18-447
Computer Architecture
Lecture 19: High-Performance Caches

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2015, 3/2/2015

Assignment and Exam Reminders

Lab 4: Due March 6 (this Friday!)
o Control flow and branch prediction

Lab 5: Due March 22
o Data cache

HW 4: March 18
Exam: March 20

Advice: Finish the labs early
o You have almost a month for Lab 5
Advice: Manage your time well

Lab 3 Grade Distribution

—
@)}

L9 = Average 63.17
5 = Median 69
3 12

= = Stddev 37.19
% = Max 100

Y .

o = Min 34

p

@

Q9

£

=

4

o N S~ OO @

I I IIIIII
N

O O VO NV VO O NV N N
ST IO TS OETNDD
TF NS TSNS

Lab 3 Extra Credits

= Stay tuned!

Agenda for the Rest of 447

The memory hierarchy

Caches, caches, more caches
Virtualizing the memory hierarchy
Main memory: DRAM

Main memory control, scheduling
Memory latency tolerance techniques
Non-volatile memory

Multiprocessors

Coherence and consistency
Interconnection networks
Multi-core issues

Readings for Today and Next Lecture

Memory Hierarchy and Caches

Required
Cache chapters from P&H: 5.1-5.3
Memory/cache chapters from Hamacher+: 8.1-8.7

Required + Review:

Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

How to Improve Cache Performance

Three fundamental goals

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency or miss cost

Reducing hit latency or hit cost

Improving Basic Cache Performance

= Reducing miss rate
o More associativity

o Alternatives/enhancements to associativity
= Victim caches, hashing, pseudo-associativity, skewed associativity
o Better replacement/insertion policies

o Software approaches

= Reducing miss latency/cost

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

g O 0O 0O 0O O O

Cheap Ways of Reducing Contlict Misses

Instead of building highly-associative caches:

Victim Caches

Hashed/randomized Index Functions
Pseudo Associativity

Skewed Associative Caches

Victim Cache: Reducing Contlict Misses

Victim
Direct cache Next Level
Mapped < >
Ca%% e Cache

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

10

Hashing and Pseudo-Associativity

Hashing: Use better “randomizing” index functions
+ can reduce conflict misses

by distributing the accessed memory blocks more evenly to sets

Example of conflicting accesses: strided access pattern where
stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

Pseudo-associativity (Poor Man’ s associative cache)

o Serial lookup: On a miss, use a different index function and
access cache again
o Given a direct-mapped array with K cache blocks
Implement K/N sets

Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, ... , {N-1,Addr[Ig(K/N)-1: 0]}

11

Skewed Associative Caches

Idea: Reduce conflict misses by using different index
functions for each cache way

Seznec, “A Case for Two-Way Skewed-Associative Caches,”
ISCA 1993.

12

Skewed Associative Caches (1)

= Basic 2-way associative cache structure

Way O Way 1
Same index function |

for each way

I

=?
I N J

Tag Index Byte in Block

I
-~

e

Skewed Associative Caches (1)

= Skewed associative caches
o Each bank has a different index function

same index ,
redistributed to Same index
Way O different sets same set Way 1

™~

=

il

Il

I R E—
tag index byte in block =?

I
-~

e
e

14

Skewed Associative Caches (I11)

Idea: Reduce conflict misses by using different index
functions for each cache way

Benefit: indices are more randomized (memory blocks are
better distributed across sets)

o Less likely two blocks have same index
Reduced conflict misses

Cost: additional latency of hash function

Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

15

Sottware Approaches for Higher Hit Rate

Restructuring data access patterns
Restructuring data layout

Loop interchange
Data structure separation/merging
Blocking

16

Restructuring Data Access Patterns (I)

Idea: Restructure data layout or data access patterns
Example: If column-major

o Xx[i+1,j] follows x[i,j] in memory

a X[i,j+1] is far away from Xx[i,j]

Poor code Better code
fori=1, rows forj=1, columns
forj =1, columns fori=1, rows
sum = sum + X[i,j] sum = sum + Xx]i,j]

This is called loop interchange
Other optimizations can also increase hit rate
o Loop fusion, array merging, ...

What if multiple arrays? Unknown array size at compile time?
17

Restructuring Data Access Patterns (1)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

18

Restructuring Data Layout (I)

struct Node {
struct Node™* node;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (node—>key == input-key) {
/| access other fields of node

}

node = node—~>next;

Pointer based traversal
(e.qg., of a linked list)

Assume a huge linked

list (1M nodes) and

unique keys

Why does the code on

the left have poor cache

hit rate?

o “Other fields” occupy
most of the cache line

even though rarely
accessed!

19

Restructuring Data Layout (11)

struct Node {
struct Node* node;
int key;
struct Node-data* node-data;

}

struct Node-data {
char [256] name;
char [256] school;

}

while (node) {
if (node—>key == input-key) {
/| access node—->node-data
}

node = node—~>next;

Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

Who should do this?

o Programmer
o Compiler

Profiling vs. dynamic
o Hardware?

a Who can determine what
is frequently used?

20

Improving Basic Cache Performance
Reducing miss rate

a

a

a

Q

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Better replacement/insertion policies
Software approaches

Reducing miss latency/cost

g O 0O 0O 0O O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

21

Miss Latency/Cost

What is miss latency or miss cost affected by?
o Where does the miss get serviced from?

Local vs. remote memory

What level of cache in the hierarchy?

Row hit versus row miss
Queueing delays in the memory controller and the interconnect

o How much does the miss stall the processor?
Is it overlapped with other latencies?
Is the data immediately needed?

22

Memory Level Parallelism (MLP)

isolated miss parallel miss

/]
B 7
c /

A 4

, time

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’ 98]

Several techniques to improve MLP (e.g., out-of-order execution)
MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

23

Traditional Cache Replacement Policies

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

Eliminating an isolated miss helps performance more than
eliminating a parallel miss

Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

24

An Example

P4 P3 P2 Pi A{Pl P2 P3 P4 @

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’ s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

25

£)

)

Fewest Misses = Best Performance

P4 |51Caghes3 p1 53 P P4|S1(52 (53 4| P3|PIP4|P3 (P2 |S3
P4 P3 P2 PlHP] P2 P3 P4J
Hit/Miss HHHM HHHH M M M

Ti Misses=4
ime TSI [T T O oiis=a

Belady’ s OPT replacement

Hit/Miss H M M M HMMM H H H

Time DSR2 Misses=6
cycles

Stalls=2
MLP-Aware replacement

26

MILP-Aware Cache Replacement

How do we incorporate MLP into replacement decisions?

Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

o Required reading for this week

27

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses

Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?

Goal: Enable cache access when there is a pending miss

Goal: Enable multiple misses in parallel
o Memory-level parallelism (MLP)

Solution: Non-blocking or lockup-free caches

a Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization,” ISCA 1981.

29

Handling Multiple Outstanding Accesses

Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRS)

o A cache access checks MSHRs to see if a miss to the same
block is already pending.

If pending, a new request is not generated

If pending and the needed data available, data forwarded to later
load

o Requires buffering of outstanding miss requests

30

Miss Status Handling Register

Also called “miss buffer”
Keeps track of

a

a

Outstanding cache misses

Pending load/store accesses that refer to the missing cache
block

Fields of a single MSHR entry

Q

a

a

Valid bit
Cache block address (to match incoming accesses)

Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

Data for each subblock

For each pending load/store

Valid, type, data size, byte in block, destination register or store
buffer entry address
31

Miss Status Handling Register Entry

1 27 1 1 3 5 5
Valid | Block Address (Issued| |Valid| Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination

Load/store O
Load/store 1

Load/store 2

Load/store 3

32

MSHR Operation

On a cache miss:

o Search MSHRs for a pending access to the same block
Found: Allocate a load/store entry in the same MSHR entry
Not found: Allocate a new MSHR
No free entry: stall

When a subblock returns from the next level in memory

o Check which loads/stores waiting for it
Forward data to the load/store unit
Deallocate load/store entry in the MSHR entry

o Write subblock in cache or MSHR

o If last subblock, dellaocate MSHR (after writing the block in
cache)

33

Non-Blocking Cache Implementation

When to access the MSHRs?
o In parallel with the cache?
o After cache access is complete?

MSHRs need not be on the critical path of hit requests

o Which one below is the common case?

Cache miss, MSHR hit
Cache hit

34

Enabling High Bandwidth Memories

Multiple Instructions per Cycle

Can generate multiple cache/memory accesses per cycle

How do we ensure the cache/memory can handle multiple
accesses in the same clock cycle?

Solutions:

o true multi-porting

o virtual multi-porting (time sharing a port)
o multiple cache copies

o banking (interleaving)

36

Handling Multiple Accesses per Cycle (I)

True multiporting

o Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts on read accesses)
-- Expensive in terms of latency, power, area

o What about read and write to the same location at the same
time?

Peripheral logic needs to handle this

37

Peripheral Logic for True Multiporting

CPU /O /O CPU
OR | 2] OR

e N DUAL/PORT /- e

DEVICE |[APDRESS| L 5 RAM : R \——~=>°| DEVICE
— MEMORY N
L | o R

SEMAPHORE
SELECT

CELLS

-

SEMAPHORE
SELECT

38

Peripheral Logic for True Multiporting

L D-LATCH

L REQUEST

L WR SEMAPHORE——

GRANT (L)

Y

R D-LATCH

%

YAY

D

R REQUEST

— R WR SEMAPHORE

GRANT (R)

SEMAPHORE
ARBITRATION
LATCH

39

Handling Multiple Accesses per Cycle (I11)

Virtual multiporting

a

a
a
a

Time-share a single port

Each access needs to be (significantly) shorter than clock cycle

Used in Alpha 21264
Is this scalable?

40

Handling Multiple Accesses per Cycle (I11)

Multiple cache copies
o Stores update both caches
o Loads proceed in parallel

Used in Alpha 21164

Scalability?

o Store operations form a
bottleneck

o Area proportional to “ports”

Port 1
—
Load
Cache
Copy 1
Store |
Cache
Port 2 Copy 2
Load

Port 1
Data

Port 2
ﬁ

Data

41

Handling Multiple Accesses per Cycle (I11)

Banking (Interleaving)

o Bits in address determines which bank an address maps to
Address space partitioned into separate banks
Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses Bank O:
to the same bank Even
. . addresses
-- Crossbar interconnect in input/output

Bank conflicts
o Two accesses are to the same bank Bank 1:

o How can these be reduced? Odd
addresses
Hardware? Software?

42

General Principle: Interleaving

Interleaving (banking)

o Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

o Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

o Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

Each bank is smaller than the entire memory storage
Accesses to different banks can be overlapped

o A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

43

Further Readings on Caching and MLP

Required: Qureshi et al., “A Case for MLP-Aware Cache
Replacement,” ISCA 2006.

Glew, "MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas
Session, 1998.

Mutlu et al., "Runahead Execution: An Effective Alternative
to Large Instruction Windows,” IEEE Micro 2003.

44

Multi-Core Issues in Caching

Caches 1n Multi-Core Systems

Cache efficiency becomes even more important in a multi-
core/multi-threaded system

o Memory bandwidth is at premium
o Cache space is a limited resource

How do we design the caches in a multi-core system?

Many decisions

o Shared vs. private caches

How to maximize performance of the entire system?

How to provide QoS to different threads in a shared cache?
Should cache management algorithms be aware of threads?
How should space be allocated to threads in a shared cache?

46

Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block can be in
multiple caches)

Shared cache: Cache is shared by multiple cores

CORE 2

/’ =
CORE 0] |CORE1 CORE 2| |CORE 3

A A A A

A y A 4 A 4

L2 L2 L2 L2
CACHE CACHE CACHE CACHE

\ DRAM MEMORY CONTROLLER

L2

CACHE

DRAM MEMORY CONTROLLER

47

Resource Sharing Concept and Advantages

Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

o Example resources: functional units, pipeline, caches, buses,
memory

Why?

+ Resource sharing improves utilization/efficiency - throughput

o When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

o For example, shared data kept in the same cache in
multithreaded processors

+ Compatible with the shared memory model

48

Resource Sharing Disadvantages

Resource sharing results in contention for resources
o When the resource is not idle, another thread cannot use it

o If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’ s performance
- Thread performance can be worse than when it is run alone

- Eliminates performance isolation - inconsistent performance
across runs

- Thread performance depends on co-executing threads
- Uncontrolled (free-for-all) sharing degrades QoS
- Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
49

Private vs. Shared Caches

Private cache: Cache belongs to one core (a shared block can be in
multiple caches)

Shared cache: Cache is shared by multiple cores

CORE 2

/’ =
CORE 0] |CORE1 CORE 2| |CORE 3

A A A A

A y A 4 A 4

L2 L2 L2 L2
CACHE CACHE CACHE CACHE

\ DRAM MEMORY CONTROLLER

L2

CACHE

DRAM MEMORY CONTROLLER

50

Shared Caches Between Cores

Advantages:
o High effective capacity
o Dynamic partitioning of available cache space
No fragmentation due to static partitioning
o Easier to maintain coherence (a cache block is in a single location)
o Shared data and locks do not ping pong between caches

Disadvantages

o Slower access

o Cores incur conflict misses due to other cores’ accesses
Misses due to inter-core interference
Some cores can destroy the hit rate of other cores

o Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

51

Shared Caches: How to Share?

Free-for-all sharing

o Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

o Not thread/application aware

o An incoming block evicts a block regardless of which threads
the blocks belong to

Problems
o Inefficient utilization of cache: LRU is not the best policy

o A cache-unfriendly application can destroy the performance of
a cache friendly application

o Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit

o Reduced performance, reduced fairness
52

Example: Utility Based Shared Cache Partitioning

Goal: Maximize system throughput

Observation: Not all threads/applications benefit equally from
caching - simple LRU replacement not good for system
throughput

Idea: Allocate more cache space to applications that obtain the
most benefit from more space

The high-level idea can be applied to other shared resources as
well.

Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

53

The Multi-Core System: A Shared Resource View

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
@) N
= =
Qo [<V]
= =
o (¢
=7)
M (<
\% =
= = 5
<) = S
- =] EEEEER
2 .
Shared
Storage
Shared Shared
Memory Memory
Control Control
Shared Memory
54

SAFARI

Need for QoS and Shared Resource Mgmt.

Why is unpredictable performance (or lack of QoS) bad?

Makes programmer’ s life difficult

o An optimized program can get low performance (and
performance varies widely depending on co-runners)

Causes discomfort to user

o An important program can starve
o Examples from shared software resources

Makes system management difficult

o How do we enforce a Service Level Agreement when hardware
resources are sharing is uncontrollable?

55

Resource Sharing vs. Partitioning

Sharing improves throughput
o Better utilization of space

Partitioning provides performance isolation (predictable
performance)

o Dedicated space

Can we get the benefits of both?

Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable

o No wasted resource + QoS mechanisms for threads

56

Shared Hardware Resources

Memory subsystem (in both multithreaded and muilti-core
systems)

o Non-private caches
o Interconnects
o Memory controllers, buses, banks

I/O subsystem (in both multithreaded and multi-core
systems)

a I/O, DMA controllers
o Ethernet controllers

Processor (in multithreaded systems)
o Pipeline resources
o L1 caches

57

