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Abstract -- A new class of interconnection networks 
is proposed for processor to memory communication 
in multiprocessing systems. These networks allow a 
direct link between any processor to any memory 
module. The cost of these networks is considerably 
less than that of full crossbars. Moreover, the 
design and control of these networks is simple. 
The proposed networks and the full crossbars are 
analyzed with respect to the bandwidth and the 
cost. 

I. Introduction 

With the advent of low cost microprocessors, the 
architectures involving multiple processors are 
becoming very attractive. Several organizations 
have been implemented or proposed. Principally 
among these are parallel (SIMD) type processors, 
computer networking and multiprocessor organiza- 
tions. In this paper we focus our attention to 
multiprocessors. 

The principle characteristics of a multiproces- 
sor system is the ability of each processor to 
share a single main memory. This sharing capabili- 
ty is provided through a interconnection network 
between the processor and the memory modules, which 
logically looks like Figure 1. The function of the 
switch is to provide a logical link between any 
processor and any memory module. There are several 
different physical forms available for the 
processor-memory switch; the least expensive of 
which is the time-shared bus. However, a time- 
shared bus has a very limited transfer rate, which 
is inadequate for even small number of processors. 
At the other end of the bandwidth spectrum is the 
full crossbar switch, which is also the most expen- 
sive switch. In fact, considering the current low 
costs of microprocessors and memories, a crossbar 
would probably cost more than the rest of the sys- 
tem components combined. Therefore it is very dif- 
ficult to justify the use of a crossbar for large 
multiprocessing systems. It is the absence of a 
switch with reasonable cost and performance, which 
has prevented the growth of large multimicroproces- 
sor systems. To circumvent the high cost of 
switch, some "loosely coupled" systems have been 
proposed. In these systems, sharing of main memory 
is somewhat restricted, for example some memory 
accesses may be fast and direct while many other 
references may be slow, indirect and may even in- 
volve operating system intervention. There is con- 
siderable research on the permutation networks for 
parallel (SIMD) processors but almost no research 
on processor-memory interconnections requiring ran- 
dom access capabilities. 
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Figure I. Logical organization of a multiprocessor. 

In this paper we propose a class of interconnec- 
tion networks, termed delta networks which are far 
less expensive then full crossbars and are modular 
and easy to control. These networks are analyzed 
to determine the effective bandwidth and are com- 
pared with the effective bandwidth of full 
crossbars. We also describe the implementation de- 
tails of delta networks and their cost- 
effectiveness. 

II. Principle of Operation 

Before we define delta networks, let us study 
the basic principle involved in the construction 
and control of delta networks. Consider a 2 x 2 
crossbar switch (Fig. 2). This 2 x 2 switch has 
the capability of connecting the input A to either 
the output labeled 0 or output labeled 1, depending 
on the value of some control bit of the input A. 
If the control bit is 0 then the input is connected 
to the upper output and if I then it is connected 
to the lower output. The same description applies 
to terminal B, but for the time being ignore the 
existence of B. It is straightforward to construct 

a l-by-2 n demultiplexer using the above described 2 
x 2 module. This is done by making a binary tree 
of this module. For example Figure 3 shows a 1 x 8 
demultiplexer tree. The destinations are marked in 
binary. If the source A requires to connect to 
destination (d2dldo) 2 then the root node is con- 

trolled by bit d2, the second stage modules are 

controlled by bit d I and the last stage modules are 

controlled by bit d o . It is clear that, A can be 

connected to any one of the eight output terminals. 
It is also obvious that the lower input terminal of 
the root-node also can be switched to any one of 
the 8 outputs. 
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Figure 2. A 2 x 2 crossbar. 

At this point we add another capability to the 
basic 2 x 2 module, the capability to arbitrate 
between conflicting requests. If both inputs re- 
quire the same output terminal, then only one of 
them will be connected and the other will be 
blocked or rejected. The probability of blocking 
and the logic for arbitration is treated later on. 

Now consider constructing an 8 x 8 network us- 
ing 2 x 2 switches, the principle used is the same 
as that of Figure 3. Every additional input must 
also have its own demultiplexer tree to connect to 
any one of the eight outputs. Basically the con- 
struction works as follows. Start with a demulti- 
plexer tree, then for each additional input super- 
impose a demultiplexer tree on the partially con- 
structed network. One may use the already existing 
links as part of the new tree or add extra links 
and modules if needed. We have redrawn the tree of 
Figure 3 as Figure 4a. The addition of next tree 
is shown with heavy lines in Figure 4b. This pro- 
cedure is continued until the final 8 x 8 network 
of Figure 4d results. The only restriction which 
must be strictly followed during this construction 
is that, if a 2 x 2 module has its inputs coming 
from other modules then both inputs must come from 
upper terminals of other modules or both must be 
lower terminals of other modules. (All upper out- 
put terminals are understood to have label 0 and 
the lower terminals, label I.) Other than this 
there is considerable freedom in establishing links 
between the stages of the network. In the con- 
struction of the above 8 x 8 network we had the 
benefit of some hindsight that 12 modules are 
necessary and sufficient to build this network. If 
more modules are used then some inputs of some 
modules will remain unconnected. We could have 
stopped in the middle of the construction to obtain 
a 4 x 8 or a 6 x 8 network, such as Figure 4b and 
4c, however in each case some inputs of the 2 x 2 
modules will remain unutilized. 

We term, the networks constructed in the above 
manner digit controlled or simply delta networks, 
since each module is controlled by a single digit 
from the destination address. Furthermore, no 
external or global control is required. Digit con- 
trolled networks are not new; Lawrie's omega net- 
works [13 and Pease's indirect binary n-cube [2] 
are subsets of delta networks. 

Note that, network of Figure 4d does not allow 
an identity permutation, that is, the connection 0 
to 0, I to I, ..., 7 to 7 at the same time. An 

identity permutation is useful if say memory module 
0 is a "favorite" module of processor 0, and module 
I that of processor 1 and so on. Thus identity 
permutation allows most of the memory references to 
be made without conflict. A simple renaming of the 
inputs of Figure 4d will allow an identity permuta- 
tion. This is shown in Figure 5; in here if all 2 
x 2 switches were in the straight (=) position then 
an identity permutation is generated. As a matter 
of fact, since one and only one path is available 
from any source to any destination, every different 
setting of the form X and = generates a different 
permutation. Thus the network of Figure 5 gen- 

erates 212 distinct permutations. This brings us 
to another somewhat unrelated topic of permutation 
networks. The procedure to construct a delta net- 
work can be used to generate different permutation 
networks. For example we could have started with a 
tree in which the first stage was controlled by bit 
d I the second by d 0 and third by d 2. This would of 

course require relabeling the outputs. But does 
this really produce a "different" network? Siegel 
[3] has shown that by a simple address transforma- 
tion the newtorks of Lawrie [I] and that of Pease 
[2] can be made equivalent, i.e., they produce the 
same set of permutations. As far as we know, the 
network of Figure 5 cannot be made equivalent to 
either Lawrie's or Pease's network by a simple ad- 
dress transformation. It is quite possible, that 
there are only two non-equivalent 8 x 8 delta net- 
works, namely Lawrie's omega network and the net- 
work of Figure 5. We shall not pursue this subject 
any further, as our primary interest lies in the 
random access capabilities of these networks and 
not permutations. 

III. Design and Description of Delta Networks 

So far we have not defined the delta networks in 
a formal and rigorous manner. For the purposes of 
this paper we define them as follows. --~oo0 

~ ~,-o 001 

Ao ~ "-I'---'L'J--""'"° 011 

~ u-----2J-"...-....o 101 

Figure 3. l-by-8 demultiplexer. 
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Let a b x b crossbar module have the capability 
to connect any input to any one of the b outputs. 
Let the outputs be labeled 0, I, ..., b-1. An in- 
put is connected to the output labeled d if the 
control digit supplied by the input is d, where d 
is a base-b digit. Moreover, a b x b module also 
arbitrates between conflicting requests by accept- 
ing some and rejecting others. 

A delta network is a b n x b n network made up of 

nb n-l, b x b crossbar switches, arranged in n 

stages, b n-1 switches to a stage. The link pattern 
between stages is such that any source can be con- 
nected to any destination, where each b x b modules 
connects an input to one of its b outputs depending 
on a single base-b digit taken from the destination 
address. 

(a) 

ooo 

OOl 

OlO 

Ol l  

IOO 

IOl 

111 

(c) 

I ~ 000 
koo, 

°, 

• 100 

101 

' ~  110 

111 

The construction of a b n x b n delta network fol- 
lows the principle presented in the previous sec- 
tion. Informally, the procedure can be described 
as follows. 

Construct a b-ary demultiplexer tree using b x b 
crossbar switches. A b-ary tree has b branches for 

every node. For a 1-by-b n demultiplexer, the tree 
has n levels. Each level is controlled by a dis- 
tinct base-b digit taken from the destination ad- 
dress. For every additional input source, superim- 
pose a new tree on the partially completed network. 
Each superimposition must satisfy two conditions. 

I. No more than b n-1 modules may be used at any 
level and no more than n levels are created. 2. 
Each b x b module which receives inputs from other 
b x b modules, must have all its inputs connected 

(b) 
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•_• ooo 

OOl 
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X 
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(d) 

I r  i /  F-T ooo 
oo '  

n4. n  n oo 

 GGiii 
Figure 4. Construction of an 8 x 8 delta network. 
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Figure 5. An 8 x 8 delta network 
to allow identity permutation. 

to identically labeled outputs, where the outputs 
of each b x b module are labeled O, 1, ..., b-l, as 
was described earlier. 

As one can see from the above construction pro- 
cedure, there is a large number of link pattern 

available for a b n x b n delta network. It is na- 
tural to wonder if one topology is better than the 
others. We shall see later that, as far as proba- 
bility of acceptance or blocking for random access 
is concerned, all delta networks are identical. 
However, different topologies may have different 
permutation capabilities. An important charac- 
teristic of delta networks which results from a 
property of trees used in the construction is as 
follows. 

In a delta network, there is one and only one 
path from a source to a destination. 

As a result of the above characteristic, every 
different setting of a b x b switch results in a 

different permutation. Thus a b n x b n delta net- 

work generates (b!) nbn-1 distinct permutations. 
This number is a very small fraction of the all 

possible permutations of b n inputs, even for small 
values of b and n. For example, the probability 
that a random permutation of 32 inputs can be gen- 

erated by a 25 x 25 delta network is 4.6 x 10 -12 
From this, it would indeed be erroneous to make any 
conclusion about the effectiveness of delta net- 
works for random memory accesses. 

The uniqueness of a path between a source and a 
destination simplifies the control and analysis of 
delta networks. However, the uniqueness happens to 
be a weak point from the reliability standpoint. 
The reliability aspects of delta networks will be 
reported at a later date. 

Since, the link pattern between stages of a del- 
ta network is of no particular concern to us, we 
may ask if there is some regular link pattern, 
which can be used between all stages and thus avoid 
the cumbersome construction procedure for every 
different delta network. There is indeed such a 
pattern which we describe below. 

Let a q*r shuffle, denoted Sq,r, where q and r 

are some positive integers, be a permutation of qr 
indices <0, 1, 2, ..., (qr-1)>, defined as 

Sq,r(i) = (qi + L~J) mod qr 0 < i < qr-1 

where Sq,r(j) is the position of i after the shuf- 

fle. A q*r shuffle can be viewed as a shuffle of 
qr cards in the following way. Divide the deck of 
qr cards in to q piles of r cards each; top r cards 
in the first pile, next r cards in the second pile 
and so on. Now pick the cards, one at a time from 
the top of each pile; the first card from top of 
pile one, second card from the top of pile two and 
so on in a circular fashion, until all cards are 
picked up. This new order of cards represents a 
Sq, r permutation of the previous order. 

From the above description it is clear that $2, r 

is the well known perfect shuffle (e.g. [4]). Not 
so obvious is the fact that Sr, q is an inverse per- 

mutation of Sq, r. That is, 

Sq,r(Sr,q(i)) = i 0 < i < qr-1 

The q*r shuffles, although never defined formal- 
ly as such, are widely used in interconnection net- 
works, for example between the stages of a Clos 
network [5]. We shall state without proof that a 

b n x b n delta network can be constructed by using a 

b*b n-1 shuffle as the link pattern between every 
two stages. To use the function S , all the 

b,b n-1 

inputs and outputs of every stage must be labeled 

from top to bottom as <0, I, 2, ..., (bn-1)>. Fig- 

ure 6 shows a general b n x b n delta network. Note 
that shuffle networks between stages are passive 
and not active like the stages themselves. Two 

delta networks, one 32 x 32 and one 23 x 23 , 
derived from Figure 6 are shown in Figures 7 and 8; 
the interstage link pattern are respectively 3*3 
shuffle and 2*4 shuffle. In Figure 6, by using a 

b*b n-1 shuffle of the inputs just before the first 
stage, one can obtain the identity permutation. If 
such a transformation is used on the inputs of Fig- 
ure 8 then it becomes topologically identical to 
Lawrie's 8 x 8 omega network. 

IV. Implementation of Delta Networks 

Within the current technological limitations, it 
is uneconomical to encode base b digits where b is 
not a power of 2. Thus in practice, a b x b 
crossbar module for a delta network is more costef- 
fective if b is a power of 2, since our modules re- 
quire base b digits for control. Again, due to the 
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Figure 7. A 32 x 32 delta network. 

cost and technological limitations, modules of size 
8 x 8 or greater are not very practical at this 
time. This leaves 2 x 2 and 4 x 4 modules as the 
most likely candidates for implementation of delta 
networks. Here we give the functional and logical 
description of 2 x 2 modules. This in turn will be 
used to estimate the cost and delay factors of del- 
ta networks. 

The functional block diagram of a 2 x 2 crossbar 
module of a delta network appears in Figure 9. All 
single lines in the figure are one bit lines. The 
double lines on INFO box, represent address lines, 
incoming and outgoing data lines, and a read/write 
control line. The data lines may or may not be bi- 
directional. The function of the INFO box is that 

2 

Figure 8. A 23 x 23 delta network. 

of a simple 2 x 2 crossbar; if the input X is 1 
then a cross connection exists and if X is 0 then a 
straight connection exists. 

The function of the CONTROL box is to generate 
the signal X and provide arbitration. A request 
exists at an input port if the corresponding re- 
quest line is I. The destination digit provides 
the nature of the request; a 0 for the connection 
to upper output port and a 1 for the lower port. 
In case of conflict, the request r 0 is given the 

priority and a busy signal b I = I is supplied to 

the lower input port. A busy signal is eventually 
transmitted to the source which originated the 
blocked request. The logic equations for all the 
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f 

+ rodod I + rodod I 

Figure 9. Details of 2 x 2 modules 
for delta networks. 

labeled signals are given with the block diagram. 
For INFO box, the equations are given for left to 
right direction. The parallel generation of X and 

reduces one gate level. Signal X and ~ are valid 
after 3 gate delays. Assuming that one level of 

buffer gates for X and ~ in the INFO box exists due 

to fanout limitations of X and ~, the total delay 
to establish the connections of INFO box is 6 gate 

delays, of which 4 gate delays are due to X and ~. 
Thus after the initial set up time, the data 
transfer requires only 2 gate delays per stage of 
the network. 

The operation of a 2 n x 2 n delta networks using 
the above described 2 x 2 modules is as follows; 
recall that there are n stages in this network. 

All processors requiring memory access must sub- 
mit their requests at the same time by placing a I 
on the respective request lines. After 8n gate de- 
lays the busy signals are valid. If the busy line 
is I, then the processor must resubmit its request. 
This can be accomplished simply by doing nothing, 
i.e., continue to hold the request line high. The 
read data is valid after 8n gate delays plus the 
memory access time if the busy signal is O. Thus 
the operation of the implementation described here 
is synchronous, that is, the requests are issued at 

fixed intervals at the same time. An asynchronous 
implementation is preferable if the network has 
many stages. However, such an implementation would 
require storage buffers for addresses, data and 
control in every module and also a complex control 
module. Thus, the cost of such an implementation 
might well be excessive. We have analyzed only the 
synchronous networks in this paper. 

V. Analysis of Delta Networks 

In this section we analyze b n x b n delta net- 
works for evaluating the probability of acceptance 
of a request and the expected bandwidth. The 
analysis is based on the following assumptions. 

I. Each processor generates random and independent 
requests; the requests are uniformly distribut- 
ed over all memory modules. 

2. The mean request generation rate of each pro- 
cessor is m requests per cycle, where a cycle 
is the time required to pass through the net- 
work plus the time to access the memory plus 
the time to return to the source irrespective 
of whether a request is a read or a write, m 
is less than or equal to I. 

3. New requests are generated every cycle and sub- 
mitted at the same time. At most I request can 
be generated by a processor during one cycle. 

4. The requests which are blocked (not accepted) 
are ignored. That is, the requests issued at 
the next cycle are independent of the requests 
blocked. 

The cycle time of assumption 2 can be evaluated 
from the implementation details of the particular 

network. For example the cycle time of a 2 n x 2 n 
delta network is 8n gate delays plus memory access 
time. The assumptions 2 and 3 together imply that 
the mean request generation rate m is the probabil- 
ity that a request is generated by a processor dur- 
ing a cycle. The fourth assumption is there to 
simplify the analysis. In practice of course the 
rejected requests must be resubmitted during next 
cycle; thus the independent request assumption will 
not hold. However, to assume otherwise, would make 
the analysis if not impossible, certainly very dif- 
ficult. Moreover, simulation studies done by us 
and by others [6] for similar problems have shown 
that the probability of acceptance is only slightly 
lowered if the fourth assumption above is omitted. 
Thus the results of the analysis are fairly reli- 
able and they provide a good measure for comparing 
different networks. 

First we analyze the 2 n x 2 n delta networks in 
some details and then we shall present the general- 
ized case. 

Let PA be the probability that a request will be 

accepted. The bandwidth BW of a N x N network, de- 
fined as the expected number of requests accepted 
per cycle is then mNPA, where m is the mean rate of 

request generation of each processor. 
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Let p(OJi) be the probability that given i re- 
quests at a 2 x 2 module M, nothing is sent on a 
particular output line of M. Since both output 
lines of M are equally likely to be requested, we 
have, 

p(OlO) = 1 p(011) = pC012) = ~ (1) 

Let P(11i) be the probability that given i re- 
quests at module M, a request is sent out on a par- 
ticular output line of M. Clearly, 

p(IIi) = I - p(Oli). (1) 

Moreover, E(i), the expected number of requests ac- 
cepted by module M, given i requests at M is: 

2p (1 I i ) (2) 

Now let qh(k) be the probability that k requests 

arrive at a module of stage h and let Pa(h) be the 

probability that a request arriving at stage h is 
accepted by stage h. Then, 

l expected number of requests 1 

P (h) = accepted by a module of stage h 
I expected number of requests 1 

arriving at a module of stage h 

From (2) and the definition of qh(k) we have 

E(1).qh(1) + E(2).qh(2) 

Pa(h) = 1.qh(1 ) + 2.qh(2 ) (3) 

The probability qh(k) can be evaluated recur- 

sively by the following procedure. 

Let r(kli,j) be the probability, given i re- 
quests at module M I and j requests at module M 2 of 

a stage, that k requests reach module A of the next 
stage (figure 10a). Then, 

r(Oli,j) = 

r(lJi,j) = 

r(21i,j) = 

NOW qh+l can 

lows. 

p(Oli).p(Olj) 

p(O1i).p(11j) + p(11i).p(Olj) (4) 

p(lii).p(lJj) 

be expressed in terms of qh as fol- 

qh+1(k) = ~ r(kli,j).qh(i).qh(j) 
O<i,j<2 

(5) 

The initial conditions of q's is derived from 
the mean request generation rate m of each proces- 
sor. Since, m is the probability that a request is 
generated by a processor, the distribution of re- 
quests arriving at a 2 x 2 module of the first 
stage can be expressed as: 

q1(O) = (l-m) 2 qi(1) = 2m(1-m) qi(2) = m 2 (6) 

o 

J 

h h+l 

(a) 

h h+! 

(b) 

Figure 10. Analysis of delta networks. 

Finally, the overall probability of acceptance 

PA" of 2 n x 2 n delta network is given by the fol- 

lowing product. 

PA = 1~ P (h) (7) 
l<h<n a 

L e t t i n g  N = 2 n, bandwidth BW, the expected num- 
ber of requests accepted per cyc le  i s  as f o l l o w s .  

BW = mNP A (8) 

Equations (1) th ru  (8) above are s u f f i c i e n t  to  
compute the  p r o b a b i l i t y  of  acceptance of  a request 

and the expected bandwidth of  any 2 n x 2 n d e l t a  
network,  g iven mean request genera t ion  ra te  m. 

The above procedure can be g e n e r a l i z e d ,  so tha t  

i t  i s  a p p l i c a b l e  to  any b n x b n d e l t a  network.  We 
g ive  i t  here in a concise fash ion .  The best way to  
understand each equat ion i s  to  f i r s t  understand the 

corresponding equat ion f o r  2 n x 2 n case. Each 
equat ion number below i s  s u f f i x e d  by b and e x a c t l y  
corresponds to  the same equat ion number w i thou t  

s u f f i x  of  2 n x 2 n case. An impor tant  c h a r a c t e r i s -  

t i c  o f  any b n x b n d e l t a  network i s  tha t  an a r b i -  
t r a r y  module A of any stage (except the first 
stage) has the connection pattern of Figure 10b, 
that is, no two inputs to A come from the same 
module. This fact is essential for the following 
analysis. 
p(OJi): the probability, given i requests at a 
module, that a particular output line of that 
module is not requested. 
p(lii): the probability, given i requests at a 
module, that a particular output line of that 
module is requested. 
E(i): the expected number of requests accepted by 
a module; given i requests at that module. 
qh(k): the probability that k requests arrive dur- 

ing a cycle at a module of stage h. 
r(klil,...,ib): the probability, given i I requests 

at M1, i 2 requests at M2, ..., i b requests at Mb, 
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that k requests arrive at module A of next stage 
(see Figure lob). 
P (h): the probability that a request arriving at a 
stage h is accepted by stage h. 

Since only one request can be present on any 
line, it is clear that at most b requests can ar- 
rive at any module in one cycle. Thus 0 ~ i,k,i 1, 

..., i b ~ b in all of the definitions above and 

equations below. 

p(Oli) = (I/b) i p(lli) = I - (I/b) i (lb) 

E(i) = b • p( I I i )  

~E~ E(i) 'qh(i) 
O<i <b 

w - -  

P (h) = 
a 

i.qh(i) 
O<i <b 

r(klil,...,i b) = 

P(Jllil ) • p(j21i2) ... p(jblib ) 
O<j 1 ..... Jb<b 

(j 1+...+jb)=k 

(2b) 

(3b) 

(4b) 

qh+l(k) = (5b) 

r (kl i 1,-- -,ib)'qh(il)'qh(i 2)'"qh(ib ) 
0<i I ..... 

• 

Initial conditions: q1(i) = m1(1-m) b-1 (6b) 

Probability of Acceptance: PA = II P (h) (7b) 
l<h<n a 

Expected Bandwidth: 

BW = mbnPA requests per cycle (8b) 

the above, I~ 1 is the binomial coefficient In 

and m is the mean request generation rate of each 
processor. 

VI. Analysis of Full Crossbar Networks 

For the purpose of comparison we analyze here 
the full crossbar networks of size N x N under as- 
sumptions identical to those of delta networks, 
stated in the beginning of the previous section. 
Recall that m is the mean request generation rate 
of each processor, that is, the probability that a 
processor generates a request during a cycle is m. 
Let q(i) be the probability that i requests arrive 
during one cycle. Then, 

(~) mi(1-m) N-i (Ix) q(i) = 

Let E(i) be the expected number of requests ac- 
cepted by the N x N crossbar during a cycle; given 
that i requests arrived in the cycle. To evaluate 
E(i), consider the number of ways that i random re- 
quests can map to N distinct memory modules; which 

is N i. Suppose now that a particular memory module 
is not requested. Then the number of ways to map i 

requests to the remaining (N-I) modules is (N-l) i. 

Thus, N i - (N-I) i is the number of maps in which a 
particular module is always requested. Thus the 
probability that a particular module is requested 

is, [N i - (N-I)i]/N i. For every memory module, if 
it is requested, it means one request is accepted 
by the network for that module. Therefore, the ex- 
pected number of acceptances is 

N i _ ( N - l )  i 
E(i) = • N 

N i 

= ~ -  ( - ~ ) i ]  N ( 2 x )  

The probability PA" that a request wil l  be ac- 

cepted by the N x N crossbar is computed as fol-  
lows. 

PA expected number of requests accepted 
= expected number of requests arrived. 

~E] E(i).q(i) 
O<i<N 

= 

i'q(i) 
O<i<N 

Using (Ix) and (2x) both of the above 
be simplified as follows. 

mN 
E(i)-q(i) = N - N(1 -~) 

O<i <N 

i.q(i) = mN 
O<i <N 

Therefore, 

I -~(1 - m N 
PA = ~ N) (3x) 

and the bandwidth BW = mNP A requests per cycle (4x) 

It is interestig to note that, 

_ = 1- Lira (I 
N+® N e m 

(where e i s  the  base o f  n a t u r a l  l o g a r i t h m )  

sums can 

The following approximations are good within I% of 
the actual value for N ~ 30, and within 5% for N 
8. 

I 
PA = ~ (I - ~) 

e 

(5x) 

BW = (1 _ 1 ) N requests per cycle (6x) 
e m 

Note that equation (6x) implies that the 
bandwidth increases almost linearly with N. 
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VII. Effectiveness of Delta and Crossbar Networks 

Using the analysis of sections V and VI we have 
computed values of the probability of acceptance PA 

and the expected bandwidth of several N x N net- 
works. These results are plotted in Figures 11, 12 
and 13. 

Figure 11 shows the probability of acceptance 

PA" for 2 n x 2 n and 4 n x 4 n delta networks and N x 

N crossbar, when the request generation rate of 
each processor is m = 1. The curve marked delta-2 
is for delta networks using 2 x 2 switches and del- 
ta-4 is for delta networks using 4 x 4 switches. 
The graphs are drawn as smooth curves in this and 

I/4 

iI 1/16 

L ~ 
o o I/64 

1/256 

I/1024 

! i ! i ! I 

' i'6 6'4 I0'24 
N ~  

Figure 14. Cost-effectiveness of N x N networks. 

other figures only for visual convenience, in actu- 
ality the values are valid only at specific 
discrete points. In particular an N x N crossbar 
is defined for all integers N ~ I, a delta-2 is de- 

fined only for N = 2 n, n > 1, and delta-4 is de- 

fined only for N = 4 n, n > I. 

Notice in Figure 11 that PA for crossbar ap- 

proaches a constant value as was predicted by equa- 
tion (5x) of the previous section. PA for delta 

networks continues to fall as N grows. We have not 
been able to estimate the limiting value of PA for 

delta networks. Figure 12, shows the expected 
bandwidth, BW as a function of N. The bandwidth is 
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measured in number of requests accepted per cycle. 
In all fairness, we must point out that a cycle for 
a crossbar could be smaller than a cycle for a 
large delta network. Taking into account fan-in 
and fan-out constraints, the decoder and arbiter 
for a N x N crossbar has a delay of O(log2N) gate 

delays. A 2 n x 2 n delta network has O(21og2N) gate 

delays, from the analysis of section IV. If the 
delay is small compared to the memory access time, 
then the cycle time (the sum of network delay and 
memory access time) of a crossbar is not too dif- 
ferent from that of a delta network. Thus the 
curves for bandwidth provide a good comparison 
between networks. 

Figure 13 shows PA as a function of the request 

generation rate m. The curve for the crossbar is 
the limiting value of PA as N grows to infinity. 

Curves for N > 32 are not distinguishable with the 
scale used in,hat graph. 

Finally, the graph of Figure 14 is an indication 
of cost-effectiveness of delta networks. The cost 
of a N x N crossbar or delta network is assumed to 
be proportional to the number of gates required. 
The constant of proportionality should be the same 
in both cases, because the degree of integration, 
modularity and wiring complexity in both cases is 
more or less the same. For the N x N crossbar, the 
minimum number of gates required is one per 
crosspoint per data line. Depending on the assump- 
tions used on fan-in, fan-out, the complexity of 
the decoder and the arbiter, one can estimate the 
gate complexity of a crossbar anywhere from one 
gate to six gates per crosspoint. Let us assume 
the lowest cost figure of one gate per crosspoint. 

The cost of 2 n x 2 n delta network is estimated 
from the boolean equations of the 2 x 2 module of 
Figure 9. The number of gates in a 2 x 2 module is 
23 gates for the control plus 6 gates per informa- 
tion line. Assuming the number of information 
lines to be large, the gates for control can be ig- 

nored. Thus the gate count of a 2 n x 2 n delta net- 

work is 6n2 n-1 per information line because the 

network has n2 n-1 modules. 

Thus the costs of N x N networks are, kN 2 for 

crossbar, and 3kNlog2N for delta (N = 2n), where k 

is the constant of proportionality. We have used 
these cost expressions in the computation of 
performance-cost ratio for Figure 14; the ratio is 
that of expected bandwidth over cost. Taking this 
ratio for a I x 1 crossbar as unity, the Y-axis of 
Figure 14 represents the performance over cost re- 
lative to a I x I crossbar. The Y-axis may also be 
interpreted as bandwidth per gate per information 
line. Notice that delta network is more cost- 
effective for network size N greater than 16. If 
the cost of the crossbar was assumed as 2 or more 
gates per crosspoint then the curve for the 
crossbar would shift downward and the effectiveness 
of delta becomes even more pronounced. However, if 
one assumed the cycle time of a crossbar half as 

much as that of a delta network then the curve for 
crossbar would shift upwards relative to the curve 
for delta, thus shifting the crossover point of the 
two curves towards right. Thus depending on the 
assumptions, the crossover point may move slightly 
left or right; but in any case, the curves clearly 
show the effectiveness of delta networks for medium 
and large scale multiprocessors. 

VIII. Concluding Remarks 

We have presented in this paper a class of 
processor-memory interconnection networks, called 
delta networks, which are easy to control and 
design, and are very cost-effective. We also 
presented the combinatorial analysis of delta net- 
works and full crossbars. It is seen that delta 
networks bridge the gap between a single time- 
shared bus and a full crossbar. The cost of a N x 
N delta network varies as Nlog2N while that of 

crossbar varies as N 2. Thus delta networks are 
very suitable for relatively low cost multimi- 
croprocessor systems. If some semiconductor 
manufacturer will fabricate the 2 x 2 delta modules 
in large quantities, then the deltanetworks will 
become even more affordable and will provide a 
boost to the construction of many experimental mul- 
tiprocessor systems. 
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