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Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 
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Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).
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Data Dependence Handling: 

More Depth & Implementation
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay 
slots) that come after the branch are always executed 
regardless of branch direction.

 Problem: How do you find instructions to fill the delay 
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on 
instructions in delay slots  difficult to fill the delay slot
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Delayed Branching (II)
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Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 If the branch falls through (not taken), the delay slot 
instruction is not executed

 Why could this help?
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Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming 

1. Number of delay slots == number of instructions to keep the pipeline 
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar 
execution width

2. Number of delay slots should be variable with variable latency 
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
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An Aside: Filling the Delay Slot
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independent
(RAW, WAW,
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[Based on original figure from P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts. Each cycle, 
fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, no 
instruction is fetched from the same thread

 Branch/instruction resolution latency overlapped with 
execution of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread 

-- Single thread performance suffers 

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-grained Multithreading

 Idea: Switch to another thread every cycle such that no two 
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by 
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple 
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Fine-grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained 
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor 

 available queue vs. unavailable (waiting) queue for threads 

 each thread can only have 1 instruction in the processor pipeline; each thread 
independent 

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff 
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Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to 

complete an 
instruction

 assuming no memory 
access
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Multithreaded Pipeline Example

16Slide credit: Joel Emer



Sun Niagara Multithreaded Pipeline
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Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.



Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from 
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread 
selection logic

- Reduced single thread performance (one instruction fetched every N 
cycles) 

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Branch Prediction

Fetch  Decode  Rename  Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A
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AB1 AB1 AD B1 ADE B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEFB3

What to fetch next?Fetch from the correct target

 Processors are pipelined to increase concurrency

 How do we keep the pipeline full in the presence of branches?

 Guess the next instruction when a branch is fetched

 Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction



Branch Prediction: Always PC+4
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Pipeline Flush on a Misprediction
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Performance Analysis

 correct guess  no penalty ~86% of the time

 incorrect guess  2 bubbles

 Assume

 no data hazards

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [ 1 + (0.20*0.7) * 2 ] = 

= [ 1 + 0.14 * 2 ] = 1.28 
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Can we reduce either of the two penalty terms?



Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early 
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Is this a good idea?



Branch Prediction (Enhanced)

 Idea: Predict the next fetch address (to be used in the next 
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a 
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access 
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address 
Cache
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target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the 

current branch

Always taken CPI = [ 1 + (0.20*0.3) * 2 ]  = 1.12   (70% of branches taken)
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Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)
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More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based  (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid
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Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40%

 Compiler can layout code such that the likely path is the “not-
taken” path

 Always taken

 No direction prediction

 Better accuracy: ~60-70% 

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken
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Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch 
using profile run. Encodes that direction as a hint bit in the 
branch instruction format. 

+ Per branch prediction (more accurate than schemes in 
previous slide)  accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN  50% accuracy 
TNTNTNTNTNTNTNTNTNTN  50% accuracy

-- Accuracy depends on the representativeness of profile input 
set
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Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine 
statically-predicted direction

 Opcode heuristic: Predict BLEZ as NT (negative integers used as 
error values in many programs)

 Loop heuristic: Predict a branch guarding a loop execution as taken 
(i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate
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Static Branch Prediction (III)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as 
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than 
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer? 
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Aside: Pragmas

 Idea: Keywords that enable a programmer to convey hints 
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with 
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to 
parallelize the chosen segment of code.
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Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What are common disadvantages of all three techniques?

 Cannot adapt to dynamic changes in branch behavior 

 This can be mitigated by a dynamic compiler, but not at a fine 
granularity (and a dynamic compiler has its overheads…)
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Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information 
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness 
problem goes away

 Disadvantages

-- More complex (requires additional hardware)
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Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN  90% accuracy

 Always mispredicts the last iteration and the first iteration 
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN  0% accuracy
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Last-time predictor CPI = [ 1 + (0.20*0.15) * 2 ]  = 1.06   (Assuming 85% accuracy)



Implementing the Last-Time Predictor
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State Machine for Last-Time Prediction
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Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from 
TNT or NTT too quickly 

 even though the branch may be mostly taken or mostly not 
taken

 Solution Idea: Add hysteresis to the predictor so that 
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch 
instead of a single bit 

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA 
1981.
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Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single 
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN  50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)
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2BC predictor CPI = [ 1 + (0.20*0.10) * 2 ]  = 1.04   (90% accuracy)



State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 There is a symbol for maximum and minimum values
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Hysteresis Using a 2-bit Counter
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Is This Enough?

 ~85-90% accuracy for many programs with 2-bit counter 
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?
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Rethinking the The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction 
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 Stalling on a branch wastes instruction processing bandwidth 
(i.e. reduces IPC)

 N x IW instruction slots are wasted (IW: issue width)

 How do we keep the pipeline full after a branch?

 Problem: Need to determine the next fetch address when 
the branch is fetched (to avoid a pipeline bubble)
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Importance of The Branch Problem
 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution 

latency

 How long does it take to fetch 500 instructions? 

 Assume no fetch breaks and 1 out of 5 instructions is a branch

 100% accuracy 
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles 

 40% extra instructions fetched 

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched
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Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes

 Global branch correlation 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed)

 Local branch correlation
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Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path 
is correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken
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Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken
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Global Branch Correlation (III)

 Eqntott, SPEC 1992

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

….

}

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e. bb=0@B3) 
then B3 is certainly taken
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Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR)

 Use GHR to index into a table of that recorded the outcome that 
was seen for that GHR value in the recent past  Pattern 

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)
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Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was 
seen

54

1 1 ….. 1 0

GHR

(global 

history 

register)

00 …. 00

00 …. 01

00 …. 10

11 ….  11

0 1

2 3

index

Pattern History Table (PHT) 

previous one 

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.



How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993.
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Intel Pentium Pro Branch Predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower 
order bits of the branch address
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Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT   

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes

 Global branch correlation 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (other than the outcome 
of the branch “last-time” it was executed)

 Local branch correlation
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Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993.
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Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction is based on the outcome of the branch the 
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register + 
history at that history register value)
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Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was 
seen
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Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.
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Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up)

 Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
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Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
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Branch Prediction Accuracy (Example)

 Bimodal: table of 2bc indexed by branch address
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Biased Branches

 Observation: Many branches are biased in one direction 
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers

 Solution: Detect such biased branches, and predict them 
with a simpler predictor

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994.
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Review: Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000))  { … }

 3 conditional branches

 Problem: This increases the number of control 
dependencies

 Idea: Combine predicate operations to feed a single branch 
instruction

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture
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D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data 

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)
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(normal branch code)

C B

D

A
T N

p1 = (cond)

branch p1, TARGET

mov b, 1 

jmp JOIN

TARGET:

mov b, 0

A

B

C

B

C

D

A

(predicated code) 

A

B

C

if (cond) {

b = 0;

}

else {

b = 1;

} p1 = (cond)

(!p1) mov b, 1

(p1) mov b, 0

add   x, b, 1add   x, b, 1



Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)
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Review: CMOV Operation

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
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Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient
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Fetch  Decode  Rename  Schedule RegisterRead ExecuteA

BC

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D BF

Fetch  Decode  Rename  Schedule RegisterRead Execute
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Predicated Execution (III)
 Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches

+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency

+ Can move instructions more freely within predicated code

 Disadvantages:
-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch 
behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches 

-- Loop branches?
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Predicated Execution in Intel Itanium

 Each instruction can be separately predicated 

 64 one-bit predicate registers

each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false
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cmp

br

else1

else2

br

then1

then2

join1

join2

p1 p2 cmp

join1

join2

else1p2

then2p1

else2p2

then1p1



Conditional Execution in ARM ISA

 Almost all ARM instructions can include an optional 
condition code. 

 An instruction with a condition code is only executed if the 
condition code flags in the CPSR meet the specified 
condition. 
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Conditional Execution in ARM ISA
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Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) when it will actually be 
mispredicted

 If the branch were predicted when it will actually be correctly 
predicted

 Wouldn’t it be nice

 If predication did not require ISA support
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Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3
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Wish Branches

 The compiler generates code (with wish branches) that 

can be executed either as predicated code or non-

predicated code (normal branch code) 

 The hardware decides to execute predicated code or 

normal branch code at run-time based on the confidence of 

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and 
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro 
Top Picks, Jan/Feb 2006.
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TARGET:

(p1) mov b,0

TARGET:

(1) mov b,0

(!p1) mov b,1

wish.join !p1 JOIN

(1) mov b,1

wish.join (1) JOIN

Low Confidence
Wish Jump/Join

p1 = (cond)

branch p1, TARGET

C B

D

A
T N

mov b, 1 

jmp JOIN

TARGET:

mov b,0

normal branch code

A

B

C

B

C

D

A

p1 = (cond)

(!p1) mov b,1

(p1) mov b,0

predicated code 

A

B

C

wish jump/join code

B

A

C

D

wish jump

p1=(cond)

wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence



Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to 

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g. 

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table 
entries

 Constrains the compiler’s scope for code optimizations
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How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict 
branch? Execute both paths again?

-- Paths followed quickly become exponential

-- Each followed path requires its own registers, PC, GHR

-- Wasted work (and reduced performance) if paths merge
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Dual-Path Execution versus Predication
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Hard to predict

C

D
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D
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F

path 1 path 2 
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D
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F

B

path 1 path 2 

Dual-path Predicated Execution
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Remember: Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches 

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted 
target

 Accurate most of the time: 8-entry stack  > 95% accuracy
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…
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Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement 

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls 
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TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1



Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

 Idea 2: Use history based target prediction 

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses
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Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4
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Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower
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PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???



Complications in Superscalar Processors

 “Superscalar” processors

 attempt to execute more than 1 instruction-per-cycle 

 must fetch multiple instructions per cycle

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on 
the first one predicted taken

 If the 1st instruction is the predicted taken branch 

 nullify 2nd instruction fetched
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Multiple Instruction Fetch: Concepts
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Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation  Two-level global predictor

 Local branch correlation  Two-level local predictor

 Predicated execution

 Multipath execution
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