
18-447

Computer Architecture

Lecture 7: Pipelining

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 1/30/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

2

Recap of Last Lecture

 Multi-cycle and Microprogrammed Microarchitectures

 Benefits vs. Design Principles

 When to Generate Control Signals

 Microprogrammed Control: uInstruction, uSequencer, Control
Store

 LC-3b State Machine, Datapath, Control Structure

 An Exercise in Microprogramming

 Variable Latency Memory, Alignment, Memory Mapped I/O, …

 Microprogramming

 Power of abstraction (for the HW designer)

 Advantages of uProgrammed Control

 Update of Machine Behavior

3

Review: A Simple LC-3b Control and Datapath

4

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store

6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block

diagram

on the LC-3b instruction being executed during the current instruction cycle. This state

carries out the DECODE phase of the instruction cycle. If the IRD control signal in the

microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer

(Figure C.5) will take its source from the six bits formed by 00 concatenated with the

four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-

3b instruction being processed, the next address of the control store will be one of 16

addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =

1010 and 1011. That is, each of the 16 next states is the first state to be carried out

after the instruction has been decoded in state 32. For example, if the instruction being

processed is ADD, the address of the next state is state 1, whose microinstruction is

stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

Simple Design

of the Control Structure

A Simple Datapath

Can Become

Very Powerful

Review: The Power of Abstraction

 The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

 The designer can translate any desired operation to a
sequence of microinstructions

 All the designer needs to provide is

 The sequence of microinstructions needed to implement the
desired operation

 The ability for the control logic to correctly sequence through
the microinstructions

 Any additional datapath elements and control signals needed
(no need if the operation can be “translated” into existing
control signals)

7

Review: Advantages of Microprogrammed Control

 Allows a very simple design to do powerful computation by
controlling the datapath (using a sequencer)

 High-level ISA translated into microcode (sequence of u-instructions)

 Microcode (u-code) enables a minimal datapath to emulate an ISA

 Microinstructions can be thought of as a user-invisible ISA (u-ISA)

 Enables easy extensibility of the ISA

 Can support a new instruction by changing the microcode

 Can support complex instructions as a sequence of simple
microinstructions

 Enables update of machine behavior

 A buggy implementation of an instruction can be fixed by changing the
microcode in the field

 8

Wrap Up Microprogrammed Control

 Horizontal vs. Vertical Microcode

 Nanocode vs. Microcode vs. Millicode

 Microprogrammed MIPS: An Example

9

Horizontal Microcode

 A single control store provides the control signals

10

Microprogram counter

Address select logic

Adder

1

Input

Datapath

control

outputs

Microcode

storage

Inputs from instruction

register opcode field

Outputs

Sequencing

control

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

ALUSrcA

IorD

IRWrite

PCWrite

PCWriteCond

….

n-bit mPC input

k-
b

it
 c

o
n

tr
o

l s
ig

n
al

 o
u

tp
u

t

Control Store: 2n k bit (not including sequencing)

MIPS design
From
P&H, Appendix D

Vertical Microcode
 Two-level control store: the first specifies abstract operations

11

Microprogram counter

Address select logic

Adder

1

Input

Datapath

control

outputs

Microcode

storage

Inputs from instruction

register opcode field

Outputs

Sequencing

control

“PC PC+4”

“PC ALUOut”

“PC PC[31:28],IR[25:0],2’b00”

“IR MEM[PC]”

“A RF[IR[25:21]]”

“B RF[IR[20:16]]”

…………. …….

ROM

A
LU

SrcA

Io
rD

IR
W

rite

P
C

W
rite

P
C

W
riteC

o
n

d

…
.

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

If done right (i.e., m<<n, and m<<k), two ROMs together
(2nm+2mk bit) should be smaller than horizontal microcode ROM (2nk bit)

m-bit input

k-bit control signal output

n-bit mPC input

1-bit signal means do this RT
 (or combination of RTs)

Nanocode and Millicode

 Nanocode: a level below traditional microcode

 microprogrammed control for sub-systems (e.g., a
complicated floating-point module) that acts as a slave in a
microcontrolled datapath

 Millicode: a level above traditional microcode

 ISA-level subroutines that can be called by the microcontroller
to handle complicated operations and system functions

 E.g., Heller and Farrell, “Millicode in an IBM zSeries
processor,” IBM JR&D, May/Jul 2004.

 In both cases, we avoid complicating the main u-controller

 You can think of these as “microcode” at different levels of
abstraction

12

Nanocode Concept Illustrated

13

ROM

mPC

arithmetic
datapath

a “mcoded” FPU implementation

ROM

mPC

processor
datapath

a “mcoded” processor implementation

We refer to this
as “nanocode”
when a mcoded
subsystem is embedded
in a mcoded system

Microcoded Multi-Cycle MIPS Design

 Any ISA can be implemented with a microprogrammed
microarchitecture

 P&H, Appendix D: Microprogrammed MIPS design

 We will not cover this in class

 However, you can do an extra credit assignment for Lab 2

14

Microcoded Multi-Cycle MIPS Design

15 [Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Control Logic for MIPS FSM

16 [Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Microprogrammed Control for MIPS FSM

17 [Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Multi-Cycle vs. Single-Cycle uArch

 Advantages

 Disadvantages

 You should be very familiar with this right now

18

Microprogrammed vs. Hardwired Control

 Advantages

 Disadvantages

 You should be very familiar with this right now

19

Can We Do Better?

 What limitations do you see with the multi-cycle design?

 Limited concurrency

 Some hardware resources are idle during different phases of
instruction processing cycle

 “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

 Most of the datapath is idle when a memory access is
happening

20

Can We Use the Idle Hardware to Improve Concurrency?

 Goal: More concurrency Higher instruction throughput

(i.e., more “work” completed in one cycle)

 Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction

 E.g., when an instruction is being decoded, fetch the next
instruction

 E.g., when an instruction is being executed, decode another
instruction

 E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

 E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

21

Pipelining

22

Pipelining: Basic Idea

 More systematically:

 Pipeline the execution of multiple instructions

 Analogy: “Assembly line processing” of instructions

 Idea:

 Divide the instruction processing cycle into distinct “stages” of
processing

 Ensure there are enough hardware resources to process one
instruction in each stage

 Process a different instruction in each stage

 Instructions consecutive in program order are processed in
consecutive stages

 Benefit: Increases instruction processing throughput (1/CPI)

 Downside: Start thinking about this…
23

Example: Execution of Four Independent ADDs

 Multi-cycle: 4 cycles per instruction

 Pipelined: 4 cycles per 4 instructions (steady state)

24

Time

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

Time

Is life always this beautiful?

The Laundry Analogy

 “place one dirty load of clothes in the washer”

 “when the washer is finished, place the wet load in the dryer”

 “when the dryer is finished, take out the dry load and fold”

 “when folding is finished, ask your roommate (??) to put the clothes
away”

25

 - steps to do a load are sequentially dependent

 - no dependence between different loads
 - different steps do not share resources

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

26

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

- latency per load is the same

- throughput increased by 4

- 4 loads of laundry in parallel

- no additional resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

27

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

the slowest step decides throughput

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

28

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

A

B

A

B

throughput restored (2 loads per hour) using 2 dryers

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task

order

Task

order

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

An Ideal Pipeline

 Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

 Repetition of identical operations

 The same operation is repeated on a large number of different
inputs (e.g., all laundry loads go through the same steps)

 Repetition of independent operations

 No dependencies between repeated operations

 Uniformly partitionable suboperations

 Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

 Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?

 29

Ideal Pipelining

30

combinational logic (F,D,E,M,W)
T psec

BW=~(1/T)

BW=~(2/T) T/2 ps (F,D,E) T/2 ps (M,W)

BW=~(3/T) T/3
 ps (F,D)

T/3
 ps (E,M)

T/3
 ps (M,W)

More Realistic Pipeline: Throughput

 Nonpipelined version with delay T

 BW = 1/(T+S) where S = latch delay

 k-stage pipelined version

 BWk-stage = 1 / (T/k +S)

 BWmax = 1 / (1 gate delay + S)

31

T ps

T/k
 ps

T/k
 ps

Latch delay reduces throughput

(switching overhead b/w stages)

More Realistic Pipeline: Cost

 Nonpipelined version with combinational cost G

 Cost = G+L where L = latch cost

 k-stage pipelined version

 Costk-stage = G + Lk

32

G gates

G/k G/k

Latches increase hardware cost

Pipelining Instruction Processing

33

Remember: The Instruction Processing Cycle

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

34

1. Instruction fetch (IF)
2. Instruction decode and
 register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Remember the Single-Cycle Uarch

35

Shift
left 2

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Data
memory

Read
data

Write
data

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU
result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M
u
x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign
extend

16 32
Instruction [15–0]

1

M
u
x

1

0

M
u
x

0

1

M
u
x

0

1

ALU
control

Control

Add
ALU

result

M
u
x

0

1 0

ALU

Shift
left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

T BW=~(1/T)

Dividing Into Stages

36

200ps

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Is this the correct partitioning?
 Why not 4 or 6 stages? Why not different boundaries?

100ps 200ps 200ps 100ps

RF
write

ignore
for now

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Instruction Pipeline Throughput

37

Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data

access
Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program

execution

order

(in instructions)

Instruction

fetch
Reg ALU

Data

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns
Instruction

fetch
Reg ALU

Data

access
Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program

execution

order

(in instructions)

200 400 600 800 1000 1200 1400 1600 1800

200 400 600 800 1000 1200 1400

800ps

800ps

800ps

200ps 200ps 200ps 200ps 200ps

200ps

200ps

5-stage speedup is 4, not 5 as predicted by the ideal model. Why?

Enabling Pipelined Processing: Pipeline Registers

38
T

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

Instruction

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Address

Data

memory
1

ALU
result

M
u
x

ALU

Zero

IF: Instruction fetch ID: Instruction decode/

register file read

EX: Execute/

address calculation

MEM: Memory access WB: Write back

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Data

memory

Address

No resource is used by more than 1 stage!

IR
D

P
C

F

P
C

D
+4

P
C

E+
4

n
P

C
M

A
E

B
E

Im
m

E

A
o

u
t M

B

M

M
D

R
W

A

o
u

t W

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

T/k
 ps

T/k
 ps

Pipelined Operation Example

39

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Instruction decode

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Execution

lw

Address

Data

memory

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write
register

Address

97108/Patterson

Figure 06.15

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Memory

lw

Address

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
data

Read
dataData

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX MEM/WB

Write back

lw

Write
register

Address

97108/Patterson

Figure 06.15

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0

Address

Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

Data

memory

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

All instruction classes must follow the same path
and timing through the pipeline stages.

Any performance impact?

Pipelined Operation Example

40

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is life always this beautiful?

Illustrating Pipeline Operation: Operation View

41

MEM

EX

ID

IF Inst4

WB

IF

MEM

IF

MEM

EX

t0 t1 t2 t3 t4 t5

ID

EX IF ID

IF ID

Inst0 ID

IF Inst1

EX

ID

IF Inst2

MEM

EX

ID

IF Inst3

WB

WB MEM

EX

WB

steady state

(full pipeline)

Illustrating Pipeline Operation: Resource View

42

I0

I0

I1

I0

I1

I2

I0

I1

I2

I3

I0

I1

I2

I3

I4

I1

I2

I3

I4

I5

I2

I3

I4

I5

I6

I3

I4

I5

I6

I7

I4

I5

I6

I7

I8

I5

I6

I7

I8

I9

I6

I7

I8

I9

I10

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

IF

ID

EX

MEM

WB

Control Points in a Pipeline

43

PC

Instruction
memory

Address

In
s
tr

u
c
ti
o
n

Instruction
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32

Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU

control

RegWrite

MemRead

Instruction
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data
memory

PCSrc

Zero

Add
Add

result

Shift

left 2

ALU

result

ALU

Zero

Add

0

1

M
u
x

0

1

M
u
x

Identical set of control points as the single-cycle datapath!!

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Control Signals in a Pipeline

 For a given instruction

 same control signals as single-cycle, but

 control signals required at different cycles, depending on stage

 Option 1: decode once using the same logic as single-cycle and
buffer signals until consumed

 Option 2: carry relevant “instruction word/field” down the pipeline
and decode locally within each or in a previous stage

 Which one is better?

44

Control

EX

M

WB

M

WB

WB

IF/ID ID/EX EX/MEM MEM/WB

Instruction

Pipelined Control Signals

45

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D,
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.]

Remember: An Ideal Pipeline

 Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

 Repetition of identical operations

 The same operation is repeated on a large number of different
inputs (e.g., all laundry loads go through the same steps)

 Repetition of independent operations

 No dependencies between repeated operations

 Uniformly partitionable suboperations

 Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

 Fitting examples: automobile assembly line, doing laundry

 What about the instruction processing “cycle”?

 46

Instruction Pipeline: Not An Ideal Pipeline

 Identical operations ... NOT!

 different instructions not all need the same stages
 Forcing different instructions to go through the same pipe stages
 external fragmentation (some pipe stages idle for some instructions)

 Uniform suboperations ... NOT!

 different pipeline stages not the same latency
 Need to force each stage to be controlled by the same clock

 internal fragmentation (some pipe stages are too fast but all take
the same clock cycle time)

 Independent operations ... NOT!
 instructions are not independent of each other

 Need to detect and resolve inter-instruction dependencies to ensure
the pipeline provides correct results
 pipeline stalls (pipeline is not always moving)

47

Issues in Pipeline Design

 Balancing work in pipeline stages

 How many stages and what is done in each stage

 Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

 Handling dependences

 Data

 Control

 Handling resource contention

 Handling long-latency (multi-cycle) operations

 Handling exceptions, interrupts

 Advanced: Improving pipeline throughput

 Minimizing stalls

48

Causes of Pipeline Stalls

 Stall: A condition when the pipeline stops moving

 Resource contention

 Dependences (between instructions)

 Data

 Control

 Long-latency (multi-cycle) operations

49

Dependences and Their Types

 Also called “dependency” or less desirably “hazard”

 Dependences dictate ordering requirements between
instructions

 Two types

 Data dependence

 Control dependence

 Resource contention is sometimes called resource
dependence

 However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

50

Handling Resource Contention

 Happens when instructions in two pipeline stages need the
same resource

 Solution 1: Eliminate the cause of contention

 Duplicate the resource or increase its throughput

 E.g., use separate instruction and data memories (caches)

 E.g., use multiple ports for memory structures

 Solution 2: Detect the resource contention and stall one of
the contending stages

 Which stage do you stall?

 Example: What if you had a single read and write port for the
register file?

51

Data Dependences

 Types of data dependences

 Flow dependence (true data dependence – read after write)

 Output dependence (write after write)

 Anti dependence (write after read)

 Which ones cause stalls in a pipelined machine?

 For all of them, we need to ensure semantics of the program
is correct

 Flow dependences always need to be obeyed because they
constitute true dependence on a value

 Anti and output dependences exist due to limited number of
architectural registers

 They are dependence on a name, not a value

 We will later see what we can do about them

52

Data Dependence Types

53

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

Pipelined Operation Example

54

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction decode

lw $10, 20($1)

Instruction fetch

sub $11, $2, $3

Instruction

memory

Address

4

32

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Instruction fetch

lw $10, 20($1)

Address

Data

memory

Address

Data

memory

Clock 1

Clock 2

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

3216
Sign

extend

Write
register

Write
data

Memory

lw $10, 20($1)

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

sub $11, $2, $3

Instruction

memory

Address

4

0

Add
Add

result

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU

Zero

ID/EX

Execution

lw $10, 20($1)

Instruction decode

sub $11, $2, $3

3216
Sign

extend

Address

Data

memory

Data

memory

Address

Clock 3

Clock 4

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o
n

IF/ID EX/MEMID/EX MEM/WB

Write back
M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

lw $10, 20($1)

Instruction

memory

Address

4

32

0

Add
Add

result

1

ALU
result

Zero

Shift

left 2

In
s
tr

u
c
ti
o

n

IF/ID EX/MEMID/EX MEM/WB

Write backM
u
x

0

1

Add

PC

0
Write
data

M
u
x

1

Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

M
u
x

ALU
Read
data

Write
register

Write
data

sub $11, $2, $3

Memory

sub $11, $2, $3

Address

Data
memory

Address

Data

memory

Clock 6

Clock 5

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What if the SUB were dependent on LW?

Data Dependence Handling

55

Readings for Next Few Lectures

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

56

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

57

Interlocking

 Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

 Software based interlocking

 vs.

 Hardware based interlocking

 MIPS acronym?

58

Approaches to Dependence Detection (I)

 Scoreboarding

 Each register in register file has a Valid bit associated with it

 An instruction that is writing to the register resets the Valid bit

 An instruction in Decode stage checks if all its source and
destination registers are Valid

 Yes: No need to stall… No dependence

 No: Stall the instruction

 Advantage:

 Simple. 1 bit per register

 Disadvantage:

 Need to stall for all types of dependences, not only flow dep.

59

Not Stalling on Anti and Output Dependences

 What changes would you make to the scoreboard to enable
this?

60

Approaches to Dependence Detection (II)

 Combinational dependence check logic

 Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
is being decoded

 Yes: stall the instruction/pipeline

 No: no need to stall… no flow dependence

 Advantage:

 No need to stall on anti and output dependences

 Disadvantage:

 Logic is more complex than a scoreboard

 Logic becomes more complex as we make the pipeline deeper
and wider (flash-forward: think superscalar execution)

61

Once You Detect the Dependence in Hardware

 What do you do afterwards?

 Observation: Dependence between two instructions is
detected before the communicated data value becomes
available

 Option 1: Stall the dependent instruction right away

 Option 2: Stall the dependent instruction only when
necessary data forwarding/bypassing

 Option 3: …

62

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Data Forwarding/Bypassing

 Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

 Goal: We do not want to stall the pipeline unnecessarily

 Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

 Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

 Benefit: Consumer can move in the pipeline until the point
the value can be supplied less stalling

64

A Special Case of Data Dependence

 Control dependence

 Data dependence on the Instruction Pointer / Program Counter

65

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we know whether or not the fetched
instruction is a control-flow instruction?

 66

