
Processor-Memory Interconnections for Multiprocessors

Janak H. Patel
School of Electrical Engineering

West Lafayette, IN 47907

Abstract -- A new class of interconnection networks
is proposed for processor to memory communication
in multiprocessing systems. These networks allow a
direct link between any processor to any memory
module. The cost of these networks is considerably
less than that of full crossbars. Moreover, the
design and control of these networks is simple.
The proposed networks and the full crossbars are
analyzed with respect to the bandwidth and the
cost.

I. Introduction

With the advent of low cost microprocessors, the
architectures involving multiple processors are
becoming very attractive. Several organizations
have been implemented or proposed. Principally
among these are parallel (SIMD) type processors,
computer networking and multiprocessor organiza-
tions. In this paper we focus our attention to
multiprocessors.

The principle characteristics of a multiproces-
sor system is the ability of each processor to
share a single main memory. This sharing capabili-
ty is provided through a interconnection network
between the processor and the memory modules, which
logically looks like Figure 1. The function of the
switch is to provide a logical link between any
processor and any memory module. There are several
different physical forms available for the
processor-memory switch; the least expensive of
which is the time-shared bus. However, a time-
shared bus has a very limited transfer rate, which
is inadequate for even small number of processors.
At the other end of the bandwidth spectrum is the
full crossbar switch, which is also the most expen-
sive switch. In fact, considering the current low
costs of microprocessors and memories, a crossbar
would probably cost more than the rest of the sys-
tem components combined. Therefore it is very dif-
ficult to justify the use of a crossbar for large
multiprocessing systems. It is the absence of a
switch with reasonable cost and performance, which
has prevented the growth of large multimicroproces-
sor systems. To circumvent the high cost of
switch, some "loosely coupled" systems have been
proposed. In these systems, sharing of main memory
is somewhat restricted, for example some memory
accesses may be fast and direct while many other
references may be slow, indirect and may even in-
volve operating system intervention. There is con-
siderable research on the permutation networks for
parallel (SIMD) processors but almost no research
on processor-memory interconnections requiring ran-
dom access capabilities.

CH1394-6/79/0000-0168
168

Figure I. Logical organization of a multiprocessor.

In this paper we propose a class of interconnec-
tion networks, termed delta networks which are far
less expensive then full crossbars and are modular
and easy to control. These networks are analyzed
to determine the effective bandwidth and are com-
pared with the effective bandwidth of full
crossbars. We also describe the implementation de-
tails of delta networks and their cost-
effectiveness.

II. Principle of Operation

Before we define delta networks, let us study
the basic principle involved in the construction
and control of delta networks. Consider a 2 x 2
crossbar switch (Fig. 2). This 2 x 2 switch has
the capability of connecting the input A to either
the output labeled 0 or output labeled 1, depending
on the value of some control bit of the input A.
If the control bit is 0 then the input is connected
to the upper output and if I then it is connected
to the lower output. The same description applies
to terminal B, but for the time being ignore the
existence of B. It is straightforward to construct

a l-by-2 n demultiplexer using the above described 2
x 2 module. This is done by making a binary tree
of this module. For example Figure 3 shows a 1 x 8
demultiplexer tree. The destinations are marked in
binary. If the source A requires to connect to
destination (d2dldo) 2 then the root node is con-

trolled by bit d2, the second stage modules are

controlled by bit d I and the last stage modules are

controlled by bit d o . It is clear that, A can be

connected to any one of the eight output terminals.
It is also obvious that the lower input terminal of
the root-node also can be switched to any one of
the 8 outputs.

$00.75©1979 IEEE

B I B

Control Control

bit of A "bit of A

=0 =I

Figure 2. A 2 x 2 crossbar.

At this point we add another capability to the
basic 2 x 2 module, the capability to arbitrate
between conflicting requests. If both inputs re-
quire the same output terminal, then only one of
them will be connected and the other will be
blocked or rejected. The probability of blocking
and the logic for arbitration is treated later on.

Now consider constructing an 8 x 8 network us-
ing 2 x 2 switches, the principle used is the same
as that of Figure 3. Every additional input must
also have its own demultiplexer tree to connect to
any one of the eight outputs. Basically the con-
struction works as follows. Start with a demulti-
plexer tree, then for each additional input super-
impose a demultiplexer tree on the partially con-
structed network. One may use the already existing
links as part of the new tree or add extra links
and modules if needed. We have redrawn the tree of
Figure 3 as Figure 4a. The addition of next tree
is shown with heavy lines in Figure 4b. This pro-
cedure is continued until the final 8 x 8 network
of Figure 4d results. The only restriction which
must be strictly followed during this construction
is that, if a 2 x 2 module has its inputs coming
from other modules then both inputs must come from
upper terminals of other modules or both must be
lower terminals of other modules. (All upper out-
put terminals are understood to have label 0 and
the lower terminals, label I.) Other than this
there is considerable freedom in establishing links
between the stages of the network. In the con-
struction of the above 8 x 8 network we had the
benefit of some hindsight that 12 modules are
necessary and sufficient to build this network. If
more modules are used then some inputs of some
modules will remain unconnected. We could have
stopped in the middle of the construction to obtain
a 4 x 8 or a 6 x 8 network, such as Figure 4b and
4c, however in each case some inputs of the 2 x 2
modules will remain unutilized.

We term, the networks constructed in the above
manner digit controlled or simply delta networks,
since each module is controlled by a single digit
from the destination address. Furthermore, no
external or global control is required. Digit con-
trolled networks are not new; Lawrie's omega net-
works [13 and Pease's indirect binary n-cube [2]
are subsets of delta networks.

Note that, network of Figure 4d does not allow
an identity permutation, that is, the connection 0
to 0, I to I, ..., 7 to 7 at the same time. An

identity permutation is useful if say memory module
0 is a "favorite" module of processor 0, and module
I that of processor 1 and so on. Thus identity
permutation allows most of the memory references to
be made without conflict. A simple renaming of the
inputs of Figure 4d will allow an identity permuta-
tion. This is shown in Figure 5; in here if all 2
x 2 switches were in the straight (=) position then
an identity permutation is generated. As a matter
of fact, since one and only one path is available
from any source to any destination, every different
setting of the form X and = generates a different
permutation. Thus the network of Figure 5 gen-

erates 212 distinct permutations. This brings us
to another somewhat unrelated topic of permutation
networks. The procedure to construct a delta net-
work can be used to generate different permutation
networks. For example we could have started with a
tree in which the first stage was controlled by bit
d I the second by d 0 and third by d 2. This would of

course require relabeling the outputs. But does
this really produce a "different" network? Siegel
[3] has shown that by a simple address transforma-
tion the newtorks of Lawrie [I] and that of Pease
[2] can be made equivalent, i.e., they produce the
same set of permutations. As far as we know, the
network of Figure 5 cannot be made equivalent to
either Lawrie's or Pease's network by a simple ad-
dress transformation. It is quite possible, that
there are only two non-equivalent 8 x 8 delta net-
works, namely Lawrie's omega network and the net-
work of Figure 5. We shall not pursue this subject
any further, as our primary interest lies in the
random access capabilities of these networks and
not permutations.

III. Design and Description of Delta Networks

So far we have not defined the delta networks in
a formal and rigorous manner. For the purposes of
this paper we define them as follows. --~oo0

~ ~,-o 001

Ao ~ "-I'---'L'J--""'"° 011

~ u-----2J-"...-....o 101

Figure 3. l-by-8 demultiplexer.

169

Let a b x b crossbar module have the capability
to connect any input to any one of the b outputs.
Let the outputs be labeled 0, I, ..., b-1. An in-
put is connected to the output labeled d if the
control digit supplied by the input is d, where d
is a base-b digit. Moreover, a b x b module also
arbitrates between conflicting requests by accept-
ing some and rejecting others.

A delta network is a b n x b n network made up of

nb n-l, b x b crossbar switches, arranged in n

stages, b n-1 switches to a stage. The link pattern
between stages is such that any source can be con-
nected to any destination, where each b x b modules
connects an input to one of its b outputs depending
on a single base-b digit taken from the destination
address.

(a)

ooo

OOl

OlO

Ol l

IOO

IOl

111

(c)

I ~ 000
koo,

°,

• 100

101

' ~ 110

111

The construction of a b n x b n delta network fol-
lows the principle presented in the previous sec-
tion. Informally, the procedure can be described
as follows.

Construct a b-ary demultiplexer tree using b x b
crossbar switches. A b-ary tree has b branches for

every node. For a 1-by-b n demultiplexer, the tree
has n levels. Each level is controlled by a dis-
tinct base-b digit taken from the destination ad-
dress. For every additional input source, superim-
pose a new tree on the partially completed network.
Each superimposition must satisfy two conditions.

I. No more than b n-1 modules may be used at any
level and no more than n levels are created. 2.
Each b x b module which receives inputs from other
b x b modules, must have all its inputs connected

(b)

\
•_• ooo

OOl

• olo

oll

X

Ioo

lol

11o

1|1

(d)

I r i / F-T ooo
oo '

n4. n n oo

 GGiii
Figure 4. Construction of an 8 x 8 delta network.

170

° F] °°°
1 ' ~ 001

2 ~ "x~-l~"-- ~- OlO

3 / / r L _ _ J - Ol 1

,o,

Figure 5. An 8 x 8 delta network
to allow identity permutation.

to identically labeled outputs, where the outputs
of each b x b module are labeled O, 1, ..., b-l, as
was described earlier.

As one can see from the above construction pro-
cedure, there is a large number of link pattern

available for a b n x b n delta network. It is na-
tural to wonder if one topology is better than the
others. We shall see later that, as far as proba-
bility of acceptance or blocking for random access
is concerned, all delta networks are identical.
However, different topologies may have different
permutation capabilities. An important charac-
teristic of delta networks which results from a
property of trees used in the construction is as
follows.

In a delta network, there is one and only one
path from a source to a destination.

As a result of the above characteristic, every
different setting of a b x b switch results in a

different permutation. Thus a b n x b n delta net-

work generates (b!) nbn-1 distinct permutations.
This number is a very small fraction of the all

possible permutations of b n inputs, even for small
values of b and n. For example, the probability
that a random permutation of 32 inputs can be gen-

erated by a 25 x 25 delta network is 4.6 x 10 -12
From this, it would indeed be erroneous to make any
conclusion about the effectiveness of delta net-
works for random memory accesses.

The uniqueness of a path between a source and a
destination simplifies the control and analysis of
delta networks. However, the uniqueness happens to
be a weak point from the reliability standpoint.
The reliability aspects of delta networks will be
reported at a later date.

Since, the link pattern between stages of a del-
ta network is of no particular concern to us, we
may ask if there is some regular link pattern,
which can be used between all stages and thus avoid
the cumbersome construction procedure for every
different delta network. There is indeed such a
pattern which we describe below.

Let a q*r shuffle, denoted Sq,r, where q and r

are some positive integers, be a permutation of qr
indices <0, 1, 2, ..., (qr-1)>, defined as

Sq,r(i) = (qi + L~J) mod qr 0 < i < qr-1

where Sq,r(j) is the position of i after the shuf-

fle. A q*r shuffle can be viewed as a shuffle of
qr cards in the following way. Divide the deck of
qr cards in to q piles of r cards each; top r cards
in the first pile, next r cards in the second pile
and so on. Now pick the cards, one at a time from
the top of each pile; the first card from top of
pile one, second card from the top of pile two and
so on in a circular fashion, until all cards are
picked up. This new order of cards represents a
Sq, r permutation of the previous order.

From the above description it is clear that $2, r

is the well known perfect shuffle (e.g. [4]). Not
so obvious is the fact that Sr, q is an inverse per-

mutation of Sq, r. That is,

Sq,r(Sr,q(i)) = i 0 < i < qr-1

The q*r shuffles, although never defined formal-
ly as such, are widely used in interconnection net-
works, for example between the stages of a Clos
network [5]. We shall state without proof that a

b n x b n delta network can be constructed by using a

b*b n-1 shuffle as the link pattern between every
two stages. To use the function S , all the

b,b n-1

inputs and outputs of every stage must be labeled

from top to bottom as <0, I, 2, ..., (bn-1)>. Fig-

ure 6 shows a general b n x b n delta network. Note
that shuffle networks between stages are passive
and not active like the stages themselves. Two

delta networks, one 32 x 32 and one 23 x 23 ,
derived from Figure 6 are shown in Figures 7 and 8;
the interstage link pattern are respectively 3*3
shuffle and 2*4 shuffle. In Figure 6, by using a

b*b n-1 shuffle of the inputs just before the first
stage, one can obtain the identity permutation. If
such a transformation is used on the inputs of Fig-
ure 8 then it becomes topologically identical to
Lawrie's 8 x 8 omega network.

IV. Implementation of Delta Networks

Within the current technological limitations, it
is uneconomical to encode base b digits where b is
not a power of 2. Thus in practice, a b x b
crossbar module for a delta network is more costef-
fective if b is a power of 2, since our modules re-
quire base b digits for control. Again, due to the

171

b - i l

b n - 1 ~ t _ _ _ . _ .

Stage I Shuffle

b,b n-I

shuffle

Figure 6.

Stage 2

b,b n-1

~hufflel
1

Shuffle

! •

Stage n

A b n x b n delta network.

(dldo) 3

OI
02

II
12

22

Figure 7. A 32 x 32 delta network.

cost and technological limitations, modules of size
8 x 8 or greater are not very practical at this
time. This leaves 2 x 2 and 4 x 4 modules as the
most likely candidates for implementation of delta
networks. Here we give the functional and logical
description of 2 x 2 modules. This in turn will be
used to estimate the cost and delay factors of del-
ta networks.

The functional block diagram of a 2 x 2 crossbar
module of a delta network appears in Figure 9. All
single lines in the figure are one bit lines. The
double lines on INFO box, represent address lines,
incoming and outgoing data lines, and a read/write
control line. The data lines may or may not be bi-
directional. The function of the INFO box is that

2

Figure 8. A 23 x 23 delta network.

of a simple 2 x 2 crossbar; if the input X is 1
then a cross connection exists and if X is 0 then a
straight connection exists.

The function of the CONTROL box is to generate
the signal X and provide arbitration. A request
exists at an input port if the corresponding re-
quest line is I. The destination digit provides
the nature of the request; a 0 for the connection
to upper output port and a 1 for the lower port.
In case of conflict, the request r 0 is given the

priority and a busy signal b I = I is supplied to

the lower input port. A busy signal is eventually
transmitted to the source which originated the
blocked request. The logic equations for all the

172

i
r e q u e s t ~ r 0

d e s t i n a t i o n ~ d o

busy < b 0

r 1

> d I

< b I

<]>l i,

= rqdc, + rod I

R 0 = ro'~" 0 + rl'~" I

b 0 = '~'Bo + XB I

I 0 = i~,~' + i IX

R o

B o

CONTROL

R 1

x ~ Bi <

li
'o

R I = rod 0 + r i d I

bI = XBo + ~ I

I i = ioX + i ~

~~ r e q u e s t

busy

f

+ rodod I + rodod I

Figure 9. Details of 2 x 2 modules
for delta networks.

labeled signals are given with the block diagram.
For INFO box, the equations are given for left to
right direction. The parallel generation of X and

reduces one gate level. Signal X and ~ are valid
after 3 gate delays. Assuming that one level of

buffer gates for X and ~ in the INFO box exists due

to fanout limitations of X and ~, the total delay
to establish the connections of INFO box is 6 gate

delays, of which 4 gate delays are due to X and ~.
Thus after the initial set up time, the data
transfer requires only 2 gate delays per stage of
the network.

The operation of a 2 n x 2 n delta networks using
the above described 2 x 2 modules is as follows;
recall that there are n stages in this network.

All processors requiring memory access must sub-
mit their requests at the same time by placing a I
on the respective request lines. After 8n gate de-
lays the busy signals are valid. If the busy line
is I, then the processor must resubmit its request.
This can be accomplished simply by doing nothing,
i.e., continue to hold the request line high. The
read data is valid after 8n gate delays plus the
memory access time if the busy signal is O. Thus
the operation of the implementation described here
is synchronous, that is, the requests are issued at

fixed intervals at the same time. An asynchronous
implementation is preferable if the network has
many stages. However, such an implementation would
require storage buffers for addresses, data and
control in every module and also a complex control
module. Thus, the cost of such an implementation
might well be excessive. We have analyzed only the
synchronous networks in this paper.

V. Analysis of Delta Networks

In this section we analyze b n x b n delta net-
works for evaluating the probability of acceptance
of a request and the expected bandwidth. The
analysis is based on the following assumptions.

I. Each processor generates random and independent
requests; the requests are uniformly distribut-
ed over all memory modules.

2. The mean request generation rate of each pro-
cessor is m requests per cycle, where a cycle
is the time required to pass through the net-
work plus the time to access the memory plus
the time to return to the source irrespective
of whether a request is a read or a write, m
is less than or equal to I.

3. New requests are generated every cycle and sub-
mitted at the same time. At most I request can
be generated by a processor during one cycle.

4. The requests which are blocked (not accepted)
are ignored. That is, the requests issued at
the next cycle are independent of the requests
blocked.

The cycle time of assumption 2 can be evaluated
from the implementation details of the particular

network. For example the cycle time of a 2 n x 2 n
delta network is 8n gate delays plus memory access
time. The assumptions 2 and 3 together imply that
the mean request generation rate m is the probabil-
ity that a request is generated by a processor dur-
ing a cycle. The fourth assumption is there to
simplify the analysis. In practice of course the
rejected requests must be resubmitted during next
cycle; thus the independent request assumption will
not hold. However, to assume otherwise, would make
the analysis if not impossible, certainly very dif-
ficult. Moreover, simulation studies done by us
and by others [6] for similar problems have shown
that the probability of acceptance is only slightly
lowered if the fourth assumption above is omitted.
Thus the results of the analysis are fairly reli-
able and they provide a good measure for comparing
different networks.

First we analyze the 2 n x 2 n delta networks in
some details and then we shall present the general-
ized case.

Let PA be the probability that a request will be

accepted. The bandwidth BW of a N x N network, de-
fined as the expected number of requests accepted
per cycle is then mNPA, where m is the mean rate of

request generation of each processor.

173

Let p(OJi) be the probability that given i re-
quests at a 2 x 2 module M, nothing is sent on a
particular output line of M. Since both output
lines of M are equally likely to be requested, we
have,

p(OlO) = 1 p(011) = pC012) = ~ (1)

Let P(11i) be the probability that given i re-
quests at module M, a request is sent out on a par-
ticular output line of M. Clearly,

p(IIi) = I - p(Oli). (1)

Moreover, E(i), the expected number of requests ac-
cepted by module M, given i requests at M is:

2p (1 I i) (2)

Now let qh(k) be the probability that k requests

arrive at a module of stage h and let Pa(h) be the

probability that a request arriving at stage h is
accepted by stage h. Then,

l expected number of requests 1

P (h) = accepted by a module of stage h
I expected number of requests 1

arriving at a module of stage h

From (2) and the definition of qh(k) we have

E(1).qh(1) + E(2).qh(2)

Pa(h) = 1.qh(1) + 2.qh(2) (3)

The probability qh(k) can be evaluated recur-

sively by the following procedure.

Let r(kli,j) be the probability, given i re-
quests at module M I and j requests at module M 2 of

a stage, that k requests reach module A of the next
stage (figure 10a). Then,

r(Oli,j) =

r(lJi,j) =

r(21i,j) =

NOW qh+l can

lows.

p(Oli).p(Olj)

p(O1i).p(11j) + p(11i).p(Olj) (4)

p(lii).p(lJj)

be expressed in terms of qh as fol-

qh+1(k) = ~ r(kli,j).qh(i).qh(j)
O<i,j<2

(5)

The initial conditions of q's is derived from
the mean request generation rate m of each proces-
sor. Since, m is the probability that a request is
generated by a processor, the distribution of re-
quests arriving at a 2 x 2 module of the first
stage can be expressed as:

q1(O) = (l-m) 2 qi(1) = 2m(1-m) qi(2) = m 2 (6)

o

J

h h+l

(a)

h h+!

(b)

Figure 10. Analysis of delta networks.

Finally, the overall probability of acceptance

PA" of 2 n x 2 n delta network is given by the fol-

lowing product.

PA = 1~ P (h) (7)
l<h<n a

L e t t i n g N = 2 n, bandwidth BW, the expected num-
ber of requests accepted per cyc le i s as f o l l o w s .

BW = mNP A (8)

Equations (1) th ru (8) above are s u f f i c i e n t to
compute the p r o b a b i l i t y of acceptance of a request

and the expected bandwidth of any 2 n x 2 n d e l t a
network, g iven mean request genera t ion ra te m.

The above procedure can be g e n e r a l i z e d , so tha t

i t i s a p p l i c a b l e to any b n x b n d e l t a network. We
g ive i t here in a concise fash ion . The best way to
understand each equat ion i s to f i r s t understand the

corresponding equat ion f o r 2 n x 2 n case. Each
equat ion number below i s s u f f i x e d by b and e x a c t l y
corresponds to the same equat ion number w i thou t

s u f f i x of 2 n x 2 n case. An impor tant c h a r a c t e r i s -

t i c o f any b n x b n d e l t a network i s tha t an a r b i -
t r a r y module A of any stage (except the first
stage) has the connection pattern of Figure 10b,
that is, no two inputs to A come from the same
module. This fact is essential for the following
analysis.
p(OJi): the probability, given i requests at a
module, that a particular output line of that
module is not requested.
p(lii): the probability, given i requests at a
module, that a particular output line of that
module is requested.
E(i): the expected number of requests accepted by
a module; given i requests at that module.
qh(k): the probability that k requests arrive dur-

ing a cycle at a module of stage h.
r(klil,...,ib): the probability, given i I requests

at M1, i 2 requests at M2, ..., i b requests at Mb,

174

that k requests arrive at module A of next stage
(see Figure lob).
P (h): the probability that a request arriving at a
stage h is accepted by stage h.

Since only one request can be present on any
line, it is clear that at most b requests can ar-
rive at any module in one cycle. Thus 0 ~ i,k,i 1,

..., i b ~ b in all of the definitions above and

equations below.

p(Oli) = (I/b) i p(lli) = I - (I/b) i (lb)

E(i) = b • p(I I i)

~E~ E(i) 'qh(i)
O<i <b

w - -

P (h) =
a

i.qh(i)
O<i <b

r(klil,...,i b) =

P(Jllil) • p(j21i2) ... p(jblib)
O<j 1 Jb<b

(j 1+...+jb)=k

(2b)

(3b)

(4b)

qh+l(k) = (5b)

r (kl i 1,-- -,ib)'qh(il)'qh(i 2)'"qh(ib)
0<i I

•

Initial conditions: q1(i) = m1(1-m) b-1 (6b)

Probability of Acceptance: PA = II P (h) (7b)
l<h<n a

Expected Bandwidth:

BW = mbnPA requests per cycle (8b)

the above, I~ 1 is the binomial coefficient In

and m is the mean request generation rate of each
processor.

VI. Analysis of Full Crossbar Networks

For the purpose of comparison we analyze here
the full crossbar networks of size N x N under as-
sumptions identical to those of delta networks,
stated in the beginning of the previous section.
Recall that m is the mean request generation rate
of each processor, that is, the probability that a
processor generates a request during a cycle is m.
Let q(i) be the probability that i requests arrive
during one cycle. Then,

(~) mi(1-m) N-i (Ix) q(i) =

Let E(i) be the expected number of requests ac-
cepted by the N x N crossbar during a cycle; given
that i requests arrived in the cycle. To evaluate
E(i), consider the number of ways that i random re-
quests can map to N distinct memory modules; which

is N i. Suppose now that a particular memory module
is not requested. Then the number of ways to map i

requests to the remaining (N-I) modules is (N-l) i.

Thus, N i - (N-I) i is the number of maps in which a
particular module is always requested. Thus the
probability that a particular module is requested

is, [N i - (N-I)i]/N i. For every memory module, if
it is requested, it means one request is accepted
by the network for that module. Therefore, the ex-
pected number of acceptances is

N i _ (N - l) i
E(i) = • N

N i

= ~ - (- ~) i] N (2 x)

The probability PA" that a request wil l be ac-

cepted by the N x N crossbar is computed as fol-
lows.

PA expected number of requests accepted
= expected number of requests arrived.

~E] E(i).q(i)
O<i<N

=

i'q(i)
O<i<N

Using (Ix) and (2x) both of the above
be simplified as follows.

mN
E(i)-q(i) = N - N(1 -~)

O<i <N

i.q(i) = mN
O<i <N

Therefore,

I -~(1 - m N
PA = ~ N) (3x)

and the bandwidth BW = mNP A requests per cycle (4x)

It is interestig to note that,

_ = 1- Lira (I
N+® N e m

(where e i s the base o f n a t u r a l l o g a r i t h m)

sums can

The following approximations are good within I% of
the actual value for N ~ 30, and within 5% for N
8.

I
PA = ~ (I - ~)

e

(5x)

BW = (1 _ 1) N requests per cycle (6x)
e m

Note that equation (6x) implies that the
bandwidth increases almost linearly with N.

175

I!L
i

PA
0.4

m--1.0

0.2

crossbar

0.0

4096

1024

256

"~-, ""-~,~ BW 64 ~ de Ita-4

~. 16 delta-2

I i i i f i i I I i) i

4 16 64 256 1024 4096
N

Figure 11. Probability of acceptance
of N x N networks.

f
¢-

/
/

/

m = 1.0 crossbar// /delta-4

/ / ~ e l t a - 2

, , ! . , , , ,

256 1024 4096
N ~

Figure 12. Expected bandwidth of N x N networks.

1.0

0.8

I 0.6

PA
0.4

0.2

0.0

Figure 13.

• 32)

\ ~ 5 5 ~

210 x 210 d e l 2 t ~

I I I I I I I I I I

.I .3 .5 .7 .9 1.0

m

Probability of acceptance
vs. mean request rate.

VII. Effectiveness of Delta and Crossbar Networks

Using the analysis of sections V and VI we have
computed values of the probability of acceptance PA

and the expected bandwidth of several N x N net-
works. These results are plotted in Figures 11, 12
and 13.

Figure 11 shows the probability of acceptance

PA" for 2 n x 2 n and 4 n x 4 n delta networks and N x

N crossbar, when the request generation rate of
each processor is m = 1. The curve marked delta-2
is for delta networks using 2 x 2 switches and del-
ta-4 is for delta networks using 4 x 4 switches.
The graphs are drawn as smooth curves in this and

I/4

iI 1/16

L ~
o o I/64

1/256

I/1024

! i ! i ! I

' i'6 6'4 I0'24
N ~

Figure 14. Cost-effectiveness of N x N networks.

other figures only for visual convenience, in actu-
ality the values are valid only at specific
discrete points. In particular an N x N crossbar
is defined for all integers N ~ I, a delta-2 is de-

fined only for N = 2 n, n > 1, and delta-4 is de-

fined only for N = 4 n, n > I.

Notice in Figure 11 that PA for crossbar ap-

proaches a constant value as was predicted by equa-
tion (5x) of the previous section. PA for delta

networks continues to fall as N grows. We have not
been able to estimate the limiting value of PA for

delta networks. Figure 12, shows the expected
bandwidth, BW as a function of N. The bandwidth is

176

measured in number of requests accepted per cycle.
In all fairness, we must point out that a cycle for
a crossbar could be smaller than a cycle for a
large delta network. Taking into account fan-in
and fan-out constraints, the decoder and arbiter
for a N x N crossbar has a delay of O(log2N) gate

delays. A 2 n x 2 n delta network has O(21og2N) gate

delays, from the analysis of section IV. If the
delay is small compared to the memory access time,
then the cycle time (the sum of network delay and
memory access time) of a crossbar is not too dif-
ferent from that of a delta network. Thus the
curves for bandwidth provide a good comparison
between networks.

Figure 13 shows PA as a function of the request

generation rate m. The curve for the crossbar is
the limiting value of PA as N grows to infinity.

Curves for N > 32 are not distinguishable with the
scale used in,hat graph.

Finally, the graph of Figure 14 is an indication
of cost-effectiveness of delta networks. The cost
of a N x N crossbar or delta network is assumed to
be proportional to the number of gates required.
The constant of proportionality should be the same
in both cases, because the degree of integration,
modularity and wiring complexity in both cases is
more or less the same. For the N x N crossbar, the
minimum number of gates required is one per
crosspoint per data line. Depending on the assump-
tions used on fan-in, fan-out, the complexity of
the decoder and the arbiter, one can estimate the
gate complexity of a crossbar anywhere from one
gate to six gates per crosspoint. Let us assume
the lowest cost figure of one gate per crosspoint.

The cost of 2 n x 2 n delta network is estimated
from the boolean equations of the 2 x 2 module of
Figure 9. The number of gates in a 2 x 2 module is
23 gates for the control plus 6 gates per informa-
tion line. Assuming the number of information
lines to be large, the gates for control can be ig-

nored. Thus the gate count of a 2 n x 2 n delta net-

work is 6n2 n-1 per information line because the

network has n2 n-1 modules.

Thus the costs of N x N networks are, kN 2 for

crossbar, and 3kNlog2N for delta (N = 2n), where k

is the constant of proportionality. We have used
these cost expressions in the computation of
performance-cost ratio for Figure 14; the ratio is
that of expected bandwidth over cost. Taking this
ratio for a I x 1 crossbar as unity, the Y-axis of
Figure 14 represents the performance over cost re-
lative to a I x I crossbar. The Y-axis may also be
interpreted as bandwidth per gate per information
line. Notice that delta network is more cost-
effective for network size N greater than 16. If
the cost of the crossbar was assumed as 2 or more
gates per crosspoint then the curve for the
crossbar would shift downward and the effectiveness
of delta becomes even more pronounced. However, if
one assumed the cycle time of a crossbar half as

much as that of a delta network then the curve for
crossbar would shift upwards relative to the curve
for delta, thus shifting the crossover point of the
two curves towards right. Thus depending on the
assumptions, the crossover point may move slightly
left or right; but in any case, the curves clearly
show the effectiveness of delta networks for medium
and large scale multiprocessors.

VIII. Concluding Remarks

We have presented in this paper a class of
processor-memory interconnection networks, called
delta networks, which are easy to control and
design, and are very cost-effective. We also
presented the combinatorial analysis of delta net-
works and full crossbars. It is seen that delta
networks bridge the gap between a single time-
shared bus and a full crossbar. The cost of a N x
N delta network varies as Nlog2N while that of

crossbar varies as N 2. Thus delta networks are
very suitable for relatively low cost multimi-
croprocessor systems. If some semiconductor
manufacturer will fabricate the 2 x 2 delta modules
in large quantities, then the deltanetworks will
become even more affordable and will provide a
boost to the construction of many experimental mul-
tiprocessor systems.

References

[1] D. H. Lawrie, "Access and Alignment of Data in
an Array Processor", IEEE Trans. Comput., Vol.
C-24, pp. 1145-1155, Dec.

[2] M. C. Pease, "The Indirect Binary n-Cube Mi-
croprocessor Array", IEEE Trans. Comput., Vol.
C-26, pp. 458-473, May 1977.

[33 H. J. Siegel and S. D. Smith, "Study of Mul-
tistage SIMD Interconnection Networks", Proc.
5th Annual Symp. on Computer Architecture, pp.
2~-~, April 1978.--

[4] H. S. Stone, "Parallel Processing with the
Perfect Shuffle", IEEE Trans. Comput., Vol.
C-20, pp. 153-161, Feb. "197~.

[53 V. E. Benes, Mathematical Theory of Connecting
Networks and Telephone Traffic, Academic
Press, New York, 1965.

[63 D. Y. Chang, D. J. Kuck and D. H. Lawrie, "On
the Effective Bandwidth of Parallel Memories",
IEEE Trans. Comput., Vol. C-26, pp. 480-490,
May 1977.

177

