculativ
removed from the existence sub-slice, but if the loop back-edge
removed, the pre-execution could iterate forever. To reduce
incremental slice size, complicated existence slices can
replaced with simple control which executes a fixed number
iterations (either using a loop or static unrolling), or feedback fro
the main computation can be used to throttle or terminate
pre-execution computation.

When the incremental backward slice makes up a significa
portion of a loop iteration, the benefit of latency tolerance must
derived from the distance between the initiation of the pre-exec
tion and the first iteration of the loop. If the long latency even
itself is part of the recurrence (as in pointer chasing), then the in
ation must be scheduled to tolerate the serial latencies. Such te
niques, including root jumping, are discussed in [21].

Speculation has to be used very carefully on dependences in
recurrence. If an incorrect value is computed on the recurren
path, then it will be propagated to all future iterations.

6.2 Traditional Optimizations
Once a slice has been reduced to its essential elements, tr

tional compiler techniques can be used to further optimize it.
addition to the speculative register allocation discussed
Section 5.2.2, we have seen opportunities for loop invariant co
motion, the removal of register moves, strength reduction, and
conversion of indirect branches into direct branches. In ma
instances, these techniques could not be applied to the orig
program due to ambiguous memory dependences, infreque
executed branches, or register pressure.

Similarly, dynamic compilation techniques could be used
generate slices which exploit invariant run-time values. Since the
pre-execution computations are speculative, it is not necessar
verify that these run-time values are truly constant.
to
ial

e
lt
of
n

n

es
ice
s

ll

a

ld
ly
is
e
e
f

a

t
e
-

-
h-

he
e

di-

n
e
e
y
al
ly

e
to

6.3 Identifying Slices
The effort required to identify slices depends significantly o

many aspects of a program, not least of which is its representat
In this paper, we took a low-level approach, analyzing the progra
at the instruction level, as a processor might analyze it. Without t
high-level information available from the source level, our infra
structure needed to rediscover some of the information that w
known to the compiler.

This process is occasionally aggravated by the compiler; t
most noteworthy example is code replication. Techniques like lo
unrolling and trace scheduling require the slice construction alg
rithm to reconcile the replicated blocks with each other. Also, it
not uncommon for the criterion instructions to be replicate
potentially requiring multiple slices to pre-execute what is log
cally a single operation. Only when the different instances of
block have radically different behavior (with respect to the crite
rion) does the slice benefit from such replication. Programme
can likewise be a source of replication if they unroll loops by han
or otherwise replicate code.

The slice construction routine operates most efficiently on t
smallest representation of the program. This requirement of
conflicts with many performance optimizations performed by th
compiler.

7 Conclusion
Instructions whose behavior cannot be anticipated by bran

predictors or caches can significantly degrade processor per
mance. In the future, this will be further aggravated as proces
microarchitecture continues the trend to higher clock speeds a
deeper pipelines. This study finds that, in many cases, the beha
of these instructions can be represented by a reduced form of
program, specialized to compute the outcome of these instructio
If executed in parallel with the whole program, these reduced p
grams can initiate long latency events early so that they have co
pleted by the time they are encountered by the whole program
execution.

These reduced programs are constructed by identifying
backward slice of the instruction to be pre-executed. In many in
ger benchmarks, the conservative backward slice consists o
large fraction of the program. The key to reducing slice size
speculation; by treating the result of a pre-execution as only a h
infrequent and ambiguous dependences can be ignored. This s
ulation must be guided by profiling the application to identif
dominant paths and dependencies and by analysis to coale
paths which are equivalent with respect to the slice.

By exploiting control-independence, highly biased branche
and the stable nature of load-store dependences, we were ab
reduce many slices down to less than 10% of the full program
dynamic instruction stream for the window of 512 instructions w
considered. In almost all cases, mis-speculation rates below
were maintained. There were some slices for which the techniq
we investigated were insufficient, often due to complex memo

Alan Berenbaum
180

o

st

u
he

a
fu

n
d
w
rk
n
m
-

d
s.

r-

6
n
-

i

e

u

m

i-
n.

n
-

a
y

fi-

c-

-
es.
c-

n

n

-

n.
-

t-

ed

s

-
m-

r

or
1,

e-
of

r-
n

-

r

dependences or slices which necessitated much of the control fl
to be resolved.

The techniques considered here are by no means an exhau
list. Future work includes investigating if additional program
behaviors and speculation techniques can be used to further red
these slices. Path profiles might allow further refinement of t
control flow sub-slice by enabling different instances of the sam
static branch to be treated differently. Also, value prediction h
the potential to break data dependences, possibly removing
computation chains from the slice.

8 Acknowledgements
Many of the ideas in this paper, as well as the writing, have be

efitted from discussions with Amir Roth. In addition, we woul
like to thank Manoj Plakal, Dan Sorin, and the anonymous revie
ers for their comments on earlier drafts of this paper. This wo
was supported in part by National Science Foundation gra
MIP-9505853 and CCR-9900584 and an equipment grant fro
Intel Corp. Craig Zilles was supported by NSF and Intel fellow
ships during the academic years 1998 and 1999, respectively.

9 References
 [1] S. Abraham, R. Sugumar, D. Windheiser, B. Rau, an

R. Gupta. Predictability of Load/Store Instruction Latencie
In Proc. 26th International Symposium on Microarchitecture,
pages 139–152, Dec. 1993.

 [2] T. Austin and G. Sohi. Dynamic Dependency Analysis of O
dinary Programs. InProc. 19th International Symposium on
Computer Architecture, May 1992.

 [3] D. Binkley and K. Gallagher.Advances in Computers, chapter
34: Program Slicing. Academic Press, San Diego, CA, 199

 [4] D. Burger and T. Austin. The SimpleScalar Tool Set, Versio
2.0. Technical Report CS-TR-97-1342, University of Wiscon
sin-Madison, Jun. 1997.

 [5] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. S
multaneous Subordinate Microthreading (SSMT). InProc.
26th International Symposium on Computer Architectur,
May 1999.

 [6] G. Chrysos and J. Emer. Memory Dependence Prediction
ing Store Sets. InProc. 25th International Symposium on
Computer Architecture, pages 142–153, Jun. 1998.

 [7] K. Driesen and U. Hoelzle. The Cascaded Predictor: Econo
ical and Adaptive Branch Target Prediction. InProc. 31st In-
ternational Symposium on Microarchitecture, pages 249–258,
Dec. 1998.

 [8] K. Ebcioglu, E. Altman, S. Sathaye, and M. Gschwind. Opt
mizations and Oracle Parallelism with Dynamic Translatio
In Proc. 32nd International Symposium on Microarchitecture,
pages 284–295, Nov. 1999.

 [9] A. Eden and T. Mudge. The YAGS Branch Predictio
Scheme. InProc. 31nd International Symposium on Microar
chitecture, pages 69–77, Nov. 1998.

 [10] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow An
ysis of Branch Mispredictions and Its Application to Earl
Resolution of Branch Outcomes. InProc. 31st International
Symposium on Microarchitecture, pages 59–68, Dec. 1998.
w

ive

ce

e
s
ll

-

-

ts

.

-

s-

-

l-

 [11] E. Jacobsen, E. Rotenberg, and J. Smith. Assigning con
dence to conditional branch predictions. InProc. 29th Interna-
tional Symposium on Microarchitecture, Dec. 1996.

 [12] M. Lam and R. Wilson. Limits of control flow on parallelism.
In Proc. 19th International Symposium on Computer Archite
ture, May 1992.

 [13] A. Moshovos.Memory Dependence Prediction. Ph.D. thesis,
University of Wisconsin-Madison, 1998.

 [14] A. Moshovos, S. Breach, T. Vijaykumar, and G. Sohi. Dy
namic Speculation and Synchronization of Data Dependenc
In Proc. 24th International Symposium on Computer Archite
ture, pages 181–193, Jun. 1997.

 [15] A. Moshovos and G. Sohi. Streamlining Inter-Operatio
Communication via Data Dependence Prediction. InProc.
30th International Symposium on Microarchitecture, pages
235–245, Dec. 1997.

 [16] T. Mowry and C.-K. Luk. Predicting Data Cache Misses i
Non-Numeric Applications Through Correlation Profiling. In
Proc. 30th International Symposium on Microarchitecture,
Dec. 1997.

 [17] S. Muchnick.Advanced Compiler Design and Implementa
tion. Morgan Kaufman, San Francisco, CA, 1997.

 [18] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austi
Classifying Loads and Store Instructions for Memory Renam
ing. In Proc. 1999 International Conference on Supercompu
ing, Jun. 1999.

 [19] A. Roth, A. Moshovos, and G. Sohi. Dependence Bas
Prefetching for Linked Data Structures. InProc. 8th Confer-
ence on Architectural Support for Programming Language
and Operating Systems, pages 115–126, Oct. 1998.

 [20] A. Roth, A. Moshovos, and G. Sohi. Improving Virtual Func
tion Call Target Prediction via Dependence-Based Pre-Co
putation. In Proc. 1999 International Conference on
Supercomputing, pages 356–364, Jun. 1999.

 [21] A. Roth and G. Sohi. Effective Jump-Pointer Prefetching fo
Linked Data Structures. InProc. 26th International Sympo-
sium on Computer Architecture, pages 111–121, May 1999.

 [22] A. Roth and G. Sohi. Speculative Data Driven Sequencing f
Imperative Programs. Technical Report CS-TR-2000-141
University of Wisconsin, Madison, Feb. 2000.

 [23] Y. Song and M. Dubois. Assisted Execution. Technical R
port #CENG 98-25, Department of EE-Systems, University
Southern California, Oct. 1998.

 [24] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, V(3):121–181, 1995.

 [25] G. Tyson and T. Austin. Improving the Accuracy and Perfo
mance of Memory Communication Through Renaming. I
Proc. 30th International Symposium on Microarchitecture,
pages 218–227, Dec. 1997.

 [26] D. Wall. Limits of Instruction Level Parallelism. InProc. 4th
International Conference on Architectural Support for Pro
gramming Languages and Operating Systems, April 1991.

 [27] M. Weiser. Program Slicing.IEEE Transactions on Software
Engineering, 10(4):352–357, 1984.

 [28] C. Zilles, J. Emer, and G. Sohi. The Use of Multithreading fo
Exception Handling. InProc. 32nd International Symposium
on Microarchitecture, pages 219–229, Nov. 1999.

Alan Berenbaum
181

