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Agenda for Today

Finish off ISA tradeoffs
A quick tutorial on MIPS ISA

Upcoming schedule:

o Lab 1.5 & 2 are out today

o Friday (1/23): Lab 1 due

o Friday (1/23): Recitation

o Wednesday (1/28): HW 1 due




Upcoming Readings

Next week (Microarchitecture):
o P&H, Chapter 4, Sections 4.1-4.4

a P&P, revised Appendix C — LC3b datapath and
microprogrammed operation



Last Lecture Recap

Instruction processing style
a 0, 1, 2, 3 address machines

Elements of an ISA

o Instructions, data types, memory organizations, registers, etc
Addressing modes

Complex (CISC) vs. simple (RISC) instructions

Semantic gap

ISA translation



ISA-level Tradeotts: Instruction Length

Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently
-- Wasted bits in instructions (Why is this bad?)
-- Harder-to-extend ISA (how to add new instructions?)

Variable length: Length of instructions different
(determined by opcode and sub-opcode)
+ Compact encoding (Why is this good?)
Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?
-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

Tradeoffs

o Code size (memory space, bandwidth, latency) vs. hardware complexity
o ISA extensibility and expressiveness vs. hardware complexity
o Performance? Energy? Smaller code vs. ease of decode



ISA-level Tradeoffs: Uniform Decode

Uniform decode: Same bits in each instruction correspond
to the same meaning

o Opcode is always in the same location

o Ditto operand specifiers, immediate values, ...

o Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

Non-uniform decode

o E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format
-- More complex decode logic



x86 vs. Alpha Instruction Formats

X86:

Alpha:

lnpsgé%f(ggn Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of  opcode (if required) (if required) displacement data of
1 byte each of1,2,0or4 1,2,0r4
(optional) / \ bytes or none bytes or none
65 32 7 65 32 0
Mod OpRgogc{e R/M Scale | Index Base
31 26 25 2120 16 15 5 4 0
Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format




MIPS Instruction Format

R-type, 3 register operands

0 rs rt rd shamt | funct R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

I-type, 2 register operands and 16-bit immediate operand

opcode |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit

J-type, 26-bit immediate operand

opcode | immediate J-type
6-bit 26-bit

Simple Decoding

o 4 bytes per instruction, regardless of format

o must be 4-byte aligned (2 Isb of PC must be 2b'00)
o format and fields easy to extract in hardware




ARM

33222222222211111111119876543210
1098765432109876543210
Cond |0(0]|1| Opcode |S Rn Rd Operand 2 Data Processing /
PSR Transfer
Cond |0O|O|O|O|O(O|A|S Rd Rn Rs 1]10{0|1 Rm Multiply
Cond |(O(0|O|O|1|U[A[S| RdHi RdLo Rn 1(0]|0]|1 Rm Multiply Long
Cond |(O|O|O|1|0O(B|O|O Rn Rd o(o|(o|o|1|0Of0O(1 Rm Single Data Swap
Cond |O|O|O(1|O(O|1|O|1 |1 [t 1|[1|1|1|{1|1[1|1[(1]|O|0O|O]|1 Rn Branch and Exchange
Cond |O|O|O(P|U[O|W|L Rn Rd O(0|O(O|1|S|H|1 Rm Halfword Data Transfer:
register offset
Cond |0O|O|O(P|U[T|W|L Rn Rd Offset [1|S|H|1| Offset | Halfword Data Transfer:
immediate offset
Cond |O|1|1(P|U[B|W|L Rn Rd Offset Single Data Transfer
Cond [Of1]1 1 Undefined
Cond [1|O0[O(P[U[S|W|L Rn Register List Block Data Transfer
Cond |1|0|1(L Offset Branch
Cond |1|1|0O(P|U[N|W|L Rn CRd CP# Offset Coprocessor Data
Transfer
Cond |1(1]|1|0]| CP Opc CRn CRd CP# CP |0 CRHBm Coprocessor Data
Operation
Cond [1(1]|1|0|CPOpc|L| CRn Rd CP# CP |1| CRHRm Coprocessor Register
Transfer
Cond |1|1]|1(1 Ignored by processor Software Interrupt
33222222222211111111119876543210
1098765432109876543210

Figure 4-1: ARM instruction set formats




A Note on Length and Uniformity

Uniform decode usually goes with fixed length

In a variable length ISA, uniform decode can be a property
of instructions of the same length

o Itis hard to think of it as a property of instructions of different
lengths

10



A Note on RISC vs. CISC
Usually, ...

RISC

o Simple instructions

o Fixed length

a Uniform decode

o Few addressing modes

CISC

o Complex instructions

o Variable length

o Non-uniform decode

o Many addressing modes

11



ISA-level Tradeotts: Number of Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler > fewer saves/restores

-- Larger instruction size
-- Larger register file size

12



ISA-level Tradeotts: Addressing Modes

Addressing mode specifies how to obtain an operand of an
Instruction

o Register
o Immediate

o Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, ...)

More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design
-- too many choices for the compiler?

Many ways to do the same thing complicates compiler design

Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981
13



x86 vs. Alpha Instruction Formats

X86:

lnpsgé%f(ggn Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of  opcode (if required) (if required) displacement data of
1 byte each of1,2,0or4 1,2,0r4
(optional) / \ bytes or none bytes or none
65 32 0 7 65 32 0
Mod OpRgogc{e R/M Scale | Index Base
Alpha:
31 26 25 2120 16 15 5 4 0
Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

14



Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

ray) AL (o oo [ee a4 [ [ou  |ed
r16(/r) AX [cx  |ox |ex [sp |e2 s ol
rBZflr) EAX |Ecx |epx |eBx [ese |eep [ESI | éEDi
X 8 6 mni) MMO [ MM1 | MM2_ [MM3_ | MM4 [MMS | MMs | MM7
XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMMS | XMMS | XMM7
ilndaclmal /digit (Opcode) 0 1 2 3 4 5 6 7
In binary) REG = 000 |oo1 [o010 o011 [100 |01 [110 |31
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
et o1 |07 08 |11 |8 |9 |28 |3 |38
register €D 010 oz [0A |12 [1A |22 |2A |32 |3A
. . €B 011 |03 0B 13 1B |23 2B 33 3B
indirect = 100 |o2 |oc |12 |1C |22 |2 [33 |3C
2 Memoty |1 |2 (2 1 |2 15 12 |3 2
[ED 111 07 OF 17 1F 27 2F 37 3F
absolute '] 5
X]+disp8 01 |/000 |40 |48 50 58 60 |68 70 78
EC +disp8 001 4 435 512 58 61 69 71 79
ED +disp8 010 |42 4A |53 5A |62 BA |72 7A
isp8 011 143 48 |54 5B |63 6B |73 /B
--][--1+d® 100 J44 |4C gg 5C 64 [6C 74 | 7C
SIB + EBP+dispB 101 |45 40 |37 5D |65 6D |75 7D
ESH+dlsp8 110 |46 |4E 5€ 66 | 6E 76 7€
diS |acement EDI]+disp8 111 |47 4F 5F 67 6F 77 7F
p EAX]+disp32 10 ||000 |80 (88 90 98 |A0O (A8 |BO |B8
ECX[+disp32 001 |81 8s 91 95 | A1l AS | B1 BS
EDX]+disp32 010 |82 8A |92 9A |A2 |(AA |B2 BA
EBX]+disp32 011 |83 88 |93 98B |A3 |(AB |B3 BB
--][--]+disp32 100 |84 |8C 94 [9C A4 | AC B4 |BC
€ fdlsp32 101 |85 8D |95 9D |A5 |(AD |BS BD
. ESI]+disp32 110 |86 |8E 96 9E A6 | AE B6 |BE
register + /ED +disp32 11 |87 |8F |97 |9F |a7 |AF |B7 |BF
i EAX/AX/AL/MMO/XMMO | 11 [[O00 JCO (8 DO |D8 |EO €8 FO F8
dISplacement CX/CX/CL/MM/XMM1 001 JC1 cS D1 D9 |E] €S F1 FS
EDX/DX/DL/MM2/XMM2 010 |JcC2 CA D2 DA |E2 EA F2 FA
re ister EBX/BX/BL/MM3/XMM3 011 JC3 CB D3 DB |E3 EB F3 FB
g ESP/SP/AH/MM4/XMM4 100 |C4 CC D4 |DC £4 EC F4 FC
EBP/BP/CH/MM5/XMMS 101 JC5 CD D5 DD |ES €D F5 FD
€SI/SI/DH/MMB/XMMBE 110 |JC6 CE D6 |DE E6 EE F6 FE
EDI/DI/BH/MM7/XMM7 111 7 CF D7 DF E7 EF F7 FF

NOTES: Register
1. The [-][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
Ceneral nurnoce reaictere 1iced 2c 3 hace are indicatred 2croce the ton of the table



Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX ESP ] =] =]
X 8 6 [ln decimal) Base - 0 1 2 3 4 5 6 7
Inblnary) Base = 000 001 010 on 100 10 110 11
Scaled Index SS | Index Value of SIB Byte (in Hexadecimal)
EAX o0 |ooo foo [o1 [oz |03 [o4 [os [oe |07
ECX 001 jog |09 |[0A |0B |oC |oD |0E |OF
€D 010 1o |11 |12 [13 |14 |15 |16 |17
EBX 011 |18 |19 [1Aa |18 |ic |10 |1E |1F
none 100 J20 |21 |22 |23 |24 |25 |26 |27
Eop) N B e R R - o
indexed ED& 111 |38 |39 |[3A |[3B |[3C [3D |[3€ |[3F
(base + EAX*2 01 |ooo Ja0 [41 (42 [a3 |24 [4a5 |46 |47
ECX*2 001 |48 |49 [4A |4B |4Cc |4D |4€ |4F
index) EDX*2 010 |50 |51 |52 |53 |54 |55 |s6 |57
EBX*2 011 |58 |59 |[5A |58 |5C |5D |5 |GF
none 100 |60 |61 |62 |63 |64 |65 |66 |67
EBP*2] 101 |ea |69 |sAa |[6B |sC |6D |6E |6F
ESI*Z] 170 70 |71 |72 |73 |74 |75 |78 |77
EDI*2 11 |78 |79 |74 |78 |7c |70 |7 |7F
EAX*4 10 |ooo fso |81 |82 |83 |84 |ss |[ss |87
ECX*4 001 |88 |89 |[s8a |sB |8C |8D |sE |s&F
EDX*4 010 Jso |81 |92 |3 |s4 |95 |96 |97
EBX*4 011 |8 |89 |[9A |SB |eC |90 |9 |9oF
none 100 JA0 |[A1 |A2 |[A3 |A4 |A5 |A6 |A7
EBP*4] 101 |A8 |AS |[AA |AB |AC |AD |AE |AF
ESI*4] 170 |80 |81 |B2 |[B3 |B4 |BS |BS |B7
scaled EDI*4 111 Iss |89 |Ba |BB |BC |BD |BE |BF
(base + EAX* 11 Jooo o [0 |2 |3 [aa |5 | |7
Al 18 (2|8 5 8 |8 [
H *
index*4) EBX*B 011 Jos |[pe |oa |p8 |oc |ob |DE |oF
none 100 leo |e1 |e2 |3 |e4 |es |es |€7
EBP*8] 101 |8 |69 |ea |eB |ec |eD |€EE |€F
ESI*8 170 lfFo |F1 |2 |3 |F4 |F5 |F6  |F7
EDI*8 11 |8 |F9 |FA |FB |FC |FD [FE |FF
NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:
MOD bits _ Effective Address
00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]




X386 SIB-D Addressing Mode

Base Index Scale  Displacement
EAX l|‘.' . .." 7~ "\
EBX el [ [ None
ECX | N
DX | EX [ 20 8-bit
e |[*|TEX 1,0,
EBP " 4 16-bit
Ew | eg | | |
ESI | ' \g/ 32-bit
i { '. 8 'l
o | [P
Offset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5




X86 Manual: Suggested Uses of Addressing Modes

The following addressing modes suggest uses for common combinations of address components.

- Dlsplacement— : jiigrepresents a direct (uncomputed) offset to the operand. Because the

address. It is com 3 statlcally allocated scalar operand.

L ] - 0 1 1 1
Base A base alc Dynamlc storage offseF to the operand. Since the value in the base register can
change, it can be of variables and data structures.

* Base + Displacement — A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component
encodes the static offset to the beginning of the array. The ba Arrays olds the results of a calculation to

determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to para ecords edure activation record. A

procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

18



X86 Manual: Suggested Uses of Addressing Modes

-

* (Index * Scale) + Displacement — This address mode offers an efficient way
to index into a static array when the element size is 2, 4, or 8 bytes. The

displacement locates thegeleli]y arrays w fixed-size elements holds the
subscript of the desired 3t : Sor autorniatically converts

the subscript into an index by applying the scalmg factor.

* Base + Index + Displacement — Using two registers together supports either
a two-dimensional aMcement holds the address of the beginning of

the array) or one of es of an array of records (the displacement is
an offset to a field within the record).

* Base + (Index * Scale) + Displacement — Using all the addressing
components togethe nt indexing of a two-dimensional array when

the elements of the a or 8 bytes in size.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

19



Other Example ISA-level Tradeofts

Condition codes vs. not

VLIW vs. single instruction

Precise vs. imprecise exceptions

Virtual memory vs. not

Unaligned access vs. not

Hardware interlocks vs. software-guaranteed interlocking
Software vs. hardware managed page fault handling
Cache coherence (hardware vs. software)

20



Back to Programmer vs. (Micro)architect

Many ISA features designed to aid programmers
But, complicate the hardware designer’ s job

Virtual memory
o VS, overlay programming

o Should the programmer be concerned about the size of code
blocks fitting physical memory?

Addressing modes

Unalighed memory access
o Compiler/programmer needs to align data

21



MIPS: Aligned Access

MSB [ byte-3 byte-2 byte-1 byte-0 LSB
byte-7 byte-6 byte-5 byte-4

LW/SW alignment restriction: 4-byte word-alignment
o not designed to fetch memory bytes not within a word boundary
o not designed to rotate unaligned bytes into registers

Provide separate opcodes for the “infrequent” case

A B C D

LWL rd 6(r0) > | byte-6 byte-5 byte-4 D

LWR rd 3(r0) 2> byte-6 byte-5 byte-4 byte-3

o LWL/LWR is slower
o Note LWL and LWR still fetch within word boundary

22



X86: Unaligned Access

= LD/ST instructions automatically align data that spans a
“word” boundary

= Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural
boundaries. The natural boundaries for words, double words, and quadwords are

even- numbered addresses, addresses evenly divisible by four, and addresses evenly

divisible ; respectively. However, to improve the perform rams,
a structures (especially stacks) should be aligned on natural boundaries whe

ever possible. The reason for this is that the processor requires two memory
esses to make an unaligned memory access; aligned accesses require only o

memory ord or doubleword operand that crosses a 4- ndary or a
quadword operand that crosses an 8-byte boundary is considered unaligned and

requires two separate memory bus cycles for access.

23



X86: Unaligned Access

4EH FH A
12H eH
7AH DH A
Word at Address BH FEH H Doubleword at Address AH
Contains FEOGH 06H BH Contains 7AFEO636H
36H AH
Byte at Address OH — . -—
Contains 1FH Quadword at Address 6H
f A4H 8H Contains
7 1FA4
. e — - AFED6361FA4230BH
45H SH
67H 4H
Word at Address 2H _—
s 74CEH i " Double quadword at Address OH
at
Word at Address 1H CeH eH | Containe
Contains (B31H 31H 1H | 4€127AFE06361FA42308456774C8311;
12H OH y

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in
Memory




What About ARM?

s https://www.scss.tcd.ie/~waldroj/3d1/arm arm.pdf
o Section A2.8

25



Aligned vs. Unaligned Access

Pros of having no restrictions on alignment

Cons of having no restrictions on alignment

Filling in the above: an exercise for you...

26
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MIPS R2000 Program Visible State

Program Counter

**Note** r0=0

3Z-brtmemory adaress
of the current instruction

M[O]

M[1]

M[2]

M[3]

M[4]

M[N-1]

rl
r2

General Purpose

Register File
32 32-bit words

named r0...r31

Memory
232 by 8-bit locations (4 Giga Bytes)
32-bit address

(there is some magic going on)

CMU 18-447
$'13 © 2011
J. C. Hoe



(() EEl(Ia\clt(r.%nclaiI\I&I(E?EOIg‘mteGr Jg:l\zlgH(lgszng
Data Format

¢ Most things are 32 bits

- instruction and data addresses

- signed and unsigned integers

- just bits
¢ Also 16-bit word and 8-bit word (aka byte)
¢ Floating-point numbers

- |EEE standard 754

- float: 8-bit exponent, 23-bit significand

- double: 11-bit exponent, 52-bit significand
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Big Endian vs. Little Endian

(Part I, Chapter 4, Gulliver’ s Travels)

J. C. Hoe

¢ 32-bit signed or unsigned integer comprises 4 bytes

MSB L
(mOSt Signiﬁcant) ~8-bit 8-bit 8-bit 8-bit (|east S|gn|ﬁcant)

¢ On a byte-addressable machine.......

Big Endian Little Endian
MSB LSB MSB LSB
byte O byte 1 byte 2 byte 3 byte 3 byte 2 byte 1 byte O
byte 4 byte 5 byte 6 byte 7 byte 7 byte 6 byte 5 byte 4
byte 8 byte 9 byte 10 byte 11 byte 11 byte 10 byte9 byte 8
byte 12 byte 13 byte 14 byte 15 byte 15 byte 14 byte 13 byte 12
byte 16 byte 17 byte 18 byte 19 byte 19 byte 18 byte 17 byte 16
pointer points to the big end pointer points to the little end

¢ What difference does it make?
check out htonl(), ntohl() in in.h



O

Electrical & Computer

ENGINEERING

¢ 3 simple formats

Instruction Formats

- R-type, 3 register operands

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit
- I-type, 2 register operands and 16-bit immediate
opcode |rs rt immediate
6-bit 5-bit 5-bit 16-bit

- J-type, 26-bit immediate operand

opcode

immediate

6-bit

26-bit

¢ Simple Decoding
- 4 bytes per instruction, regardless of format
- must be 4-byte aligned

- format and fields readily extractable

CMU 18-447
$'13 © 2011
J. C. Hoe

R-type

I-type

J-type
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ALU Instructions ”

¢ Assembly (e.g., register-register signed addition)
ADDrd . rs . rt

reg ' “reg ' ‘reg
¢ Machine encoding

0 rs rt rd 0 ADD R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

¢ Semantics
- GPR[rd] <= GPR[rs] + GPR[rt]
- PC<—PC+4

¢ Exception on “overflow”

¢ Variations
- Arithmetic: {signed, unsigned} x {ADD, SUB}
- Logical: {AND, OR, XOR, NOR}
- Shift: {Left, Right-Logical, Right-Arithmetic}
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N OO PN WN - O

Reg-Reg Instruction Encoding

CMU 18-447
$'13 © 2011
J. C. Hoe

2..0 SPECIAL function
0 1 2 3 4 5 6 7
SLL * SRL SRA SLLV * SRLV SRAV
JR JALR = % SYSCALL| BREAK * SYNC
MFHI MTHI MFLO MTLO DSLLVe * DSRLVe | DSRAVe
MULT MULTU DIV DIVU DMULTe [DMULTUg| DDIVe DDIVUe
ADD ADDU SUB SUBU AND OR XOR NOR
* * SLT SLTU DADDe | DADDUe| DSUBe | DSUBUe
TGE TGEU TLT TLTU TEQ * TNE *
DSLLe * DSRLe DSRAe | DSLL32¢e * DSRL32¢e | DSRA32¢

[MIPS R4000 Microprocessor User’ s Manual]

What patterns do you see? Why are they there?



cal & Comp CMU 18-447
) ENGNEERNE S5 0 2001

ALU Instructions ”

¢ Assembly (e.g., regi-immediate signed additions)

ADDI rt,, rs, immediate,q

4 Machine encoding
ADDI rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit

4 Semantics
- GPR]rt] < GPR]rs] + sign-extend (immediate)
- PC<—~PC+14

¢ Exception on “overflow”

¢ Variations
- Arithmetic: {signed, unsigned} x {ADD, M}
- Logical: {AND, OR, XOR, LUI}
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Reg-Immed Instruction Encoding

31...29

NoO gk, WDN -~ O

CMU 18-447
$'13 © 2011
J. C. Hoe

28...26 Opcode
0 1 2 3 4 5 6 7
SPECIAL | REGIMM J JAL BEQ BNE BLEZ BGTZ
ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
COPO COP1 COP2 * BEQL BNEL BLEZL BGTZL
DADDIe |DADDIUe | LDLe LDRe * * * *
LB LH LWL LW LBU LHU LWR LWUe
SB SH SWL SW SDLe SDRe SWR |CACHE &
LL LWC1 LWC2 * LLDe LDC1 LDC2 LDe
SC SWC1 SWC2 * SCDe SDC1 SDC2 SDe

[MIPS R4000 Microprocessor User’s Manual]
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Assembly Programming 101

¢ Break down high-level program constructs into a
sequence of elemental operations

¢ E.g. High-level Code
f=(g+h)-(1+3)

¢ Assembly Code
- supposef, g, h,i,jareinr, For T Fir T

i '

- SUPPOSE Iy 1S A free register
add r. .., r, 1, # Xy = gth
sub rf rtemp rf # £ = rtemp - rf

CMU 18-447
$'13 © 2011
J. C. Hoe
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Load Instructions

¢ Assembly (e.g., load 4-byte word)

LW rt,, offset,¢ (base )

¢ Machine encoding
LW base  |rt offset I-type
6-bit 5-bit 5-bit 16-bit

¢ Semantics
- effective_address = sign-extend(offset) + GPR[base]
- GPR[rt] < MEM| (effective_address) ]
- PC<—PC+4
¢ Exceptions
- address must be “word-aligned”

- MMU exceptions
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Store Instructions

¢ Assembly (e.g., store 4-byte word)
SW rt, ., offset,. (base

reg
¢ Machine encoding

reg)

SW base rt offset I-type
6-bit 5-bit 5-bit 16-bit

¢ Semantics
- effective_address = sign-extend(offset) + GPR[base]
- MEM] (effective_address) | < GPR[rt]
- PC<—PC+4
¢ Exceptions
- address must be “word-aligned”
- MMU exceptions
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Assembly Programming 201

¢ E.g. High-level Code
A[ 8] =h + A[ 0 ]

where A is an array of integers (4—byte each)

¢ Assembly Code
- suppose &A, hareinr,, r,
- suppose r is a free register

temp

LW Tionp 0(r,) r A[O]

i
add r. ., Ty Tigyp # Ty = h + A[O]
SW T 32(x,) # A[8] = r .,
i
i#

temp

note A[8] is 32 bytes
from A[O]

CMU 18-447
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Load Delay Slots
I ra -—-
addi r- ra\r-

addi r- ra r-

¢ R2000 load has an architectural latency of 1 inst*.
- the instruction immediately following a load (in the “delay

slot”) still sees the old register value
- the load instruction no longer has an atomic semantics

0 H d idea? (hint: R4000 redefined LW to complete

*BTW, notice that latency is defined in “instructions” not cyc. or sec.
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Control Flow Instructions

¢ C-Code

{code A}
if X==Y then
{code B}
else
{ code C}
{ code D }

Control Flow Graph

CMU 18-447
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Assembly Code

code A

]
if X==Y

TrV Nzilse

code B

—

(linearized)

code A

o
if X==Y
goto

code C

code D

code C

goto

code B
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(Conditional) Branch Instructions

¢ Assembly (e.g., branch if equal)

BEQ rs,, It immediate,

4 Machine encoding
BEQ rs rt immediate
6-bit 5-bit 5-bit 16-bit

¢ Semantics

- target = PC + sign-extend(immediate) x 4

- if GPR[rs]== t] then PC < target
else PC<PC+4

¢ How far can you jump?
¢ Variations PC+4w/
- BEQ, BNE, BLEZ, BGTZ branch delay slot

Why isn" t there a BLE or BGT instruction?

I-type
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Jump Instructions

¢ Assembly
Jimmediate,
¢ Machine encoding

J immediate J-type
6-bit 26-bit
¢ Semantics
- target = PC[31:28]x228 |, ...vise.or ZETO-
extend(immedi

- PC < target
¢ How far can you jump?
¢ Variations PC+4w/
- Jump and Link branch delay slot

- Jump Registers
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Assembly Programming 301

¢ E.g. High-level Code
if (i

e
else
e

f
¢ Assembly Code
- suppose e, f, g, h, i

e

bne r; r; Ll

add r, r, r0
j L2

add r_ r, r0
add r. r_ r0

L1:
L2:

fork
j) then then
=g
- h else
join
,jareinr,, r For Mo T T

# L1 and L2 are addr labels
# assembler computes offset

#e=g
# e =nh
¥ £ =¢e
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Branch Delay Slots

¢ R2000 branch instructions also have an architectural

latency of 1 instructions

- the instruction immediately after a branch is always
executed (in fact PC-offset is computed from the delay
slot instruction)

- branch target takes effect on the 2" instruction

bne r; r, Ll bne r; r; L1

nop

add r, r, r0

j L2 j L2
‘ add r, r, r0
L1: add r, r, r0 Ll: add r., r, r0

L2: add r. r_ r0 L2: add r, r_, r0
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Strangeness in the Semantics

Where do you think you will end up?
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Function Call and Return

¢ Jump and Link:  JAL offset,,
- return address=PC+ 8
- target = PC[31:28]x228 | .. .viccor ZETO-
extend(immediate)x4
- PC < target
- GPR[r31] < return address
On a function call, the callee needs to know where to go
back to afterwards
¢ Jump Indirect: IR rs,
- target = GPR [rs]
- PC < target
PC-offset jumps and branches always jump to the same
target every time the same instruction is executed
Jump Indirect allows the same instruction to jump to any
location specified by rs (usually r31)
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Assembly Programming 401

Caller Callee
. code A ... _myfxn: ... code B ...
JAL myfxn JR r3l
. code C ...
JAL myfxn
. code D ...

¢ ... A %call B %return C ecaII B ereturn D ...

¢ How do you pass argument between caller and callee?

¢ If Asetrl0to 1, what is the value of r10 when B returns
to C?

¢ What registers can B use?

¢ What happens to r31 if B calls another function
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Caller and Callee Saved Registers

¢ Callee-Saved Registers
- Caller says to callee, “The values of these registers

should not change when you return to me.”
- Callee says, “If | need to use these registers, | promise
to save the old values to memory first and restore

them before | return to you.”

¢ Caller-Saved Registers
- Caller says to callee, “If there is anything | care about

in these registers, | already saved it myself.”
- Callee says to caller, “Don’ t count on them staying the

same values after | am done.
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R2000 Register Usage Convention

L R R R R 2 IR 2B 2B B R NN -

ro:

rl:

r2, r3:
r4~r7:
r8~rl5:
rle~r23
r24~r25
r26, r27:
r28:
r29:
r30:
r3l:

always 0

reserved for the assembler
function return values
function call arguments
“caller-saved” temporaries
“callee-saved” temporaries
“caller-saved” temporaries
reserved for the operating system
global pointer

stack pointer

callee-saved temporaries
return address
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R2000 Memory Usage Convention

high address

low address

stack space

free space

|

dynamic data

static data

text

=

reserved

stack pointer
GPR[r29]

binary executable
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Calling Convention

caller saves caller-saved registers

caller loads arguments into r4~r7

caller jumps to callee using JAL

callee allocates space on the stack (dec. stack pointer)
callee saves callee-saved registers to stack (also r4~r7,
old r29, r31)

A v NP

callee loads results to r2, r3
callee restores saved register values
JRr31

caller continues with return valuesinr2, r3

O
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To Summarize: MIPS RISC

¢ Simple operations
- 2-input, 1-output arithmetic and logical operations
- few alternatives for accomplishing the same thing
¢ Simple data movements
- ALU ops are register-to-register

- “Load-store” architecture
¢ Simple branches
- limited varieties of branch conditions and targets
¢ Simple instruction encoding
- all instructions encoded in the same number of bits
- only a few formats



