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Agenda for Today & Next Few Lectures

Single-cycle Microarchitectures
Multi-cycle and Microprogrammed Microarchitectures
Pipelining

Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, ...

Out-of-Order Execution

Issues in O00 Execution: Load-Store Handling, ...



Reminder on Assignments

Lab 2 due next Friday (Feb 6)
o Start early!

HW 1 due today
HW 2 out

Remember that all is for your benefit

o Homeworks, especially so

o All assignments can take time, but the goal is for you to learn
very well
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= Mean: 88.0
= Median: 96.0
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Extra Credit for Lab Assignment 2

Complete your normal (single-cycle) implementation first, and
get it checked off in lab.

Then, implement the MIPS core using a microcoded approach
similar to what we will discuss in class.

We are not specifying any particular details of the microcode
format or the microarchitecture; you can be creative.

For the extra credit, the microcoded implementation should
execute the same programs that your ordinary

implementation does, and you should demo it by the normal
lab deadline.

You will get maximum 4% of course grade
Document what you have done and demonstrate well



Readings for Today

P&P, Revised Appendix C
o Microarchitecture of the LC-3b
o Appendix A (LC-3b ISA) will be useful in following this

P&H, Appendix D
o Mapping Control to Hardware

Optional

o Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer Inaugural
Conf., 1951.



Readings for Next Lecture

= Pipelining
o P&H Chapter 4.5-4.8

= Pipelined LC-3b Microarchitecture

o http://www.ece.cmu.edu/~eced447/s14/lib/exe/fetch.php?
media=18447/-Ic3b-pipelining.pdf




Recap of Last Lecture

Intro to Microarchitecture: Single-cycle Microarchitectures
Single-cycle vs. multi-cycle

Instruction processing “cycle”

Datapath vs. control logic

Hardwired vs. microprogrammed control

Performance analysis: Execution time equation

Power analysis: Dynamic power equation

o 0o O O O O

Detailed walkthrough of a single-cycle MIPS implementation
o Datapath

o Control logic

o Critical path analysis

(Micro)architecture design principles



Review: A Key System Design Principle

= Keep it simple

“Everythmg should be made as simple as possible, but no
simpler.” .

o Albert Einstein

= And, keep it low cost: {‘An engineer is a person who can do
for a dime what any fool can do for a dollar.” |

= For more, see:

o Butler W. Lampson, “Hints for Computer System Design,” ACM
Operating Systems Review, 1983.

o http://research.microsoft.com/pubs/68221/acrobat.pdf




Review: (Micro)architecture Design Principles

Critical path design
a Find and decrease the maximum combinational logic delay
o Break a path into multiple cycles if it takes too long

Bread and butter (common case) design

o Spend time and resources on where it matters most
i.e., improve what the machine is really designed to do

o Common case vs. uncommon case

Balanced design

o Balance instruction/data flow through hardware components

o Design to eliminate bottlenecks: balance the hardware for the
work
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Review: Single-Cycle Design vs. Design Principles

= Critical path design

= Bread and butter (common case) design

= Balanced design

How does a single-cycle microarchitecture fare in light of
these principles?
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Multi-Cycle Microarchitectures
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Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

o Determine clock cycle time independently of instruction
processing time

o Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different

13



Remember: The “Process instruction”™ Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

Choice 1: AS - AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to AS")
14



Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

&

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

&

AS’ = Architectural (programmer visible) state
at the end of a clock cycle
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Benefits of Multi-Cycle Design

Critical path design

o Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Bread and butter (common case) design

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Balanced design

o No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X's to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

16



Remember: Performance Analysis

Execution time of an instruction
o {CPI} x {clock cycle time}

Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

Single cycle microarchitecture performance
o CPI =1

o Clock cycle time = long

Multi-cycle microarchitecture performance

o CPI = different for each instruction Now, we have
Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
17



A Multi-Cycle Microarchitecture
A Closer ook




How Do We Implement This?

Maurice Wilkes, "The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

THE BEST WAY TO DESIGN AN AUTOMATIC
CALCULATING MACHINE

By M. V. Wilkes, M.A., Ph.D., F.R.A.S. ‘“"fﬁ\‘\f

e

i
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The concept of microcoded/microprogrammed machines
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Microprogrammed Multi-Cycle uArch

Key Idea for Realization

o One can implement the “process instruction” step as a
finite state machine that sequences between states and
eventually returns back to the “fetch instruction” state

o A state is defined by the control signals asserted in it

o Control signals for the next state determined in current
state

20



The Instruction Processing Cycle

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

o o0 o o o o
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A Basic Multi-Cycle Microarchitecture

Instruction processing cycle divided into “states”
A stage in the instruction processing cycle can take multiple states

A multi-cycle microarchitecture sequences from state to
state to process an instruction

The behavior of the machine in a state is completely determined by
control signals in that state

The behavior of the entire processor is specified fully by a
finite state machine

In a state (clock cycle), control signals control two things:
How the datapath should process the data
How to generate the control signals for the next clock cycle
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Microprogrammed Control Terminology

Control signals associated with the current state
o Microinstruction

Act of transitioning from one state to another

o Determining the next state and the microinstruction for the
next state

o Microsequencing

Control store stores control signals for every possible state
o Store for microinstructions for the entire FSM

Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

23



What Happens In A Clock Cycle?

The control signals (microinstruction) for the current state
control two things:

o Processing in the data path

o Generation of control signals (microinstruction) for the next
cycle

a See Supplemental Figure 1 (next slide)

Datapath and microsequencer operate concurrently

Question: why not generate control signals for the current
cycle in the current cycle?

o This will lengthen the clock cycle
o Why would it lengthen the clock cycle?
o See Supplemental Figure 2
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A Bad Clock Cycle!
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A Simple LC-3b Control and Datapath

Read Appendix C

under Technical Docs Memory, IO ~ 3
A 16
Data, I\ Data
Inst.
R (R T Addr
IR[15:11]
BEN
=7
Data Path 23
Control
%35
Control Signals
A9 26

(J,COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components
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What Determines Next-State Control Signals?

What is happening in the current clock cycle

o See the 9 control signals coming from “Control” block
What are these for?

The instruction that is being executed
o IR[15:11] coming from the Data Path

Whether the condition of a branch is met, if the instruction
being processed is a branch

o BEN bit coming from the datapath

Whether the memory operation is completing in the current
cycle, if one is in progress
o R bit coming from memory
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A Simple LC-3b Control and Datapath

Memory, I/O = 3
A 16
Data, I\ Data
Inst.
R 16 (16 Addr
\l’
IR[15:11]
BEN
= 7
Data Path 23
Control
| —
% 35
Control Signals
A9 26

(J,COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



The State Machine for Multi-Cycle Processing

The behavior of the LC-3b uarch is completely determined by
o the 35 control signals and

o additional 7 bits that go into the control logic from the datapath

35 control signals completely describe the state of the control
structure

We can completely describe the behavior of the LC-3b as a
state machine, i.e. a directed graph of

o Nodes (one corresponding to each state)
o Arcs (showing flow from each state to the next state(s))
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An [LC-3b State Machine
Patt and Patel, Appendix C, Figure C.2

Each state must be uniquely specified
o Done by means of state variables

31 distinct states in this LC-3b state machine
o Encoded with 6 state variables

Examples

o State 18,19 correspond to the beginning of the instruction
processing cycle

o Fetch phase: state 18, 19 > state 33 - state 35
o Decode phase: state 32

31



BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

DR<-SR1+0OP2*
set CC

LDB

PC<—PC+LSHF(off9 1 )

To 18
PC<—BaseR T° 18

DR<—-SR1 XOR OP2%
set CC
To 18 a 15
AR<-LSHF(ZEXT[IR[7:0]] D

R[11]] To 18

MDR<-M[MAR]
R7<—PC

R7<-PC
PC<—BaseR

R7<-PC
To 18 \ PC<—PC+LSHF(off11,1)

To 18 13
° C)R<—SHF(SR,A,D,amt4B

set CC
o

14
To 18 DR<—PC+LSHF(off9, 1)
set CC CMAR<—B+off6) @AR<—B+LSHF(off6,9 @AR<—B+LSHF(off6,9 CMAR<—B+off6)

To 18

23
NOTES CG/IDR< —M[MAR[15:1] O) @DR< M[MAR)D MDR<—-SR
B+off6 : Base + SEXT[offset6] —
PC+0ff9 : PC + SEXTJ[offset9] R R y vy R
31

To 18

24

17

:‘SPZ may be SR2 or SEXT[immS] DR<—SEXT[BYTE.DATA] DR<—MDR
¥ [15:8] or [7:0] depending on <ot CC sot CC M[MAR]<— MDR M[MAR]<—MDR**
MAR[O] -
R R i R R

To 18 To 18 To 18 To 19



[LC-3b State Machine: Some Questions

How many cycles does the fastest instruction take?
How many cycles does the slowest instruction take?
Why does the BR take as long as it takes in the FSM?

What determines the clock cycle time?
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LLC-3b Datapath
Patt and Patel, Appendix C, Figure C.3

Single-bus datapath design

o At any point only one value can be “gated” on the bus (i.e.,
can be driving the bus)

o Advantage: Low hardware cost: one bus

o Disadvantage: Reduced concurrency — if instruction needs the
bus twice for two different things, these need to happen in
different states

Control signals (26 of them) determine what happens in the
datapath in one clock cycle

o Patt and Patel, Appendix C, Table C.1
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IR[11:9] ——=]

11 ——=

DRMUX

= DR

(a)
Remember the MIPS datapath

IR[11:9]

N —=] Logic

IR[11:9] — =

IR[8:6] ————=

SRIMUX

(b)

BEN —=

(c)

SR1



Signal Name  Signal Values
LDMAR/I: NO,LOAD
LDMDR/I: NO,LOAD
LDIR/1: NO,LOAD
LDBEN/l: NO,LOAD
LDREG/l: NO,LOAD
LDCC/l: NO,LOAD
ILDPC/1: NO,LOAD
GatePC/1: NO,YES
GateMDR/1: NO, YES
GateALU/1: NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO, YES
PCMUX/2: PC42 select pc+-2
BUS :select value from bus
ADDER -select output of address adder
DRMUX/1: 119 -destination IR[11:9]
R7 .destination R7
SRIMUX/1: 119 ;source IR[11:9]
86 :source IR[8:6]
ADDRIMUX/1: PC,BaseR
ADDR2MUX/2:  ZERO :select the value zero
offset6 select SEXT[IR[5:0]]
PCoffset9 select SEXTIIR[8:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX/1: 70 select LSHF(ZEXT[IR[7:0]],1)
ADDER :select output of address adder
ALUK/2: ADD, AND,XOR,PASSA
MIOEN/l: NO,YES
RW/l: RD,WR
DATASIZE/1: BYTE,WORD
LSHF1/1: NO,YES

Table C.1: Data path control signals



[LC-3b Datapath: Some Questions

How does instruction fetch happen in this datapath
according to the state machine?

What is the difference between gating and loading?

Is this the smallest hardware you can design?
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L.C-3b Microprogrammed Control Structure
Patt and Patel, Appendix C, Figure C.4

Three components:
o Microinstruction, control store, microsequencer

Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

Each microinstruction is stored in a unigue location in the
control store (a special memory structure)

Unigue location: address of the state corresponding to the
microinstruction

o Remember each state corresponds to one microinstruction

Microsequencer determines the address of the next
microinstruction (i.e., next state)
39



IR[15:11]
BEN

!

Microsequencer

//6

Control Store

2% x 35

435

Microinstruction

49 <k26

(J, COND, IRD)




J[5] J[4] J[3]

.

J[2]

BEN

Branch

J[1]

Ready

IR[11]

Wik

JIO]

J

Addr.
Mode

0,0.IR[15:12]

L

< IRD

$6

Address of Next State
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000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)



LLC-3b Microsequencer

Patt and Patel, Appendix C, Figure C.5

The purpose of the microsequencer is to determine the
address of the next microinstruction (i.e., next state)

Next address depends on 9 control signals (plus 7 data

signals)

Signal Name  Signal Values

J/6:
COND/2: CONDg
COND;
COND»
COND3

IRD/1: NO,YES

:Unconditional
:Memory Ready

:Branch”
:Addressing Mode

Table C.2: Microsequencer control signals
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The Microsequencer: Some Questions

When is the IRD signal asserted?

What happens if an illegal instruction is decoded?
What are condition (COND) bits for?

How is variable latency memory handled?

How do you do the state encoding?

o Minimize number of state variables (~ control store size)
o Start with the 16-way branch

o Then determine constraint tables and states dependent on COND
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An Exercise 1n
Microprogramming

46



Handouts
= 7/ pages of Microprogrammed LC-3b design

= http://www.ece.cmu.edu/~eced44//s14/doku.php?
id=techdocs

s http://www.ece.cmu.edu/~eced447/7/s14/lib/exe/fetch.php?
media=Ilc3b-figures.pdf
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A Simple LC-3b Control and Datapath

Memory, I/O = 3
A 16
Data, I\ Data
Inst.
R 16 (16 Addr
\l’
IR[15:11]
BEN
= 7
Data Path 23
Control
| —
% 35
Control Signals
A9 26

(J,COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

DR<-SR1+0OP2*
set CC

LDB

PC<—PC+LSHF(off9 1 )

To 18
PC<—BaseR T° 18

DR<—-SR1 XOR OP2%
set CC
To 18 a 15
AR<-LSHF(ZEXT[IR[7:0]] D

R[11]] To 18

MDR<-M[MAR]
R7<—PC

R7<-PC
PC<—BaseR

R7<-PC
To 18 \ PC<—PC+LSHF(off11,1)

To 18 13
° C)R<—SHF(SR,A,D,amt4B

set CC
o

14
To 18 DR<—PC+LSHF(off9, 1)
set CC CMAR<—B+off6) @AR<—B+LSHF(off6,9 @AR<—B+LSHF(off6,9 CMAR<—B+off6)

To 18

23
NOTES CG/IDR< —M[MAR[15:1] O) @DR< M[MAR)D MDR<—-SR
B+off6 : Base + SEXT[offset6] —
PC+0ff9 : PC + SEXTJ[offset9] R R y vy R
31

To 18

24

17

:‘SPZ may be SR2 or SEXT[immS] DR<—SEXT[BYTE.DATA] DR<—MDR
¥ [15:8] or [7:0] depending on <ot CC sot CC M[MAR]<— MDR M[MAR]<—MDR**
MAR[O] -
R R i R R

To 18 To 18 To 18 To 19
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State Machine for LDW Microsequencer CONDO
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IR[11:9]

111

%

%

DRMUX

(a)

IR[11:9]

N —=] Logic

IR[11:9] — =

IR[8:6] ————=

SRIMUX

(b)

BEN —=

(c)

— = SRI



Signal Name  Signal Values
LDMAR/I: NO,LOAD
LDMDR/I: NO,LOAD
LDIR/1: NO,LOAD
LDBEN/l: NO,LOAD
LDREG/l: NO,LOAD
LDCC/l: NO,LOAD
ILDPC/1: NO,LOAD
GatePC/1: NO,YES
GateMDR/1: NO, YES
GateALU/1: NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO, YES
PCMUX/2: PC42 select pc+-2
BUS :select value from bus
ADDER -select output of address adder
DRMUX/1: 119 -destination IR[11:9]
R7 .destination R7
SRIMUX/1: 119 ;source IR[11:9]
86 :source IR[8:6]
ADDRIMUX/1: PC,BaseR
ADDR2MUX/2:  ZERO :select the value zero
offset6 select SEXT[IR[5:0]]
PCoffset9 select SEXTIIR[8:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX/1: 70 select LSHF(ZEXT[IR[7:0]],1)
ADDER :select output of address adder
ALUK/2: ADD, AND,XOR,PASSA
MIOEN/l: NO,YES
RW/l: RD,WR
DATASIZE/1: BYTE,WORD
LSHF1/1: NO,YES

Table C.1: Data path control signals
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000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)



End of the Exercise in
Microprogramming
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Homework 2

You will write the microcode for some states in LC-3b as
specified in Appendix C
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Lab 2 Extra Credit

Microprogrammed MIPS implementation

Exercise your creativity!
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The Control Store: Some Questions

What control signals can be stored in the control store?

VS.

What control signals have to be generated in hardwired
logic?

o i.e., what signal cannot be available without processing in the
datapath?

Remember the MIPS datapath

o One PCSrc signal depends on processing that happens in the
datapath (bcond logic)
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Variable-Latency Memory

The ready signal (R) enables memory read/write to execute
correctly

o Example: transition from state 33 to state 35 is controlled by
the R bit asserted by memory when memory data is available

Could we have done this in a single-cycle
microarchitecture?

61



The Microsequencer: Advanced Questions

What happens if the machine is interrupted?
What if an instruction generates an exception?

How can you implement a complex instruction using this
control structure?

o Think REP MOVS
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The Power of Abstraction

The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

The designer can translate any desired operation to a
sequence of microinstructions
All the designer needs to provide is

o The sequence of microinstructions needed to implement the
desired operation

o The ability for the control logic to correctly sequence through
the microinstructions

o Any additional datapath control signals needed (no need if the
operation can be “translated” into existing control signals)
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Let’s Do Some More Microprogramming
Implement REP MOVS in the LC-3b microarchitecture

What changes, if any, do you make to the
o state machine?

o datapath?

o control store?

o microsequencer?

Show all changes and microinstructions
Coming up in Homework 2
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Aside: Alignment Correction in Memory

Remember unaligned accesses

LC-3b has byte load and byte store instructions that move
data not aligned at the word-address boundary

o Convenience to the programmer/compiler

How does the hardware ensure this works correctly?
o Take a look at state 29 for LDB

o States 24 and 17 for STB
o Additional logic to handle unaligned accesses
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Asic
Adc

e: Memory Mapped 1/0O

ress control logic determines whether the specified

adc

ress of LDx and STx are to memory or I/O devices

Correspondingly enables memory or I/O devices and sets
up muxes

Another instance where the final control signals (e.q.,
MEM.EN or INMUX/2) cannot be stored in the control store

o T

hese signals are dependent on address
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Advantages of Microprogrammed Control

Allows a very simple design to do powerful computation by
controlling the datapath (using a sequencer)

o High-level ISA translated into microcode (sequence of microinstructions)
o Microcode (ucode) enables a minimal datapath to emulate an ISA
o Microinstructions can be thought of as a user-invisible ISA (micro ISA)

Enables easy extensibility of the ISA
o Can support a new instruction by changing the microcode
o Can support complex instructions as a sequence of simple microinstructions

If I can sequence an arbitrary instruction then I can sequence
an arbitrary “program” as a microprogram sequence

o will need some new state (e.g. loop counters) in the microcode for sequencing
more elaborate programs
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Update of Machine Behavior

The ability to update/patch microcode in the field (after a
processor is shipped) enables

o Ability to add new instructions without changing the processor!
o Ability to “fix” buggy hardware implementations

Examples

o IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot

o IBM System z: Similar to 370/145.

Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

o B1700 microcode can be updated while the processor is running
User-microprogrammable machine!
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We did not cover the following slides in lecture.
These are for your preparation for the next lecture.




Horizontal Microcode

)
)
Q.
_ )
Microcode - ALUSICA 8
storage
lorD =
Outputs < IRer’.ce _g
PCWrite c
PCWriteCond o
(&)
\ N
o . )
n-bit uPC input 5
xI

| —

Sequencing

Microprogram counter
N croprog . control
Adder i

Address select logic |

1

Inputs from instruction
register opcode field

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elevier. ALL RIGHTS RESERVED.] Control Store: 2"x k bit (not including sequencing) 70



Vertical Microcode

1-bit signal means do this RT
R 4 . .
““““ (or combination of RTs)
Microcode - “PC <= PC+4”
storage “pC < ALUOUt”
“PC < PC[31:28],IR[ 25:0],2" bOO” 7]
Outputs “IR < MEM[ PC]”
“A < RF[IR[ 25:21]]
L “B < RF[IR[20:16]]"
n—bit MPC input [ e —
1 } m-bit input
l Vs ¢ Microprogram counter foer?tLrjslncmg ROM
Adder i
Address select logic | k-blt OUtpUt
AT A ‘ ‘

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.] Inputs from instruction
. . v = = >
register opcode field 0o =x2° =
s ZocC
= w
= 3
o @ >

puo)31luMDd

If done right (i.e., m<<n, and m<<k), two ROMs together
(2"xm+2™Mxk bit) should be smaller than horizontal microcode ROM (2"xk bit)
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Nanocode and Millicode

Nanocode: a level below traditional ucode

0 uprogrammed control for sub-systems (e.g., a complicated floating-
point module) that acts as a slave in a ucontrolled datapath

Millicode: a level above traditional ucode

0 ISA-level subroutines that can be called by the ucontroller to handle
complicated operations and system functions

o E.g., Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

In both cases, we avoid complicating the main ucontroller

You can think of these as “microcode” at different levels of
abstraction
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Nanocode Concept lllustrated

a “ucoded” processor implementation

ROM ”
| processor
datapath
uPC [¢

We refer to this

as “nanocode”

when a ucoded
subsystem is embedded
in @ ucoded system
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Microcoded Multi-Cycle MIPS Design
P&H, Appendix D

Any ISA can be implemented this way

We will not cover this in class
However, you can do an extra credit assignment for Lab 2
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Microcoded Multi-Cycle MIPS Design

Y Instruction fetch

MemRead
ALUSIcA =0
lorD=0
IRWrite

Instruction decode/
reqgister fetch

ALUSICA =0
ALUSIcB = 11

ALUSrcB = 01
ALUOp = 00

Y

) ) A
9\-\‘19 Q@o =
©o° . 7 "
Memory address o -Q\N\ Branch X% &l . Jump
computation ‘\}N\ ot \09 Execution completion VW completion
2 o2 6 8 :
ALUSIcA =1
ALUSICA = 1 ALUSICA = 1 ALUSrcB = 00 PCWrite
ALUSIcB = 10 ALUSIcB = 00 ALUOp =01 PCSource = 10
ALUOp = 00 ALUOp = 10 PCWriteCond
PCSource = 01
P
g %‘\3\
c ‘Ij o
o ,
o) Memory Memory
~Y_ access access Y R-type completion
3 5 7
) RegDst = 1
MemRead MemWrite RegWrite
lorD=1 lorD = 1 MemtoReg = 0
Y Write-back step
N \

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.] FIGURE D.3.1 The finite-state diagram for muiticycle control.
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Control Logic for MIPS FSM

=1 PCWrite

PCWriteCond

iorD

MemRead

MemWrite

IRWrite

Control logic MemtoReg
Mttt fon-.” S
PCSource

Outputs { ALUOPp

Inputs
= o )
r ‘ A\ |
F T 010 1 +r+ ||
2 21 B| 8| 3 B] of of = o .
O O O] O] O] O] H| o w| B 5 =
- - . FUSTUISNS SSa— :
Instruction register { State register ; .
opcode field T T Ll
I I S
R —

FIGURE D.3.2 The control unit for MIPS will consist of some control logic and a register
[Based on original figure from P&H co&%cmm state. The state register is written at the active clock edge and is stable during the clock
2004 Elsevier. ALL RIGHTS RESERVED.] cycle.




Microprogrammed Control for MIPS FSM

Control unit PCWrite
PCWriteCond

lorD

MemRead

PLA or ROM MamWrite

IRWrite

Outputs < | MemtoRen

g ',,_l :v‘: 151
AddrCti

Address selec t logic D — ..,.ﬂ..\...j

]
= f
=]

nstruction reqgiste

opcode field

FIGURE D.4.1 The control unit using an explicit counter to compute the next state. I this
control unit, the next state is computed using a counter (at least in some states). By comparison, Figure D.3.2

[Based on original figure from P&H co&D, CaPYRrthe next state in the control logic for every state. In this control unit, the signals labeled AddrCtl 77
2004 Elsevier. ALL RIGHTS RESERVED.]  control how the next state is determined.




Multi-Cycle vs. Single-Cycle uArch

Advantages
Disadvantages

You should be very familiar with this right now
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Microprogrammed vs. Hardwired Control

Advantages
Disadvantages

You should be very familiar with this right now
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Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

o “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening
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Can We Use the Idle Hardware to Improve Concurrency?

Goal: Concurrency - throughput (more “work” completed
in one cycle)

Idea: When an instruction is using some resources in its

processing phase, process other instructions on idle

resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction
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