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Agenda for Today & Next Few Lectures 

 Single-cycle Microarchitectures 

 

 Multi-cycle and Microprogrammed Microarchitectures 

 

 Pipelining 

 

 Issues in Pipelining: Control & Data Dependence Handling, 
State Maintenance and Recovery, … 

 

 Out-of-Order Execution 

 

 Issues in OoO Execution: Load-Store Handling, … 
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Recap of Last Lecture 

 Multi-cycle and Microprogrammed Microarchitectures 

 Benefits vs. Design Principles 

 When to Generate Control Signals 

 Microprogrammed Control: uInstruction, uSequencer, Control 
Store 

 LC-3b State Machine, Datapath, Control Structure 

 An Exercise in Microprogramming 

 Variable Latency Memory, Alignment, Memory Mapped I/O, … 

 

 Microprogramming 

 Power of abstraction (for the HW designer) 

 Advantages of uProgrammed Control 

 Update of Machine Behavior 
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Review: A Simple LC-3b Control and Datapath 
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C.4. THE CONTROL STRUCTURE 9
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Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

Simple Design  

of the Control Structure 



A Simple Datapath 

Can Become  

Very Powerful 



Review: The Power of Abstraction 

 The concept of a control store of microinstructions enables 
the hardware designer with a new abstraction: 
microprogramming 

 

 The designer can translate any desired operation to a 
sequence of microinstructions 

 All the designer needs to provide is  

 The sequence of microinstructions needed to implement the 
desired operation 

 The ability for the control logic to correctly sequence through 
the microinstructions 

 Any additional datapath elements and control signals needed 
(no need if the operation can be “translated” into existing 
control signals) 
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Review: Advantages of Microprogrammed Control 

 Allows a very simple design to do powerful computation by 
controlling the datapath (using a sequencer) 

 High-level ISA translated into microcode (sequence of u-instructions) 

 Microcode (u-code) enables a minimal datapath to emulate an ISA 

 Microinstructions can be thought of as a user-invisible ISA (u-ISA) 
 

 Enables easy extensibility of the ISA 

 Can support a new instruction by changing the microcode 

 Can support complex instructions as a sequence of simple 
microinstructions 

 

 Enables update of machine behavior 

 A buggy implementation of an instruction can be fixed by changing the 
microcode in the field 
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Wrap Up Microprogrammed Control 

 Horizontal vs. Vertical Microcode 

 Nanocode vs. Microcode vs. Millicode  

 Microprogrammed MIPS: An Example 
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Horizontal Microcode 

 A single control store provides the control signals 
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Vertical Microcode 
 Two-level control store: the first specifies abstract operations 
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[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 

If done right (i.e., m<<n, and m<<k), two ROMs together  
(2nm+2mk bit) should be smaller than horizontal microcode ROM (2nk bit)  

m-bit input 

k-bit control signal output 

n-bit mPC input 

1-bit signal means do this RT 
        (or combination of RTs) 



Nanocode and Millicode 

 Nanocode: a level below traditional microcode 

 microprogrammed control for sub-systems (e.g., a 
complicated floating-point module) that acts as a slave in a 
microcontrolled datapath 

 

 Millicode: a level above traditional microcode 

 ISA-level subroutines that can be called by the microcontroller 
to handle complicated operations and system functions 

 E.g., Heller and Farrell, “Millicode in an IBM zSeries 
processor,” IBM JR&D, May/Jul 2004. 

 

 In both cases, we avoid complicating the main u-controller  

 You can think of these as “microcode” at different levels of 
abstraction 
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Nanocode Concept Illustrated 
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Microcoded Multi-Cycle MIPS Design 

 Any ISA can be implemented with a microprogrammed 
microarchitecture 

 

 P&H, Appendix D: Microprogrammed MIPS design 

 

 We will not cover this in class 

 However, you can do an extra credit assignment for Lab 2 
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Microcoded Multi-Cycle MIPS Design 

15 [Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 



Control Logic for MIPS FSM 

16 [Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 



Microprogrammed Control for MIPS FSM 

17 [Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 



Multi-Cycle vs. Single-Cycle uArch 

 Advantages 

 

 Disadvantages 

 

 You should be very familiar with this right now 
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Microprogrammed vs. Hardwired Control 

 Advantages 

 

 Disadvantages 

 

 You should be very familiar with this right now 
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Can We Do Better? 

 What limitations do you see with the multi-cycle design? 

 

 Limited concurrency 

 Some hardware resources are idle during different phases of 
instruction processing cycle 

 “Fetch” logic is idle when an instruction is being “decoded” or 
“executed” 

 Most of the datapath is idle when a memory access is 
happening 
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Can We Use the Idle Hardware to Improve Concurrency?

  
 Goal: More concurrency  Higher instruction throughput 

(i.e., more “work” completed in one cycle) 

 

 Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction 

 E.g., when an instruction is being decoded, fetch the next 
instruction 

 E.g., when an instruction is being executed, decode another 
instruction 

 E.g., when an instruction is accessing data memory (ld/st), 
execute the next instruction 

 E.g., when an instruction is writing its result into the register 
file, access data memory for the next instruction 
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Pipelining 
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Pipelining: Basic Idea 

 More systematically: 

 Pipeline the execution of multiple instructions 

 Analogy: “Assembly line processing” of instructions 
 

 Idea: 

 Divide the instruction processing cycle into distinct “stages” of 
processing 

 Ensure there are enough hardware resources to process one 
instruction in each stage 

 Process a different instruction in each stage 

 Instructions consecutive in program order are processed in 
consecutive stages 

 

 Benefit: Increases instruction processing throughput (1/CPI) 

 Downside: Start thinking about this… 
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Example: Execution of Four Independent ADDs 

 Multi-cycle: 4 cycles per instruction 

 

 

 

 

 

 Pipelined: 4 cycles per 4 instructions (steady state) 
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Is life always this beautiful? 



The Laundry Analogy  

 

 

 

 

 

 

 “place one dirty load of clothes in the washer” 

 “when the washer is finished, place the wet load in the dryer” 

 “when the dryer is finished, take out the dry load and fold” 

 “when folding is finished, ask your roommate (??) to put the clothes 
away” 
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   - steps to do a load are sequentially dependent 

   - no dependence between different loads 
   - different steps do not share resources 
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Pipelining Multiple Loads of Laundry 
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Pipelining Multiple Loads of Laundry: In Practice 
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Pipelining Multiple Loads of Laundry: In Practice 
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An Ideal Pipeline 

 Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing) 
 

 Repetition of identical operations 

 The same operation is repeated on a large number of different 
inputs (e.g., all laundry loads go through the same steps) 

 Repetition of independent operations 

 No dependencies between repeated operations 

 Uniformly partitionable suboperations 

 Processing can be evenly divided into uniform-latency 
suboperations (that do not share resources) 

 

 Fitting examples: automobile assembly line, doing laundry 

 What about the instruction processing “cycle”? 

 29 



Ideal Pipelining 
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combinational logic (F,D,E,M,W) 
T psec 

BW=~(1/T) 

BW=~(2/T) T/2 ps (F,D,E) T/2 ps (M,W) 

BW=~(3/T) T/3 
 ps (F,D) 

T/3 
 ps (E,M) 

T/3 
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More Realistic Pipeline: Throughput 

 Nonpipelined version with delay T   

  BW = 1/(T+S) where S = latch delay 

 

 

 
 

 

 k-stage pipelined version 

  BWk-stage = 1 / (T/k +S ) 

  BWmax = 1 / (1 gate delay + S ) 
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T ps 

T/k 
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T/k 
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Latch delay reduces throughput 

(switching overhead b/w stages) 



More Realistic Pipeline: Cost 

 Nonpipelined version with combinational cost G   

  Cost = G+L where L = latch cost 

 

 

 
 

 

 k-stage pipelined version 

  Costk-stage = G + Lk  
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G gates 

G/k G/k 

Latches increase hardware cost 



Pipelining Instruction Processing 
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Remember: The Instruction Processing Cycle 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

34 

1. Instruction fetch (IF) 
2. Instruction decode and  
    register operand fetch (ID/RF) 
3. Execute/Evaluate memory address (EX/AG) 
4. Memory operand fetch (MEM) 
5. Store/writeback result (WB)  

 



Remember the Single-Cycle Uarch 
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Dividing Into Stages 
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Instruction Pipeline Throughput 
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Enabling Pipelined Processing: Pipeline Registers 
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Pipelined Operation Example 
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All instruction classes must follow the same path 
and timing through the pipeline stages.   
 

Any performance impact? 



Pipelined Operation Example 
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

Is life always this beautiful? 



Illustrating Pipeline Operation: Operation View 
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Illustrating Pipeline Operation: Resource View 
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Control Points in a Pipeline 
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Based on original figure from [P&H CO&D, 
COPYRIGHT 2004 Elsevier. ALL RIGHTS 
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Control Signals in a Pipeline 

 For a given instruction 

 same control signals as single-cycle, but 

 control signals required at different cycles, depending on stage 

 Option 1: decode once using the same logic as single-cycle and 
buffer signals until consumed 

 

 

 

 

 

 

 Option 2: carry relevant “instruction word/field” down the pipeline 
and decode locally within each or in a previous stage 

                Which one is better? 
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Pipelined Control Signals 
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Remember: An Ideal Pipeline 

 Goal: Increase throughput with little increase in cost 
(hardware cost, in case of instruction processing) 
 

 Repetition of identical operations 

 The same operation is repeated on a large number of different 
inputs (e.g., all laundry loads go through the same steps) 

 Repetition of independent operations 

 No dependencies between repeated operations 

 Uniformly partitionable suboperations 

 Processing an be evenly divided into uniform-latency 
suboperations (that do not share resources) 

 

 Fitting examples: automobile assembly line, doing laundry 

 What about the instruction processing “cycle”? 
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Instruction Pipeline: Not An Ideal Pipeline 

 Identical operations ... NOT!  

    different instructions  not all need the same stages 
    Forcing different instructions to go through the same pipe stages 
 external fragmentation (some pipe stages idle for some instructions) 

 

 Uniform suboperations  ...  NOT!  

    different pipeline stages  not the same latency 
            Need to force each stage to be controlled by the same clock 

 internal fragmentation (some pipe stages are too fast but all take 
the same clock cycle time) 
 

 Independent operations ... NOT! 
    instructions are not independent of each other 

   Need to detect and resolve inter-instruction dependencies to ensure 
the pipeline provides correct results 
 pipeline stalls (pipeline is not always moving) 
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Issues in Pipeline Design 

 Balancing work in pipeline stages 

 How many stages and what is done in each stage 
 

 Keeping the pipeline correct, moving, and full in the 
presence of events that disrupt pipeline flow 

 Handling dependences  

 Data 

 Control 

 Handling resource contention 

 Handling long-latency (multi-cycle) operations 
 

 Handling exceptions, interrupts 
 

 Advanced: Improving pipeline throughput 

 Minimizing stalls 
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Causes of Pipeline Stalls 

 Stall: A condition when the pipeline stops moving 

 

 Resource contention 

 

 Dependences (between instructions) 

 Data 

 Control 

 

 Long-latency (multi-cycle) operations 
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Dependences and Their Types 

 Also called “dependency” or less desirably “hazard” 

 

 Dependences dictate ordering requirements between 
instructions 

 

 Two types 

 Data dependence 

 Control dependence 

 

 Resource contention is sometimes called resource 
dependence 

 However, this is not fundamental to (dictated by) program 
semantics, so we will treat it separately 
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Handling Resource Contention 

 Happens when instructions in two pipeline stages need the 
same resource 

 

 Solution 1: Eliminate the cause of contention 

 Duplicate the resource or increase its throughput 

 E.g., use separate instruction and data memories (caches) 

 E.g., use multiple ports for memory structures 

 

 Solution 2: Detect the resource contention and stall one of 
the contending stages 

 Which stage do you stall? 

 Example: What if you had a single read and write port for the 
register file? 
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Data Dependences 

 Types of data dependences 

 Flow dependence (true data dependence – read after write) 

 Output dependence (write after write) 

 Anti dependence (write after read) 

 

 Which ones cause stalls in a pipelined machine? 

 For all of them, we need to ensure semantics of the program 
is correct 

 Flow dependences always need to be obeyed because they 
constitute true dependence on a value 

 Anti and output dependences exist due to limited number of 
architectural registers  

 They are dependence on a name, not a value 

 We will later see what we can do about them 
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Data Dependence Types 
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Flow dependence 
r3          r1  op  r2             Read-after-Write   
r5    r3  op  r4   (RAW) 
 

Anti dependence 
r3     r1  op  r2  Write-after-Read  
r1     r4  op  r5   (WAR) 
  
Output-dependence 
r3    r1  op  r2   Write-after-Write  
r5    r3  op  r4   (WAW) 
r3    r6  op  r7   



Pipelined Operation Example 
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Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

What if the SUB were dependent on LW? 



Data Dependence Handling 
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Readings for Next Few Lectures 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 
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How to Handle Data Dependences 

 Anti and output dependences are easier to handle  

 write to the destination in one stage and in program order 

 

 Flow dependences are more interesting 

 

 Five fundamental ways of handling flow dependences 

 Detect and wait until value is available in register file 

 Detect and forward/bypass data to dependent instruction 

 Detect and eliminate the dependence at the software level 

 No need for the hardware to detect dependence 

 Predict the needed value(s), execute “speculatively”, and verify 

 Do something else (fine-grained multithreading) 

 No need to detect 
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Interlocking 

 Detection of dependence between instructions in a 
pipelined processor to guarantee correct execution 

 

 Software based interlocking 

    vs.  

 Hardware based interlocking 

 

 MIPS acronym? 
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Approaches to Dependence Detection (I) 

 Scoreboarding 

 Each register in register file has a Valid bit associated with it 

 An instruction that is writing to the register resets the Valid bit 

 An instruction in Decode stage checks if all its source and 
destination registers are Valid 

 Yes: No need to stall… No dependence 

 No: Stall the instruction 

 

 Advantage: 

 Simple. 1 bit per register 

 

 Disadvantage: 

 Need to stall for all types of dependences, not only flow dep. 
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Not Stalling on Anti and Output Dependences 

 What changes would you make to the scoreboard to enable 
this? 
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Approaches to Dependence Detection (II) 

 Combinational dependence check logic  

 Special logic that checks if any instruction in later stages is 
supposed to write to any source register of the instruction that 
is being decoded 

 Yes: stall the instruction/pipeline 

 No: no need to stall… no flow dependence 

 

 Advantage: 

 No need to stall on anti and output dependences 

 

 Disadvantage: 

 Logic is more complex than a scoreboard 

 Logic becomes more complex as we make the pipeline deeper 
and wider (flash-forward: think superscalar execution) 
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Once You Detect the Dependence in Hardware 

 What do you do afterwards? 

 

 Observation: Dependence between two instructions is 
detected before the communicated data value becomes 
available 

 

 Option 1: Stall the dependent instruction right away 

 Option 2: Stall the dependent instruction only when 
necessary  data forwarding/bypassing 

 Option 3: … 
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We did not cover the following slides in lecture. 

These are for your preparation for the next lecture.  



Data Forwarding/Bypassing 

 Problem: A consumer (dependent) instruction has to wait in 
decode stage until the producer instruction writes its value 
in the register file 
 

 Goal: We do not want to stall the pipeline unnecessarily 
 

 Observation: The data value needed by the consumer 
instruction can be supplied directly from a later stage in the 
pipeline (instead of only from the register file) 
 

 Idea: Add additional dependence check logic and data 
forwarding paths (buses) to supply the producer’s value to 
the consumer right after the value is available 
 

 Benefit: Consumer can move in the pipeline until the point 
the value can be supplied  less stalling 
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A Special Case of Data Dependence 

 Control dependence 

 Data dependence on the Instruction Pointer / Program Counter 
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Control Dependence 

 Question: What should the fetch PC be in the next cycle? 

 Answer: The address of the next instruction 

 All instructions are control dependent on previous ones. Why? 

 

 If the fetched instruction is a non-control-flow instruction: 

 Next Fetch PC is the address of the next-sequential instruction 

 Easy to determine if we know the size of the fetched instruction 

 

 If the instruction that is fetched is a control-flow instruction: 

 How do we determine the next Fetch PC? 

 

 In fact, how do we know whether or not the fetched 
instruction is a control-flow instruction? 
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