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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 

 

 Multi-cycle and Microprogrammed Microarchitectures 

 

 Pipelining 

 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 

 

 Out-of-Order Execution 

 

 Issues in OoO Execution: Load-Store Handling, … 
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Reminder: Readings for Next Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.      HW3 summary paper 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Reminder: Readings for Next Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985). HW3 summary paper 
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Reminder: Relevant Seminar Tomorrow 

 Practical Data Value Speculation for Future High-End 
Processors 

 Arthur Perais, INRIA (France) 

 Thursday, Feb 5, 4:30-5:30pm, CIC Panther Hollow Room 
 

 Summary: 

 Value prediction (VP) was proposed to enhance the 
performance of superscalar processors by breaking RAW 
dependencies. However, it has generally been considered too 
complex to implement. During this presentation, we will 
review different sources of additional complexity and propose 
solutions to address them.  

 

 http://www.ece.cmu.edu/~calcm/doku.php?id=seminars:se
minars  
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Recap of Last Lecture 
 Data Dependence Handling 

 Data Forwarding/Bypassing 

 In-depth Implementation 

 Register dependence analysis 

 Stalling 

 Performance analysis with and without forwarding 

 LC-3b Pipelining 

 Questions to Ponder 

 HW vs. SW handling of data dependences 

 Static versus dynamic scheduling 

 What makes compiler based instruction scheduling difficult? 

 Profiling (representative input sets needed; dynamic adaptation difficult) 

 Introduction to static instruction scheduling (e.g., fix-up code) 
 

 Control Dependence Handling 

 Six ways of handling control dependences 

 Stalling until next fetch address is available: Bad idea 

 Predicting the next-sequential instruction as next fetch address 
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Tentative Plan for Friday and Monday 

 I will be out of town 

 Attending the HPCA Conference 

 

 We will finish Branch Prediction on either of these days 

 

 Lab 2 is due Friday 

 Step 1: Get the baseline functionality correct 

 Step 2: Do the extra credit portion (it will be rewarding) 

 

 Tentative Plan: 

 Friday: Recitation session  Come with questions on Lab 2, 

HW 2, lectures, concepts, etc 

 Monday: Finish branch prediction (Rachata) 
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Sample Papers from HPCA  

 Donghyuk Lee+, “Adaptive Latency DRAM: Optimizing 
DRAM Timing for the Common Case,” HPCA 2015. 

 http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-
dram_hpca15.pdf  

 

 Gennady Pekhimenko+, “Exploiting Compressed Block Size 
as an Indicator of Future Reuse,” HPCA 2015. 

 http://users.ece.cmu.edu/~omutlu/pub/compression-aware-
cache-management_hpca15.pdf  

 

 Yu Cai, Yixin Luo+, “Data Retention in MLC NAND Flash 
Memory: Characterization, Optimization and Recovery,” 
HPCA 2015. 

 http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-
retention_hpca15.pdf  
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Control Dependence Handling 
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Review: Control Dependence 

 Question: What should the fetch PC be in the next cycle? 

 

 If the instruction that is fetched is a control-flow instruction: 

 How do we determine the next Fetch PC? 

 

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction? 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Review: Guessing NextPC = PC + 4  

 Always predict the next sequential instruction is the next 
instruction to be executed 

 This is a form of next fetch address prediction (and branch 
prediction) 
 

 How can you make this more effective? 

 

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed 

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch 

 Profile guided code positioning  Pettis & Hansen, PLDI 1990. 

 Hardware: ??? (how can you do this in hardware…)  

 Cache traces of executed instructions  Trace cache 
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Review: Guessing NextPC = PC + 4 

 How else can you make this more effective? 

 

 Idea: Get rid of control flow instructions (or minimize their 
occurrence) 

 

 How? 

1. Get rid of unnecessary control flow instructions        

combine predicates (predicate combining) 

2. Convert control dependences into data dependences  

predicated execution 

 

13 



Review: Predicate Combining (not Predicated Execution) 

 Complex predicates are converted into multiple branches 

 if ((a == b) && (c < d) && (a > 5000))  { … } 

 3 conditional branches 

 Problem: This increases the number of control 
dependencies 

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each 

 Predicates stored and operated on using condition registers 

 A single branch checks the value of the combined predicate 

+ Fewer branches in code  fewer mipredictions/stalls 

-- Possibly unnecessary work 

 -- If the first predicate is false, no need to compute other predicates  

 Condition registers exist in IBM RS6000 and the POWER architecture 
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Predicated Execution 

 Idea: Convert control dependence to data dependence 
 

 Simple example: Suppose we had a Conditional Move 
instruction… 

 CMOV condition, R1  R2 

 R1 = (condition == true) ? R2 : R1 

 Employed in most modern ISAs (x86, Alpha) 

 

 Code example with branches vs. CMOVs 

if (a == 5) {b = 4;} else {b = 3;} 

 

CMPEQ condition, a, 5; 

CMOV condition, b  4; 

CMOV !condition, b  3; 
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Conditional Execution in ARM 

 Same as predicated execution 

 

 Every instruction is conditionally executed 
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Predicated Execution 

 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code) 
 

 Advantages 

 Always-not-taken prediction works better (no branches) 

 Compiler has more freedom to optimize code (no branches) 

 control flow does not hinder inst. reordering optimizations 

 code optimizations hindered only by data dependencies 
 

 Disadvantages 

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches) 

 Requires additional ISA support 
 

 Can we eliminate all branches this way? 
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Predicated Execution 

 We will get back to this… 

 

 Some readings (optional): 

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983. 

 Kim et al., “Wish Branches: Combining Conditional Branching 
and Predication for Adaptive Predicated Execution,” MICRO 
2005. 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Delayed Branching (I) 

 Change the semantics of a branch instruction 

 Branch after N instructions 

 Branch after N cycles 

 Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction. 

 

 Problem: How do you find instructions to fill the delay 
slots? 

 Branch must be independent of delay slot instructions 

 

 Unconditional branch: Easier to find instructions to fill the delay slot 

 Conditional branch: Condition computation should not depend on 
instructions in delay slots  difficult to fill the delay slot 
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Delayed Branching (II) 
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A 

B 

C 

BC X 

D 

E 

F 

if ex 

A 

A B 

B C 

C BC 

BC 

G X: 

-- 

A 

B 

C 

BC X 

D 

E 

F 

G X: 

if ex 

A 

A C 

C BC 

BC B 

B G 

-- G 

Normal code: Timeline: Delayed branch code: Timeline: 

6 cycles 5 cycles 



Fancy Delayed Branching (III) 

 Delayed branch with squashing 

 In SPARC 

 Semantics: If the branch falls through (i.e., it is not taken), 
the delay slot instruction is not executed 

 Why could this help? 
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A 

B 

C 

BC X 

D 

E 

X: 

Normal code: Delayed branch code: 

A 

B 

C 

BC X 

D 

E 

X: 

NOP 

Delayed branch w/ squashing: 

A 

B 

C 

BC X 

D 

E 

X: 

A 



Delayed Branching (IV) 
 Advantages: 

 + Keeps the pipeline full with useful instructions in a simple way assuming  

       1. Number of delay slots == number of instructions to keep the pipeline 
full before the branch resolves 

       2. All delay slots can be filled with useful instructions 

 

 Disadvantages: 

-- Not easy to fill the delay slots (even with a 2-stage pipeline) 

   1. Number of delay slots increases with pipeline depth, superscalar 
execution width 

   2. Number of delay slots should be variable with variable latency 
operations. Why? 

 -- Ties ISA semantics to hardware implementation 

     -- SPARC, MIPS, HP-PA: 1 delay slot 

     -- What if pipeline implementation changes with the next design? 
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An Aside: Filling the Delay Slot 
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a.  From before b.  From target c.  From fall through

sub $t4, $t5, $t6





…





add $s1, $s2, $s3





if $s1 = 0 then








add $s1, $s2, $s3





if $s1 = 0 then





 








add $s1, $s2, $s3





if $s1 = 0 then





  sub $t4, $t5, $t6














add $s1, $s2, $s3





if $s1 = 0 then





   sub $t4, $t5, $t6

add $s1, $s2, $s3





if $s2 = 0 then





    

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6







if $s2 = 0 then





 add $s1, $s2, $s3

within same 
basic block 

For correctness:  
add a new instruction 
to the not-taken path? 

For correctness:  
add a new instruction 
to the taken path? 

Safe? 

reordering data  
independent 
(RAW, WAW, 
WAR) 
instructions 
does not change 
program semantics 
 

[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 



How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Fine-Grained Multithreading 

 Idea: Hardware has multiple thread contexts. Each cycle, 
fetch engine fetches from a different thread. 

 By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread 

 Branch/instruction resolution latency overlapped with 
execution of other threads’ instructions 

 

+ No logic needed for handling control and 

   data dependences within a thread  

-- Single thread performance suffers  

-- Extra logic for keeping thread contexts 

-- Does not overlap latency if not enough  

    threads to cover the whole pipeline 
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Fine-grained Multithreading (II) 

 Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently 

 

 Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads 

 Improves pipeline utilization by taking advantage of multiple 
threads 

 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964. 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 
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Fine-grained Multithreading: History 

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded 

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964. 

 Processor executes a different I/O thread every cycle 

 An operation from the same thread is executed every 10 cycles 

 

 Denelcor HEP (Heterogeneous Element Processor) 
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 120 threads/processor  

 available queue vs. unavailable (waiting) queue for threads  

 each thread can have only 1 instruction in the processor pipeline; each thread 
independent  

 to each thread, processor looks like a non-pipelined machine 

 system throughput vs. single thread performance tradeoff  
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Fine-grained Multithreading in HEP 

 Cycle time: 100ns 
 

 8 stages  800 ns to 

complete an 
instruction 

 assuming no memory 
access 
 

 No control and data 
dependency checking 
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Multithreaded Pipeline Example 
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Sun Niagara Multithreaded Pipeline 
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005. 



Fine-grained Multithreading 

 Advantages 

+ No need for dependency checking between instructions 

    (only one instruction in pipeline from a single thread) 

+ No need for branch prediction logic 

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads 

+ Improved system throughput, latency tolerance, utilization 

 

 Disadvantages 

- Extra hardware complexity: multiple hardware contexts (PCs, register 
files, …), thread selection logic 

- Reduced single thread performance (one instruction fetched every N 
cycles from the same thread)  

- Resource contention between threads in caches and memory 

- Some dependency checking logic between threads remains (load/store) 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Branch Prediction 
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0x0004 0x0005 0x0006 0x0007 0x0008 

I-$ RF 

LD R1, MEM[R0] 

ADD R2, R2, #1 

0x0001 

BRZERO   0x0001 

0x0002 

0x0003 

DEC 

ADD R3, R2, #1 
0x0004 

LD R2, MEM[R2] 

MUL R1, R2, R3 
0x0005 

0x0006 

LD R0, MEM[R2] 
0x0007 

12 cycles 

8 cycles 

D-$ 

PC ?? 

Branch prediction 

WB 

Branch Prediction: Guess the Next Instruction to Fetch 



LD R0, MEM[R2] 

LD R2, MEM[R2] 

BRZERO   0x0001 

Misprediction Penalty 

I-$ RF 

LD R1, MEM[R0] 

ADD R2, R2, #1 

ADD R3, R2, #1 

0x0001 

0x0002 

0x0003 

0x0004 

MUL R1, R2, R3 
0x0005 

0x0006 

0x0007 

0x0003 0x0004 0x0005 0x0006 0x0007 

D-$ 

PC 

DEC WB 
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Branch Prediction 

Fetch  Decode  Rename  Schedule RegisterRead Execute 

Target Misprediction Detected! Flush the pipeline 

Pipeline 

A 

B3 B1 

D 

E 

F 

A B1 A B1 A D B1 A D E B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B1 A D E F B3 

What to fetch next? Fetch from the correct target 

 Processors are pipelined to increase concurrency 

 How do we keep the pipeline full in the presence of branches? 

 Guess the next instruction when a branch is fetched 

 Requires guessing the direction and target of a branch 

 

Branch condition, TARGET 

Verify the Prediction 



Branch Prediction: Always PC+4 
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IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth 

IFPC+4 

IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth ID ALU 

ID 

IFPC+8 

Insth branch condition and target 
evaluated in ALU 

IFPC+4 

IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth ID ALU 

ID 

IFPC+8 

ALU 

ID 

IFtarget 

MEM 

When a branch resolves 
- branch target (Instk) is fetched 
- all instructions fetched since 
  insth (so called “wrong-path” 
  instructions) must be flushed Insth is a branch 



Pipeline Flush on a Misprediction 
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IFPC+4 

IFPC 

t0 t1 t2 t3 t4 t5 

Insti 

Instj 

Instk 

Instl 

Insth ID ALU 

ID 

IFPC+8 

IFtarget 

MEM 

ID 

IF 

WB 

killed 

killed 

ALU 

ID 

IF 

ALU 

ID 

IF 

WB 

Insth is a branch 



Performance Analysis 

 correct guess  no penalty      ~86% of the time 

 incorrect guess  2 bubbles 

 Assume 

 no data dependency related stalls 

 20% control flow instructions 

 70% of control flow instructions are taken 

 CPI = [ 1 + (0.20*0.7) * 2 ] =  

     = [ 1 + 0.14 * 2 ] = 1.28  
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penalty for 
a wrong guess 

probability of  
a wrong guess 

Can we reduce either of the two penalty terms? 



Reducing Branch Misprediction Penalty 

 Resolve branch condition and target address early  
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PC
Instruction


memory

4

Registers

M

u

x

M

u

x

M

u

x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data

memory

M

u

x

Hazard

detection


unit

Forwarding

unit

IF.Flush

IF/ID

Sign

extend

Control

M

u

x

=

Shift

left 2

M

u

x

CPI = [ 1 + (0.2*0.7) * 1 ] = 1.14 [Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

Is this a good idea? 



Branch Prediction (Enhanced) 

 Idea: Predict the next fetch address (to be used in the next 
cycle) 

 

 Requires three things to be predicted at fetch stage: 

 Whether the fetched instruction is a branch 

 (Conditional) branch direction 

 Branch target address (if taken) 

 

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances 

 Idea: Store the target address from previous instance and access 
it with the PC 

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache 
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target address 

Fetch Stage with BTB and Direction Prediction 

Direction predictor (taken?) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current branch 

Always taken CPI = [ 1 + (0.20*0.3) * 2 ]  = 1.12   (70% of branches taken)
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target address 

More Sophisticated Branch Direction Prediction 

Direction predictor (taken?) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history 

XOR 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current branch 



Three Things to Be Predicted 

 Requires three things to be predicted at fetch stage: 

1. Whether the fetched instruction is a branch 

2. (Conditional) branch direction 

3. Branch target address (if taken) 

 

 Third (3.) can be accomplished using a BTB 

Remember target address computed last time branch was 
executed 

 First (1.) can be accomplished using a BTB 

If BTB provides a target address for the program counter, then it 
must be a branch 

Or, we can store “branch metadata” bits in instruction 
cache/memory  partially decoded instruction stored in I-cache 

 Second (2.): How do we predict the direction? 
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Simple Branch Direction Prediction Schemes 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 
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More Sophisticated Direction Prediction 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 Program analysis based  (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 Two-bit counter based prediction 

 Two-level prediction (global vs. local) 

 Hybrid 
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Static Branch Prediction (I) 

 Always not-taken 

 Simple to implement: no need for BTB, no direction prediction 

 Low accuracy: ~30-40% (for conditional branches) 

 Remember: Compiler can layout code such that the likely path 
is the “not-taken” path  more effective prediction 

 

 Always taken 

 No direction prediction 

 Better accuracy: ~60-70% (for conditional branches) 

 Backward branches (i.e. loop branches) are usually taken 

 Backward branch: target address lower than branch PC 

 

 Backward taken, forward not taken (BTFN) 

 Predict backward (loop) branches as taken, others not-taken 
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Static Branch Prediction (II) 

 Profile-based 

 Idea: Compiler determines likely direction for each branch 
using a profile run. Encodes that direction as a hint bit in the 
branch instruction format.  

 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative! 

-- Requires hint bits in the branch instruction format 

-- Accuracy depends on dynamic branch behavior: 

  TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy 

-- Accuracy depends on the representativeness of profile input 
set 
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Static Branch Prediction (III) 

 Program-based (or, program analysis based) 

 Idea: Use heuristics based on program analysis to determine statically-
predicted direction 

 Example opcode heuristic: Predict BLEZ as NT (negative integers used 
as error values in many programs) 

 Example loop heuristic: Predict a branch guarding a loop execution as 
taken (i.e., execute the loop) 

 Pointer and FP comparisons: Predict not equal 

 

+ Does not require profiling 

-- Heuristics might be not representative or good 

-- Requires compiler analysis and ISA support (ditto for other static methods) 

 

 Ball and Larus, ”Branch prediction for free,” PLDI 1993. 

 20% misprediction rate 

 50 



Static Branch Prediction (IV) 

 Programmer-based 

 Idea: Programmer provides the statically-predicted direction 

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken 

 

 

+ Does not require profiling or program analysis 

+ Programmer may know some branches and their program better than 
other analysis techniques 

-- Requires programming language, compiler, ISA support 

-- Burdens the programmer?  
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Pragmas 

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy 

 

 if (likely(x)) { ... } 

 if (unlikely(error)) { … } 

 

 Many other hints and optimizations can be enabled with 
pragmas 

 E.g., whether a loop can be parallelized 

 #pragma omp parallel 

 Description 

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code. 
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Static Branch Prediction 

 All previous techniques can be combined 

 Profile based 

 Program based 

 Programmer based 

 

 How would you do that? 

 

 What is the common disadvantage of all three techniques? 

 Cannot adapt to dynamic changes in branch behavior  

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…) 

 What is a Dynamic Compiler?  

 Remember Transmeta? Code Morphing Software? 

 Java JIT (just in time) compiler, Microsoft CLR (common lang. runtime) 
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Dynamic Branch Prediction 

 Idea: Predict branches based on dynamic information 
(collected at run-time) 

 

 Advantages 

+ Prediction based on history of the execution of branches 

   + It can adapt to dynamic changes in branch behavior 

+ No need for static profiling: input set representativeness 
problem goes away 

 

 Disadvantages 

-- More complex (requires additional hardware) 
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Last Time Predictor 

 Last time predictor 

 Single bit per branch (stored in BTB) 

 Indicates which direction branch went last time it executed 

    TTTTTTTTTTNNNNNNNNNN  90% accuracy 

 

 Always mispredicts the last iteration and the first iteration 
of a loop branch 

 Accuracy for a loop with N iterations = (N-2)/N 

 

+ Loop branches for loops with large N (number of iterations) 

-- Loop branches for loops will small N (number of iterations) 

  TNTNTNTNTNTNTNTNTNTN    0% accuracy 
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Last-time predictor CPI = [ 1 + (0.20*0.15) * 2 ]  = 1.06   (Assuming 85% accuracy)
  

 



Implementing the Last-Time Predictor 
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BTB: one target 
address per entry  

BTB idx 

N-bit 
tag 
table 

1         0 

PC+4 

nextPC 

= 

The 1-bit BHT (Branch History Table) entry is updated with 
the correct outcome after each execution of a branch 

tag 

BHT: 
One 
Bit 
per  
entry 

taken? 



State Machine for Last-Time Prediction 
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predict 
taken 

predict 
not 

taken 

actually 
not taken 

actually 
taken 

actually 
taken 

actually 
not taken 



Improving the Last Time Predictor 

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly  

 even though the branch may be mostly taken or mostly not 
taken 

 

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome 

 Use two bits to track the history of predictions for a branch 
instead of a single bit  

 Can have 2 states for T or NT instead of 1 state for each 

 

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981. 
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Two-Bit Counter Based Prediction 

 Each branch associated with a two-bit counter 

 One more bit provides hysteresis 

 A strong prediction does not change with one single 
different outcome 

 

 Accuracy for a loop with N iterations = (N-1)/N 

 TNTNTNTNTNTNTNTNTNTN    50% accuracy 

           (assuming counter initialized to weakly taken) 

 

+ Better prediction accuracy 

 

-- More hardware cost (but counter can be part of a BTB entry) 
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2BC predictor CPI = [ 1 + (0.20*0.10) * 2 ]  = 1.04   (90% accuracy)  

 



State Machine for 2-bit Saturating Counter 
 Counter using saturating arithmetic 

 Arithmetic with maximum and minimum values 
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Hysteresis Using a 2-bit Counter 
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Is This Good Enough? 

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction) 

 

 Is this good enough? 

 

 How big is the branch problem? 
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Rethinking the The Branch Problem 

 Control flow instructions (branches) are frequent 

 15-25% of all instructions 

 

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor 

 N cycles: (minimum) branch resolution latency 

 

 If we are fetching W instructions per cycle (i.e., if the 
pipeline is W wide) 

 A branch misprediction leads to N x W wasted instruction slots  
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Importance of The Branch Problem 
 Assume N = 20 (20 pipe stages), W = 5 (5 wide fetch) 

 Assume: 1 out of 5 instructions is a branch  

 Assume: Each 5 instruction-block ends with a branch 
 

 How long does it take to fetch 500 instructions?  

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 99% accuracy 
 100 (correct path) + 20 (wrong path) = 120 cycles 

 20% extra instructions fetched 

 98% accuracy 
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles  

 40% extra instructions fetched  

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 
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Can We Do Better? 

 Last-time and 2BC predictors exploit “last-time” 
predictability 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed) 

 Local branch correlation 
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