
18-447

Computer Architecture

Lecture 15: GPUs, VLIW, DAE

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2015, 2/20/2015

Agenda for Today & Next Few Lectures

 Single-cycle Microarchitectures

 Multi-cycle and Microprogrammed Microarchitectures

 Pipelining

 Issues in Pipelining: Control & Data Dependence Handling,
State Maintenance and Recovery, …

 Out-of-Order Execution

 Issues in OoO Execution: Load-Store Handling, …

 Alternative Approaches to Instruction Level Parallelism

2

Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

3

Homework 3.1: Feedback Form

 Due Monday Feb 23

 I would like your feedback on the course

 Easy to fill in

 Can submit anonymously, if you wish

 Worth 0.25% of your grade (extra credit)

 Need to get checked off after submitting to get your grade
points

 Can email

 If anonymous, show that you are turning in and have a TA
check you off

4

A Couple of Things

 Midterm I Date

 March 4?

 March 18?

 Collaboration on Labs

 All labs individual – no collaboration permitted

 Collaboration on homeworks

 You can collaborate

 But need to submit individual writeups on your own

5

Readings for Today

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

6

Recap of Last Lecture

 SIMD Processing

 Flynn’s taxonomy: SISD, SIMD, MISD, MIMD

 VLIW vs. SIMD

 Array vs. Vector Processors

 Vector Processors in Depth

 Vector Registers, Stride, Masks, Length

 Memory Banking

 Vectorizable Code

 Scalar vs. Vector Code Execution

 Vector Chaining

 Vector Stripmining

 Gather/Scatter Operations

 Minimizing Bank Conflicts

 Automatic Code Vectorization

 SIMD Operations in Modern ISAs: Example from MMX

7

Review: Code Parallelization/Vectorization

8

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Recap: Vector/SIMD Processing Summary

 Vector/SIMD machines are good at exploiting regular data-
level parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Remember Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

9

GPUs are SIMD Engines Underneath

 The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

 However, the programming is done using threads, NOT
SIMD instructions

 To understand this, let’s go back to our parallelizable code
example

 But, before that, let’s distinguish between

 Programming Model (Software)

vs.

 Execution Model (Hardware)

10

Programming Model vs. Hardware Execution Model

 Programming Model refers to how the programmer expresses
the code

 E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), …

 Execution Model refers to how the hardware executes the
code underneath

 E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, …

 Execution Model can be very different from the Programming
Model

 E.g., von Neumann model implemented by an OoO processor

 E.g., SPMD model implemented by a SIMD processor (a GPU)
11

How Can You Exploit Parallelism Here?

12

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

13

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code Can be executed on a:

 Pipelined processor

 Out-of-order execution processor

 Independent instructions executed
when ready

 Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

 In other words, the loop is dynamically
unrolled by the hardware

 Superscalar or VLIW processor

 Can fetch and execute multiple
instructions per cycle

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

14

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A V1

VLD B V2

VADD V1 + V2 V3

VST V3 C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

15

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

16

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine

Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine

 Except it is not programmed using SIMD instructions

 It is programmed using threads (SPMD programming model)

 Each thread executes the same code but operates a different
piece of data

 Each thread has its own context (i.e., can be
treated/restarted/executed independently)

 A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

 A warp is essentially a SIMD operation formed by hardware!

17

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

18

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:

Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute

the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD
instructions each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages:

 Can treat each thread separately i.e., can execute each thread
independently (on any type of scalar pipeline) MIMD processing

 Can group threads into warps flexibly i.e., can group threads
that are supposed to truly execute the same instruction

dynamically obtain and maximize benefits of SIMD processing
20

Multithreading of Warps

21

for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

 Assume a warp consists of 32 threads

 If you have 32K iterations 1K warps

 Warps can be interleaved on the same pipeline Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Warps and Warp-Level FGMT

 Warp: A set of threads that execute the same instruction
(on different data elements) SIMT (Nvidia-speak)

 All threads run the same code
 Warp: The threads that run lengthwise in a woven fabric …

22

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

High-Level View of a GPU

23

Latency Hiding via Warp-Level FGMT

 Warp: A set of threads that
execute the same instruction
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in
pipeline at a time (No
interlocking)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 FGMT enables long latency
tolerance

 Millions of pixels

24

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution (Recall the Slide)

25

32-thread warp executing ADD A[tid],B[tid] C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

26

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
 Example machine has 32 threads per warp and 8 lanes

 Completes 24 operations/cycle while issuing 1 warp/cycle

27

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

30Slide credit: Hyesoon Kim

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Lock step: a vector instruction needs to finish before another can start

 Programming model is SIMD (no extra threads) SW needs to know

vector length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different
warp) programming model not SIMD

 SW does not need to know vector length

 Enables multithreading and flexible dynamic grouping of threads

 ISA is scalar vector instructions can be formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD
hardware

31

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program

 Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

 Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD hardware

32

SIMD vs. SIMT Execution Model

 SIMD: A single sequential instruction stream of SIMD
instructions each instruction specifies multiple data inputs

 [VLD, VLD, VADD, VST], VLEN

 SIMT: Multiple instruction streams of scalar instructions

threads grouped dynamically into warps

 [LD, LD, ADD, ST], NumThreads

 Two Major SIMT Advantages:

 Can treat each thread separately i.e., can execute each thread
independently on any type of scalar pipeline MIMD processing

 Can group threads into warps flexibly i.e., can group threads
that are supposed to truly execute the same instruction

dynamically obtain and maximize benefits of SIMD processing
33

Threads Can Take Different Paths in Warp-based SIMD

 Each thread can have conditional control flow instructions

 Threads can execute different control flow paths

34

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

 A GPU uses a SIMD
pipeline to save area
on control logic.

 Groups scalar threads
into warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

35

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional execution.

Recall the Vector Mask and Masked Vector Operations?

Branch Divergence Handling (I)

 Idea: Dynamic predicated (conditional) execution

36

- G 1111TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111TOS
E D 0110
E C 1001TOS

- E 1111
E D 0110TOS
- E 1111

A D G A

Time

CB E

- B 1111TOS - E 1111TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001TOS

- E 1111

Slide credit: Tor Aamodt

Branch Divergence Handling (II)

37

A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Active Mask

D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

B;

} else {

C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt

Remember: Each Thread Is Independent

 Two Major SIMT Advantages:

 Can treat each thread separately i.e., can execute each thread
independently on any type of scalar pipeline MIMD processing

 Can group threads into warps flexibly i.e., can group threads
that are supposed to truly execute the same instruction

dynamically obtain and maximize benefits of SIMD processing

 If we have many threads

 We can find individual threads that are at the same PC

 And, group them together into a single warp dynamically

 This reduces “divergence” improves SIMD utilization

 SIMD utilization: fraction of SIMD lanes executing a useful
operation (i.e., executing an active thread)

38

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Form new warps from warps that are waiting

 Enough threads branching to each path enables the creation
of full new warps

39

Warp X

Warp Y

Warp Z

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

40

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

41

A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

Hardware Constraints Limit Flexibility of Warp Grouping

42

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

Can you move any thread

flexibly to any lane?

When You Group Threads Dynamically …

 What happens to memory accesses?

 Simple, strided (predictable) memory access patterns within
a warp can become complex, randomized (unpredictable)
with dynamic regrouping of threads

 Can reduce locality in memory

 Can lead to inefficient bandwidth utilization

43

What About Memory Divergence?

 Modern GPUs have caches

 To minimize accesses to main memory (save bandwidth)

 Ideally: Want all threads in the warp to hit (without
conflicting with each other)

 Problem: Some threads in the warp may hit others may miss

 Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

 Need techniques to

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence

44

An Example GPU

NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

46
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

47

…

= instruction stream decode= SIMD functional unit, control

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

48

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

49

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

GPU Readings

 Required

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 2008.

 Recommended

 Narasiman et al., “Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling,” MICRO 2011.

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

 Jog et al., “Orchestrated Scheduling and Prefetching for
GPGPUs,” ISCA 2013.

50

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

52

SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute

53

VLIW

VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with
SIMD)

 Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed
into the functional units

55

VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
56

SIMD Array Processing vs. VLIW

 Array processor

57

VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple higher frequency, easier to design
58

VLIW Philosophy and Properties

59Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

60

VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware simple hardware

+ No need for dependency checking within a VLIW instruction

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units simple hardware

 Disadvantages

-- Compiler needs to find N independent operations per cycle

-- If it cannot, inserts NOPs in a VLIW instruction

-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
61

VLIW Summary

 VLIW simplifies hardware, but requires complex compiler
techniques

 Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful when parallelism is easier to find by the
compiler (traditionally embedded markets, DSPs)

62

Decoupled Access/Execute (DAE)

Decoupled Access/Execute (DAE)

 Motivation: Tomasulo’s algorithm too complex to
implement

 1980s before Pentium Pro

 Idea: Decouple operand

access and execution via

two separate instruction

streams that communicate

via ISA-visible queues.

 Smith, “Decoupled Access/Execute

Computer Architectures,” ISCA 1982,

ACM TOCS 1984.

64

Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)

65

Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

66

Astronautics ZS-1

 Single stream
steered into A and
X pipelines

 Each pipeline in-
order

 Smith et al., “The
ZS-1 central
processor,”
ASPLOS 1987.

 Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

67

Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities

68

Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
69

