18-447

Computer Architecture
Lecture 29: Cache Coherence

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 4/10/2015

A Note on 740 Next Semester

If you like 447, 740 is the next course in sequence
Tentative Time: Lect. MW 7:30-9:20pm, Rect. T 7:30pm
Content:

Q

Q

Q

Lectures: More advanced, with a different perspective
Recitations: Delving deeper into papers, advanced topics

Readings: Many fundamental and research readings; will do
many reviews

Project: More open ended research project. Proposal >
milestones - final poster and presentation

Exams: lighter and fewer
Homeworks: None

Where We Are in Lecture Schedule

= The memory hierarchy

s Caches, caches, more caches

= Virtualizing the memory hierarchy: Virtual Memory
= Main memory: DRAM

= Main memory control, scheduling

= Memory latency tolerance techniques

= Non-volatile memory

= Multiprocessors

= Coherence and consistency

= Interconnection networks

= Multi-core issues (e.g., heterogeneous multi-core)

Cache Coherence

Readings: Cache Coherence

Required

a

Culler and Singh, Paralle/ Computer Architecture

Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)
P&H, Computer Organization and Design

Chapter 5.8 (pp 534 — 538 in 4t" and 4t revised eds.)

Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

Recommended

a

o 0O 0O O

Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Computers, 1978.

Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.
Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

Review: Two Cache Coherence Methods

o How do we ensure that the proper caches are updated?

o Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
Bus-based, single point of serialization for all memory requests

Processors observe other processors’ actions

0 E.g.: P1 makes “read-exclusive” request for A on bus, PO sees this
and invalidates its own copy of A

o Directory [Censier and Feautrier, IEEE ToC 1978]
Single point of serialization per block, distributed among nodes
Processors make explicit requests for blocks
Directory tracks which caches have each block

Directory coordinates invalidation and updates

o E.g.: P1 asks directory for exclusive copy, directory asks PO to
invalidate, waits for ACK, then responds to P1

Directory Based
Cache Coherence

Review: Directory Based Coherence

Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

An example mechanism:
o For each cache block in memory, store P+1 bits in directory

One bit for each cache, indicating whether the block is in cache

Exclusive bit: indicates that a cache has the only copy of the block
and can update it without notifying others

o On a read: set the cache’s bit and arrange the supply of data

o On a write: invalidate all caches that have the block and reset
their bits

o Have an “exclusive bit” associated with each block in each cache
(so that the cache can update the exclusive block silently)

Directory Based Coherence Example (I)

Pk
ptzys.. ClO |6
blec P

0,

- Exomple dnechory bused sdeonne

Fy Tokes a read miss | bleck B

1

o,

G

G

@' P53 hkes a read miss

c%o

| EJ"";»B:
0‘0! Nu Ceodke hos e blede

- O t————

@ P2 lekes « wlermiss \L I
' — Mveldale P, & Pa's cadkes '
— wrile fegeck — P hes he ool 0]
eMicivs e copy vf- e bleck '
now . Seb e Backs e i |
iy Py con new vpedake the bleck. MW-nW/yvb
anry hre~ prvesse” o MMJV?

—y Pz rneeds lmheve a L m s (eovte MC% :
4 con peofon eXcvaNe ypdelel by Moo lecke

— pricle [oxdivsnve Ll pe~ codr bblock_

@ ps Jokes &« wie AMSS | L
. Codvtlle— O R , e
. A B eck. e [c]o]o l.‘l
—3 em Cobville~ gnes blcot.h\as% |
— P2 nvdydees s cgoy J/

(S) P hkes a resd ~s
—9p’§ SWOP\QS(P rO G ' l Ok

Snoopy Cache Coherence

Snoopy Cache Coherence

Idea:

a All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

o Each cache block has “coherence metadata” associated with it
in the tag store of each cache

Easy to implement if all caches share a common bus

o Each cache broadcasts its read/write operations on the bus
o Good for small-scale multiprocessors

a What if you would like to have a 1000-node multiprocessor?

12

Cinwence Sttbe B0s 0 tos
Ske Cc.s.) MeELT)

— l l Sheed bus

SNCEPY CACHE,

Eoadn Cache. cbhseves ks own precesse— & jre bus
= Chonges Hre Shile of he Cacked block bSesed on Soseved
ackHons By prreessorl He bus

s

Precesser ackine o o Sleck - P A [~pv;c.neo.l)
' . RruJ (Mc- wWie)
Bus gcehins b a blcck - B’Q (’g.,s PQMA)

(amm feon groes
—te 3 a pn“ssr) LBW (Purs uniie) (—

or BRy (Bus Reod Beclusne) 13

A Simple Snoopy Cache Coherence Protocol

Caches “snoop” (observe) each other’ s write/read

operations
A simple protocol (VI protocol):

PrRd/-- PrWr / BusWr

Q PrWr / BusWr

BusWr
PrRd / BusRd

Write-through, no-
write-allocate
cache

Actions of the local
processor on the
cache block: PrRd,
PrWr,

Actions that are
broadcast on the
bus for the block:
BusRd, BusWr

14

Extending the Protocol

= What if you want write-back caches?
o We want a "modified” state

15

A More Sophisticated Protocol: MSI

Extend metadata per block to encode three states:
o M(odified): cache line is the only cached copy and is dirty

o S(hared): cache line is potentially one of several cached
copies
o I(nvalid): cache line is not present in this cache

Read miss makes a Read request on bus, transitions to S
Write miss makes a ReadEx request, transitions to M state

When a processor snoops ReadEx from another writer, it
must invalidate its own copy (if any)

S->M upgrade can be made without re-reading data from
memory (via Invalidations)

16

MSI State Machine

BusRd/Flush
Prwr/BusRdX

Prwr/BusRdX
BusRdX/Flush

PrRd/BusRd

PrRd/--
BusRd/--

BusRdX/--

ObservedEvent/Action [Culler/Singh96]
17

The Problem with MSI

A block is in no cache to begin with

Problem: On a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached (i.e., no other processor will cache it)

Why is this a problem?

o Suppose the cache that read the block wants to write to it at
some point

o It needs to broadcast “invalidate” even though it has the only
cached copy!

o If the cache knew it had the only cached copy in the system,
it could have written to the block without notifying any other
cache = saves unnecessary broadcasts of invalidations

18

The Solution: MESI

Idea: Add another state indicating that this is the only
cached copy and it is clean.

a Exclusive state

Block is placed into the exclusive state if, during BusRd, no
other cache had it

o Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

Silent transition Exclusive=>Modlfied is possible on write!

MESI is also called the Z//inois protoco/

Papamarcos and Patel, “A low-overhead coherence solution for
multiprocessors with private cache memories,” ISCA 1984.

19

Pap evnarzos & Pakek ,leA 19%4 .
Llincrs Pretweed

g r]
e L

RYI : Irwoldale, B4 |
alrecdy M*n-dal-a

(e ncl—su"ppkr =)
BRI : Tratdede, b
Csuepty it)

m.-. modnffeol (Ewxchusne coyoy , md(ﬁed>
E : Badws~e 71 ", clean)

S Sheeol (Sheoeol cooy oleow\)
? i

MESI State Machine

QI ,BRIL ,BR.
l
‘ | - BRT-Iswgzh |
/a‘klmf : :
O
—~UnS hut iy

| PR
S PA s @ BR[| sprvs

. | e
' Sud BR /sty
: dd’"—)

21

MESI State Machine

PrWr/BusRdX

BusRd/Flush

BusRd/ $ Transfer PrWr/BusRdX
PrRd (S’)/BusRd

PrRd (S)/BusRd

BusRdX/Flush (all incoming)

[Culler/Singh96]
22

MESI State Machine from Lab 8

cache fill (to multiple)

— T i 1. multiple owners
(potentially)
Invalid ~___invalidation _~ Shared . 2. read-only access
i 3. clean data

invalidation
downgrade
i 1. single owner > ; i 1. single owner !
i 2. read-write access | Modified - Exclusive ! 2. read-write access |
i 3. dirty data ; i 3. clean data ;

A transition from a single-owner state (Exclusive or Modified) to Shared is called a
downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an
upgrade, because the transition grants the ability to the owner (the cache which contains
the respective block) to write to the block.

23

MESI State Machine from Lab 8

cache miss (> 1 requester)

’fﬂ_—nther ::Iach:-‘ﬁk\
Invalid " (validate Shared

E‘&Cﬁ
€ ’??:‘35 0 write

{downgrade)

(upgrade
and inval. other cache
other cache Py others) has read-miss
has write-miss ,FE' &
(invalidate) O 2
"{‘ﬁﬂ.
A
(i, ffe::?
Modified " Exclusi
odine Xcliusive
~— -

write (mark dirty)

24

Intel Pentium Pro

F owrvor - P

B, 8w

P2 O

SHREZED
(CLeAn
i h/k/‘re’ ,A,LLOCA‘I'E

-~ L] Caw Have DATa Mot /v L2

- ///T - J\Oﬂ(@!/(' //,(_r /7' CL(AM
Hitm: Someone tas /7 Dty

MODIFIED

(
\ A -

Slide credit: Yale Patt

Snoopy Invalidation Tradeotts

Should a downgrade from M go to S or I?

o S: if data is likely to be reused (before it is written to by another
processor)

o I if data is likely to be not reused (before it is written to by another)
Cache-to-cache transfer
o On a BusRd, should data come from another cache or memory?
o Another cache
May be faster, if memory is slow or highly contended
o Memory
Simpler: no need to wait to see if another cache has the data first
Less contention at the other caches
Requires writeback on M downgrade
Writeback on Modified->Shared: necessary?
o One possibility: Owner (O) state (MOESI protocol)
One cache owns the latest data (memory is not updated)
Memory writeback happens when all caches evict copies

26

The Problem with MESI

Observation: Shared state requires the data to be clean

o i.e., all caches that have the block have the up-to-date copy
and so does the memory

Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

Why is this a problem?

o Memory can be updated unnecessarily = some other
processor may want to write to the block again

27

Improving on MESI

Idea 1: Do not transition from M-S on a BusRd. Invalidate
the copy and supply the modified block to the requesting
processor directly without updating memory

Idea 2: Transition from M-S, but designate one cache as
the owner (O), who will write the block back when it is
evicted

o Now “Shared” means “Shared and potentially dirty”
a This is a version of the MOESI protocol

28

Tradeoftts in Sophisticated Cache Coherence Protocols

The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

However, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to
take care of, race conditions)

-- Provide diminishing returns

29

Revisiting Two Cache Coherence Methods

o How do we ensure that the proper caches are updated?

o Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]
Bus-based, single point of serialization for all memory requests

Processors observe other processors’ actions

0 E.g.: P1 makes “read-exclusive” request for A on bus, PO sees this
and invalidates its own copy of A

o Directory [Censier and Feautrier, IEEE ToC 1978]
Single point of serialization per block, distributed among nodes
Processors make explicit requests for blocks
Directory tracks which caches have each block

Directory coordinates invalidation and updates

o E.g.: P1 asks directory for exclusive copy, directory asks PO to
invalidate, waits for ACK, then responds to P1

30

Snoopy Cache vs. Directory Coherence

Snoopy Cache
+ Miss latency (critical path) is short: request - bus transaction to mem.
+ Global serialization is easy: bus provides this already (arbitration)
+ Simple: can adapt bus-based uniprocessors easily
- Relies on broadcast messages to be seen by all caches (in same order):
- single point of serialization (bus): not scalable
> need a virtual bus (or a totally-ordered interconnect)

Directory
- Adds indirection to miss latency (critical path): request = dir. > mem.
- Requires extra storage space to track sharer sets

Can be approximate (false positives are OK for correctness)
- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
31

Revs
Cac.

siting Directory-Based

he Coherence

32

Remember: Directory Based Coherence

Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

An example mechanism:

o For each cache block in memory, store P+1 bits in directory
One bit for each cache, indicating whether the block is in cache

Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

o On a read: set the cache’s bit and arrange the supply of data

o On a write: invalidate all caches that have the block and reset
their bits

o Have an “exclusive bit"” associated with each block in each
cache

33

Remember: Directory Based Coherence

—_

- Exomple dnechory bused sdeonne

; P=A |
pi:,s . C|0 |6
bt;':a

0

Fy Tokes a read miss | bleck B

1

o,

G

G

| EJ"";»B:
0‘0! Nu Ceodke hos e blede

@' P3 hkes a read miss

c%o

2o

- O t————

34

Directory-Based Protocols

Required when scaling past the capacity of a single bus

Distributed, but:

o Coherence still requires single point of serialization (for write
serialization)

o Serialization location can be different for every block (striped
across nodes)

We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

Directory receives Read and ReadEx requests, and sends
Invirequests: invalidation is explicit (as opposed to snoopy
buses)

35

Directory: Data Structures

0x00 Shared: {PO, P1, P2}
0x04

0x08 Exclusive: P2

0x0C

Required to support invalidation and cache block requests

Key operation to support is set inclusion test

o False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

o False positive rate determines performance
Most accurate (and expensive): full bit-vector

Compressed representation, linked list, Bloom filters are all
possible
36

Directory: Basic Operations

Follow semantics of snoop-based system
o but with explicit request, reply messages

Directory:

o Receives Read, ReadEx, Upgrade requests from nodes
o Sends Inval/Downgrade messages to sharers if needed
o Forwards request to memory if needed

o Replies to requestor and updates sharing state

Protocol design is flexible
o Exact forwarding paths depend on implementation
o For example, do cache-to-cache transfer?

37

MESI Directory Transaction: Read

PO acquires an address for reading:

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

38

RdEx with Former Owner

1. RdEX

3b. DatEx

39

Contention Resolution (for Write)

1a. RdEXx 1b. RdEXx
4. Invlﬁ\/*’\ 3-RdEx
@ PO Home P1
5a. Rev
2a. DatEx b INACK

5b. DatEx

40

Issues with Contention Resolution

Need to escape race conditions by:

o NACKing requests to busy (pending invalidate) entries
Original requestor retries

o OR, queuing requests and granting in sequence
o (Or some combination thereof)

Fairness
o Which requestor should be preferred in a conflict?
o Interconnect delivery order, and distance, both matter

Ping-ponging is a higher-level issue
o With solutions like combining trees (for locks/barriers) and
better shared-data-structure design

41

Scaling the Directory: Some Questions

How large is the directory?
How can we reduce the access latency to the directory?
How can we scale the system to thousands of nodes?

Can we get the best of snooping and directory protocols?
o Heterogeneity
o E.g., token coherence [Martin+, ISCA 2003]

42

Advancing Coherence

43

Motivation: Three Desirable Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Dictated by workload and technology trends

slide 44 Token Coherence — Milo Martin

Workload Trends

 Commercial workloads
— Many cache-to-cache misses E
— Clusters of small multiprocessors

2
» Goals:
— Direct cache-to-cache misses
(2 hops, not 3 hops) Directory /A
— Moderate scalability Protocol

P M
| 2
Workload trends — snooping protocols

slide 45 Token Coherence — Milo Martin

Workload Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

slide 46 Token Coherence — Milo Martin

Workload Trends [] Snooping Protocols

-to-cache misses

(Yes: direct
request/response)

Low-latency cach

No bus-like interconnect Bandwidth efficient
(No: requires a “virtual bus”) (No: broadcast always)

slide 47 Token Coherence — Milo Martin

Technology Trends

* High-speed point-to-point links
— No (multi-drop) busses

* Increasing design integration
— “Glueless” multiprocessors
— Improve cost & latency

* Desire: low-latency interconnect
— Avoid “virtual bus” ordering
— Enabled by directory protocols

Technology trends — unordered interconnects

slide 48 Token Coherence — Milo Martin

Technology Trends

Low-latency cache-to-cache misses

.~

No bus-like interconnect Bandwidth efficient

slide 49 Token Coherence — Milo Martin

Technology Trends [Directory Protocols

Low-latency cache-to-cache misses

(No: indirection
through directory)

No bus-like interconnect Bandwidth efficient
(Yes: no ordering required) (Yes: avoids broadcast)

slide 50 Token Coherence — Milo Martin

Goal: All Three Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

slide 51 Token Coherence — Milo Martin

Token Coherence: Key Insight

» Goal of invalidation-based coherence
— Invariant: many readers -or- single writer

— Enforced by globally coordinated actions
Key insight

* Enforce this invariant directly using tokens
— Fixed number of tokens per block
— One token to read, all tokens to write

« Guarantees safety In all cases
— Global invariant enforced with only local rules
— Independent of races, request ordering, etc.

slide 52 Token Coherence — Milo Martin

A Case for
Asymmetry Everywhere

Onur Mutlu,
"Asymmetry Everywhere (with Automatic Resource Management)"

CRA Workshop on Advancing Computer Architecture Research. Popular
Parallel Programming, San Diego, CA, February 2010.
Position paper

53

http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-talk.pdf
http://iacoma.cs.uiuc.edu/acar1/
http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-position-paper.pdf

