18-447

Computer Architecture
Lecture 9: Branch Handling
and Branch Prediction

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 2/3/2014




Readings for Next Few Lectures (I)

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.



Readings for Next Few Lectures (I1)

Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).



Data Dependence Handling:
More Depth & Implementation




How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)



Delayed Branching (I)

Change the semantics of a branch instruction

a Branch after N instructions

o Branch after N cycles

Idea: Delay the execution of a branch. N instructions (delay

slots) that come after the branch are always executed
regardless of branch direction.

Problem: How do you find instructions to fill the delay
slots?

o Branch must be independent of delay slot instructions

Unconditional branch: Easier to find instructions to fill the delay slot

Conditional branch: Condition computation should not depend on
instructions in delay slots = difficult to fill the delay slot



Delayed Branching (1)

Normal code:

Timeline:
if | ex
A
B A
C B
BC C
--  BC
G -

6 cycles

Delayed branch code:
A
BC X

B
D
E
F
G

Timeline:
if | ex
A

C A
BC C
B BC
G B
5 cycles




Fancy Delayed Branching (I11)

Delayed branch with squashing
o In SPARC

a If the branch falls through (not taken), the delay slot
instruction is not executed

o Why could this help?

Normal code: Delayed branch code: Delayed branch w/ squashing:
XA X 1A A
B B X | B )
C C C %
BC X BC X BC X
D NOP A
E D D
E E




Delayed Branching (IV)

Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation
-- SPARC, MIPS, HP-PA: 1 delay slot
-- What if pipeline implementation changes with the next design?



An Aside: Filling the Delay Slot

a. From before

b. From target

c. From fall through

add $s1, $s2, $s300 E”b $t4, 315, $t6L add $s1, $s2, $530
O 0
: _ .0 : _
reorderlng data Ié$32—0thenD— 0 |é$sl—0thenD
. dd $s1, $s2, $s300
independent [_Delay slot i 3L, 892, 85 [ Delaysiot |
if $s1 = 0 thenJ— -
(RAW, WAW, . O
WAR) — | Delayslot | sub $t4, $t5, $t6
instructions
does not change ~ Beomes Becomes Becomes
program semantics [ . add $s1, $s2, $s30
Ul 0 Ul
if $s2 = 0 thenO— 0 if $s1 = 0 thenO—
] add $s1, $s2, $s30 [
ladd $s1, $s2, $s3 | 0 | sub $t4, $t5, $t60|
if $s1 = 0 then—— O
]
— [ sub $t4, $t5, $t6 | — Safe?
within same For correctness: correctness:
basic block a new instruction a new instructi

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

added to not-
taken path??

added to
taken path??

10



How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

11



Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts. Each cycle,
fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with
execution of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and | hstruction Fetch

Stream £ Instruction

data dependences within a thread Strgggfﬁiﬂfﬂm
-- Single thread performance suffers e

Execution Phase

-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough I —
threads to cover the whole pipeline Result Store

12



Fine-grained Multithreading

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

13



Fine-grained Multithreading: History

CDC 6600 s peripheral processing unit is fine-grained
multithreaded

a Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.
o Processor executes a different I/0 thread every cycle
o An operation from the same thread is executed every 10 cycles

Denelcor HEP (Heterogeneous Element Processor)
Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
120 threads/processor

available queue vs. unavailable (waiting) queue for threads

each thread can only have 1 instruction in the processor pipeline; each thread
independent

to each thread, processor looks like a non-pipelined machine
o system throughput vs. single thread performance tradeoff

O 0O 0O O

(M

14



Fine-grained Multithreading in HEP

FROM DATA MEMORY TO DATA MEMORY

= Cycle time: 100ns VIA SWITCH VIA SWITCH

QUEUE

PERFORM
FUNCTION

= 8 stages - 800 ns to

complete an :

Instruction —__

o assuming no memory /Cnmmou
access

FETCH
OPERANDS

REGISTER
MEMORY

STORE
RESULT

FETCH
INSTRUCTION QUEUE

PROGRAM
MEMORY

10



Multithreaded Pipeline Example

select

Slide credit: Joel Emer

:x= |
15 —IR—{| GPR1 =
A [ L
,Y, é
N 1L
A
|- [1
N 2 R

D$

16



Sun Niagara Multithreaded Pipeline

file x ¢

Crossbar
Decode
Interface
—— Instruction type
Thread .
— Misses
select ]
logic — Traps and intermapis
*— Resource conflicts

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.
17




Fine-grained Multithreading

Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
18



How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction) ‘

Employ delayed branching (branch delay slot)
Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

19



Branch Prediction: Guess the Next Instruction to Fetch

0x00011 | b R1, MEM[RO]
0x0002

0x0003 BRzero 0x0001

0x0004
ADD R3, R2, #1

00005\ UL R1, R2, R3

0x0006

0x0007

LD RO, MEM[R2]

PC | 0xPQ08
¥

I-$ DEC

RF

\ 4

\ 4

\ 4

»la

\ 4

D-$

\ 4

WHE

Branch prediction

12 cycles

y

8 cycles

y




Misprediction Penalty

\ 4

PC F\us\“\-\'

v A 4
I-$ RF
0x0007  0x0006  0x0005

0x0001

0x0002

0x0003

BRzero 0x0001

0x0004

00005\ UL R1, R2, R3

0x0006

%971 b RO, MEM[R2]




Branch Prediction

= Processors are pipelined to increase concurrency

= How do we keep the pipeline full in the presence of branches?
o Guess the next instruction when a branch is fetched
o Requires guessing the direction and target of a branch

A Branch condition, TARGET

Bl }BB Pipeline

Fetch Decode Rename Schedule RegisterRead Execute
T sl [ L[ [ 1] [elefofe]a]

E gttt dvfisioth dietitie Qateged! Flush terfiptim@rediction

22



Branch Prediction: Always PC+4

Inst,,
Inst.
Inst,
Inst,
Inst,

Inst, is a branch

L

When a branch resolves

- branch target (Inst,) is fetched

- all instructions fetched since
inst, (so called “wrong-path”
instructions) must be flushed



Pipeline Flush on a Misprediction

Inst,
Inst.
Inst,
Inst,
Inst,

tO t1 t5
IF.._|lID
IFec.,
IF.. ILID_ [[ALU |[WB
IF__|UD__ |[ALU
IF__|lID
IF

Inst, is a branch




Performance Analysis

m correct guess = no penalty ~86% of the time
= incorrect guess = 2 bubbles

= Assume
0 no data hazards
0 20% control flow instructions
0 70% of control flow instructions are taken
o CPI=[1+(0.20%70.7)*2]=
=[1+0.14*2]=1.28

probability of penalty for
a wrong guess a wrong guess

T A

Can we reduce either of the two penalty terms?

25



Reducing Branch Misprediction Penalty

[Base!

Resolve branch condition and target address early

IF.Flush

tec
lllll

wB

T
—
l 2

|
<
| = |2
o

{ .
it
N
isters = )
A
N

Is this a good i

%

d on original figure from P&H CO&D, COPYRIGHT 2004 El

sevier.

ALL RIGHTS RESERVED.]

CPI=[1+(0.2*0.7)*1]=1.14

26



Branch Prediction (Enhanced)

Idea: Predict the next fetch address (to be used in the next
cycle)

Requires three things to be predicted at fetch stage:
o Whether the fetched instruction is a branch

a (Conditional) branch direction

o Branch target address (if taken)

Observation: Target address remains the same for a
conditional direct branch across dynamic instances

o Idea: Store the target address from previous instance and access
it with the PC

o Called Branch Target Buffer (BTB) or Branch Target Address

Cache
27



Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

2
— taken” , ) l
PC + inst size —— Next Fetch
' Address
Program b hit?
. Counter ' :

Address of the
current branch

N
N

target address

Cache of Target Addresses (BTB: Branch Target Buffer)
Always taken CP1=[ 1+ (0.20%0.3)*2] =1.12 (70% of branches taken)

20



More Sophisticated Branch Direction Prediction

Which direction earlier

branches went

Global branch
history

( >

G,

Direction predictor (2-bit counters)

XOR

Program |
Counter [S¢

4

Address of the
current branch

2
taken” , ) l
PC + inst size —— Next Fetch
Address
hit? >

N
N

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

29



Simple Branch Direction Prediction Schemes

Compile time (static)

o Always not taken

o Always taken

o BTFN (Backward taken, forward not taken)
o Profile based (likely direction)

Run time (dynamic)
o Last time prediction (single-bit)

30



More Sophisticated Direction Prediction

Compile time (static)

o Always not taken

Always taken

BTFN (Backward taken, forward not taken)
Profile based (likely direction)

Program analysis based (likely direction)

Run time (dynamic)

o Last time prediction (single-bit)

o Two-bit counter based prediction

o Two-level prediction (global vs. local)
a Hybrid

31



Static Branch Prediction (I)

Always not-taken
o Simple to implement: no need for BTB, no direction prediction
o Low accuracy: ~30-40%

o Compiler can layout code such that the likely path is the “not-
taken” path

Always taken
o No direction prediction
o Better accuracy: ~60-70%

Backward branches (i.e. loop branches) are usually taken
Backward branch: target address lower than branch PC

Backward taken, forward not taken (BTFN)

o Predict backward (loop) branches as taken, others not-taken
32



Static Branch Prediction (1)

Profile-based

o Idea: Compiler determines likely direction for each branch
using profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) - accurate if profile is representative!

-- Requires hint bits in the branch instruction format
-- Accuracy depends on dynamic branch behavior:

[TTTTTTTTTNNNNNNNNNN - 50% accuracy
TNTNTNTNTNTNTNTNTNTN - 50% accuracy

-- Accuracy depends on the representativeness of profile input
set

33



Static Branch Prediction (I11)

Program-based (or, program analysis based)

o Idea: Use heuristics based on program analysis to determine
statically-predicted direction

o Opcode heuristic: Predict BLEZ as NT (negative integers used as
error values in many programs)

o Loop heuristic: Predict a branch guarding a loop execution as taken
(i.e., execute the loop)

o Pointer and FP comparisons: Predict not equal

+ Does not require profiling
-- Heuristics might be not representative or good
-- Requires compiler analysis and ISA support

Ball and Larus, "Branch prediction for free,” PLDI 1993.

o 20% misprediction rate
34



Static Branch Prediction (I11)

Programmer-based
o Idea: Programmer provides the statically-predicted direction

o Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support
-- Burdens the programmer?

35



Aside: Pragmas

Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

if (likely(x)) { ... }
if (unlikely(error)){ ... }

Many other hints and optimizations can be enabled with
pragmas

o E.g., whether a loop can be parallelized

o #pragma omp parallel

o Description

The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

36



Static Branch Prediction

All previous techniques can be combined
a Profile based

o Program based

o Programmer based

How would you do that?

What are common disadvantages of all three techniques?

o Cannot adapt to dynamic changes in branch behavior

This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads...)

37



Dynamic Branch Prediction

Idea: Predict branches based on dynamic information
(collected at run-time)

Advantages
+ Prediction based on history of the execution of branches
+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

Disadvantages
-- More complex (requires additional hardware)

38



Last Time Predictor

Last time predictor

o Single bit per branch (stored in BTB)

o Indicates which direction branch went last time it executed
[TTTTTTTTTNNNNNNNNNN - 90% accuracy

Always mispredicts the last iteration and the first iteration
of a loop branch

o Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations
-- Loop branches for loops will small number of iterations
TNTNTNTNTNTNTNTNTNTN = 0% accuracy

Last-time predictor CPI=[1 + *2] =1.06 (Assuming 85% accuracy)
39



Implementing the Last-Time Predictor

tag BTB idx
“ A Y,
~
N'b|t// One
tag Bit
‘| table Per BB
branch
taken?

—— PC+4

nextPC
The 1-bit BHT (Branch History Table) entry is updated with

the correct outcome after each execution of a branch

40



State Machine for Last-Time Prediction

actually
taken
actually predict predict actually
not taken not taken taken
taken
actually

not taken

41



Improving the Last Time Predictor

Problem: A last-time predictor changes its prediction from
T->NT or NT->T too quickly

o even though the branch may be mostly taken or mostly not
taken

Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

o Use two bits to track the history of predictions for a branch
instead of a single bit

o Can have 2 states for T or NT instead of 1 state for each

Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

42



Two-Bit Counter Based Prediction

Each branch associated with a two-bit counter
One more bit provides hysteresis

A strong prediction does not change with one single
different outcome

Accuracy for a loop with N iterations = (N-1)/N
TNTNTNTNTNTNTNTNTNTN = 50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy
2BC predictor CPI=[1 + *2] =1.04 (90% accuracy)

-- More hardware cost (but counter can be part of a BTB entry)

43



State Machine for 2-bit Saturating Counter

= Counter using saturating arithmetic
o There is a symbol for maximum and minimum values

actually / actually TN

taken preoc Itaken
taken
11 actually
taken

actually
ltaken

actually
taken

actually actually

Itaken 44

taken



Hysteresis Using a 2-bit Counter

actually actually “weakly
taken ( Itaken taken”
“strongly ~ A\ { pred pred \
taken” taken taken
actually
actually taken actually
taken !ta‘!<en
actually strongly
ltaken ltaken”
“weakly actually
Itaken” actually Itaken
taken

Change prediction after 2 consecutive mistakes 45



Is This Enough?

~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

Is this good enough?

How big is the branch problem?

46



Rethinking the The Branch Problem

Control flow instructions (branches) are frequent
a 15-25% of all instructions

Problem: Next fetch address after a control-flow instruction
IS not determined after N cycles in a pipelined processor

o N cycles: (minimum) branch resolution latency

o Stalling on a branch wastes instruction processing bandwidth
(i.e. reduces IPC)

N x IW instruction slots are wasted (IW: issue width)

How do we keep the pipeline full after a branch?

Problem: Need to determine the next fetch address when
the branch is fetched (to avoid a pipeline bubble)

47



Importance of The Branch Problem

Assume a 5-wide superscalar pipeline with 20-cycle branch resolution
latency

How long does it take to fetch 500 instructions?
o Assume no fetch breaks and 1 out of 5 instructions is a branch
o 100% accuracy

100 cycles (all instructions fetched on the correct path)
No wasted work

o 99% accuracy
100 (correct path) + 20 (wrong path) = 120 cycles
20% extra instructions fetched

o 98% accuracy
100 (correct path) + 20 * 2 (wrong path) = 140 cycles
40% extra instructions fetched

o 95% accuracy

100 (correct path) + 20 * 5 (wrong path) = 200 cycles
100% extra instructions fetched

48



Can We Do Better?

Last-time and 2BC predictors exploit “last-time”
predictability

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

o Local branch correlation

49



Global Branch Correlation (I)

Recently executed branch outcomes in the execution path
Is correlated with the outcome of the next branch

1f (condl)
ié'(condl AND cond2)
If first branch not taken, second also not taken
branch Y: if (cond1)a = 2;

branch X: if (a ==0)

If first branch taken, second definitely not taken

50



Global Branch Correlation (1)

branch Y: if (cond]1)
branch Z: if (cond2)

branch X: if (cond]l AND cond2)

If Y and Z both taken, then X also taken
If Y or Z not taken, then X also not taken

51



Global Branch Correlation (I11)

= Eqgntott, SPEC 1992

if (aa==2) Bl
aa=0;

if (bb==2) B2
bb=0;

if (aal=bb) { 5 B3

}

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e. bb=0@B3)
then B3 is certainly taken

52



Capturing Global Branch Correlation

Idea: Associate branch outcomes with “global T/NT history”
of all branches

Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

Implementation:

o Keep track of the “global T/NT history” of all branches in a
register - Global History Register (GHR)

o Use GHR to index into a table of that recorded the outcome that
was seen for that GHR value in the recent past > Pattern
History Table (table of 2-bit counters)

Global history/branch predictor
Uses two levels of history (GHR + history at that GHR)

53



Two Level Global Branch Prediction

= First level: Global branch history register (N bits)
o The direction of last N branches
= Second level: Table of saturating counters for each history entry
o The direction the branch took the last time the same history was

Seen Pattern History Table (PHT)
00....00
11.... 00 .... 01
2 3
previous on 00....10
GHR _
(global index . "
history
register)
1 ... 11

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

54



How Does the Global Predictor Work?

for (i=0; i<100; i++)
for (j=0; j<3; J++)
After the initial starmup time, the condiional branches have the following behavior,
assuming GR is shifted to the Jeft:

test | value | GR Tesult

j<3 = 1101 taken

j<3 j=2 | 1011 taken

j<3 j=3 | 0111 not taken
<100 1110 | usually taken

= McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.




Intel Pentium Pro Branch Predictor

4-bit global history register

Multiple pattern history tables (of 2 bit counters)

o Which pattern history table to use is determined by lower
order bits of the branch address

56



Improving Global Predictor Accuracy

Idea: Add more context information to the global predictor to take into
account which branch is being predicted

o Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency Pattern History Table

— /

Branch Address

vy

Branch History Register

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

57



One-Level Branch Predictor

" Program )
L_Counter

Address of the
current instruction

Direction predictor (2-bit counters)

G,

2
taken” , ) l
PC + inst size —— Next Fetch
Address
hit? >

N
N

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

ol¢)



Two-Level Global H

1story Predictor

Which direction earlier

branches went

G,

Direction predictor (2-bit counters)

Global branch ‘
history D

(o 13

2
taken” , ) l
PC + inst size —— Next Fetch
Address
hit? >

Address of the
current instruction

N
N

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

Y



Two-Level Gshare Predictor

Which direction earlier  Pirection predictor (2-bit counters)

branches went
taken?
Y, > )
GIobaI branch \ l
history } PC + Inst size ——» Next Fetch
> XOR Address
Program | .
‘; Counter i’ hit >

Address of the
current instruction

N
N

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

60



Can We Do Better?

Last-time and 2BC predictors exploit “last-time”
predictability

Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

o Global branch correlation

Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

o Local branch correlation

601




IL.ocal Branch Correlation

for (i=1;i<=4;i++) | |

If the loop test is done at the end of the body, the cormesponding branch will execute
the pattern | 1110, where 1 and 0 represent taken and not taken respectvely, and « is the
number of times the loop 1s executed. Clearly, if we knew the direction this branch had
eone on the previous three executions, then we could alwavs be able to predict the next

= McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

62



Capturing lLocal Branch Correlation

Idea: Have a per-branch history register

o Associate the predicted outcome of a branch with “T/NT history”
of the same branch

Make a prediction is based on the outcome of the branch the
last time the same local branch history was encountered

Called the local history/branch predictor

Uses two levels of history (Per-branch history register +
history at that history register value)

03



Two Level LLocal Branch Prediction

= First level: A set of local history registers (N bits each)
o Select the history register based on the PC of the branch
= Second level: Table of saturating counters for each history entry

o The direction the branch took the last time the same history was

n .
see Pattern History Table (PHT)

00 ....00

Local history
registers

1M1.... 1

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

64



Two-Level Local History Predictor

Which directions earlier instances of *this branch* went

(o 13

hit?

/ Direction predictor (2-bit counters)
/
// | taken? N
7 1/ l
\ PC + inst size —— Next Eetch
Address

A 4

Address of the
current instruction

N
N

target address

Cache of Target Addresses (BTB: Branch Target Buffer)

(O3}



Hybrid Branch Predictors

Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

o E.g., hybrid of 2-bit counters and global predictor

Advantages:
+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

Disadvantages:

-- Need “meta-predictor” or “selector”
-- Longer access latency

McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.
66



Alpha 21264 Tournament Predictor

Program Clobal History
Counter |:
‘E'(;.'r— e ,"“; >0 «'i j Gl°ba| _,.12
Predictf ]
4,096 [*
e
2 bits

[Global
Prediction

Final Prediction

= Minimum branch penalty: 7 cycles
= Typical branch penalty: 11+ cycles
= 48K bits of target addresses stored in I-cache
= Predictor tables are reset on a context switch

= Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro 1999.

67



Branch Prediction Accuracy (Example)

= Bimodal: table of 2bc indexed by branch address

bimodal
mmmmm = gshare
mmmmm bimodal/gshare

doduc
eqgntott
espress
fpppp
gcc

li
mat300
nasa’/
spice
tomcatv
average

| | | | | | | | | |
80 82 84 86 88 90 92 94 96 98 100
Conditional Branch Prediction Accuracy (%)

Figure 13: Combined Predictor Performance by Benchmark

068



Biased Branches

Observation: Many branches are biased in one direction
(e.g., 99% taken)

Problem: These branches po/lute the branch prediction
structures =2 make the prediction of other branches difficult
by causing “interference” in branch prediction tables and
history registers

Solution: Detect such biased branches, and predict them
with a simpler predictor

Chang et al., "Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

09



How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)
Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)

Eliminate control-flow instructions (predicated execution) ‘

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

70



Review: Predicate Combining (zof Predicated Execution)

Complex predicates are converted into multiple branches
o if((@a==Db)&& (c<d)&&(a>5000)) {..}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
Instruction

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

71



Predication (Predicated Execution)

Idea: Compiler converts control dependence into data

dependence = branch is eliminated

o Each instruction has a predicate bit set based on the predicate computation

o Only instructions with TRUE predicates are committed (others turned into NOPs)

If (cond) {

¥

b=0;

else {

¥

b=1;

(normal branch code)

G

pl = (cond)
branch pl, TARGET

mov b, 1
imp JOIN

TARGET:
mov b, 0

add x, b, 1

(predicated code)

A
B
C
D

pl = (cond)

(Ipl) mov b, 1

(pl) mov b, 0

add x,b, 1

72



Conditional Move Operations

Very limited form of predicated execution

CMOV R1 €« R2
o R1 = (ConditionCode == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

73



Review: CMOYV Operation

Suppose we had a Conditional Move instruction...

o CMOV condition, R1 €« R2
o R1 = (condition == true) ? R2 : R1
o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@ ==15){b=4;}else {b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOQOV Icondition, b < 3;

74



Predicated Execution (1I)

= Predicated execution can be high performance and energy-
efficient

Predicated Execution

A Fetch Decode Rename Schedule RegisterRead Execute
C B ,70’0
Branch Prediction
D Fetch Decode Rename Schedule RegisterRead Execute
- L[] [elefo]e]a]
. Pipeline flush!!
F




Predicated Execution (I11)

Advantages:

+ Eliminates mispredictions for hard-to-predict branches

+ No need for branch prediction for some branches
+ Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency
+ Can move instructions more freely within predicated code

Disadvantages:

-- Causes useless work for branches that are easy to predict

-- Reduces performance if misprediction cost < useless work

-- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch
behavior changes based on input set, phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches
-- Loop branches?

76



Predicated Execution in Intel Itanium

Each instruction can be separately predicated
64 one-bit predicate registers

each instruction carries a 6-bit predicate field
An instruction is effectively a NOP if its predicate is false

cmp pl p2 <-cmp
br pl elsel
oleel pl thenl
else2 oinl
] ‘ oTThen?
=1 p2 else?
:henz loin2
» joinl
join2




Conditional Execution in ARM ISA

Almost all ARM instructions can include an optional
condition code.

An instruction with a condition code is only executed if the
condition code flags in the CPSR meet the specified
condition.

78



Conditional Execution in ARM ISA

31 2827 1615 87 0 Instruction type
Cond 0 0 3 Opcode Rn Rd Operand2 Data processing / PSR Transfer
Cond 000O0OO|R Rd Rn Rs 1001 Rm Multiply
Cond 0000 1ua RAHi RdLo Rs 1001 Em Long Multiply  (v3M / v4 only)
Cond 00010 B0 Rn Rd 00001001 Rm Swap
cond 0 ]” 1 H y B w Rn Rd offset Load/Store Byte/Word
Cond 1 0QdHB§ l.lI S| W Rn Register List Load/Store Multiple
Cond 00 dHUY 1 w Rn Rd Offsetl| 1] 8| H| 1| 0ffset2 | Halfword transfer : Immediate offset (v4 only)
Cond 00 0| B 0] Wi En Rd 00001 s8]H|1 Fm Halfword transfer: Register offset (w4 only)
Cond 101y Offset Branch
Cond (0001|001 111f1111(111130001 Rn Branch Exchange (v4T only)
Cond 110dH Lﬂ NI W Rn CRd CPNum offset Coprocessor data transfer
Cond 1110 op1 CRn CRd CPNum | Op2 | 0| CRm Coprocessor data operation
Cond 1110 op1 CRn Rd cPNum | op2 |1| CRm Coprocessor register transfer
cond | 1111 SWI Number Software interrupt

I

79



Conditional Execution in ARM ISA

31 28 24 20 16 12 8 4 0
élcllllllllllllllllllllllllllllll
on
I_'_l
.
0000 = EQ - Z set (equal) 1001 = LS - C clear or Z (set unsigned
0001 = NE - Z clear (not equal) lower or same)
) 1010 = GE - N set and V set, or N clear
0010 = I];Iifé];’e(ssor—sg 1?:; (unsigned and V clear (>or =)
. 1011 =LT - N setand V clear. or N clear
0011 = {_(;Zi I(;C - C clear (unsigned and V set (>)
0100 = MI -N set (negative) 1100 = GT - Z clear. and either N set and

V set, or N clear and V set (>)

1101 =LE - Z set, or N set and V clear.or
N clear and V set (<, or =)

1110 = AL - always
1111 =NV - reserved.

0101 = PL - N clear (positive or

ZETO0)
0110 =VS -V set (overflow)
0111 =VC - V clear (no overflow)
1000 = HI - C set al}d Z clear

The ARM Instruction Set - ARM University Program - V1.0




Conditional Execution in ARM ISA

* To execute an instruction conditionally, simply postfix it with the
appropriate condition:

* For example an add instruction takes the form:
— ADD r0,rl,xr2 ; rO = rl + r2 (ADDAL)

* To execute this only if the zero flag 1s set:

— ADDEQ r0,xrl,xr2 If zero flag set then...
ea. r0O = rl + r2

r

r

* By default, data processing operations do not affect the condition flags
(apart from the comparisons where this is the only effect). To cause the
condition flags to be updated, the S bit of the instruction needs to be set

by postfixing the instruction (and any condition code) with an ““S”.
* For example to add two numbers and set the condition flags:

— ADDS rO,rl,xr2 r0O = rl + r2
... and set flags

- a8

The ARM Instruction Set - ARM University Program - V1.0

81



Conditional Execution in ARM ISA

The ARM Instruction Set - ARM University Program - V1.0

3

A
No
Yes @\- No
ro=r0-ri ri=r1-r0
<

Convert the GCD
algorithm given in this
flowchart into

1) “Normal™ assembler,

where only branches can
be conditional.

2) ARM assembler, where
all instructions are
conditional, thus
improving code density.

The only instructions you

need are CMP, B and SUB.




Conditional Execution in ARM ISA

“Normal’® Assembler

gcd cmp r0, rl
beq stop

blt
sub
bal
sub

bal

less
r0, r0, rl
gecd
less rl, rl, ro0
gcd

stop

;:reached the end?

:if r0 > ri

:;subtract rl1l from r0O

:subtract r0 from rl

ARM Conditional Assembler

gcd cmp r0, ri

subgt r0, roO,
sublt

bne

rl, rl,

ged

The ARM Instruction Set - ARM University Program - V1.0

:if r0 > ri
:subtract rl from rO
:else subtract r0 from ril

;sreached the end?

83



Idealism

Wouldn’ t it be nice

a If the branch is eliminated (predicated) when it will actually be
mispredicted

a If the branch were predicted when it will actually be correctly
predicted

Wouldn’ t it be nice
o If predication did not require ISA support

84



Improving Predicated Execution

Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs
3. ISA: Requires large ISA changes

Wish Branches [Kim+, MICRO 2005]
o Solve 1 and partially 2 (for loops)

Dynamic Predicated Execution

o Diverge-Merge Processor [Kim+, MICRO 2006]
Solves 1, 2 (partially), 3

85



Wish Branches

The compiler generates code (with wish branches) that
can be executed either as predicated code or non-
predicated code (normal branch code)

The hardware decides to execute predicated code or
normal branch code at run-time based on the confidence of

branch prediction
Easy to predict: normal branch code
Hard to predict: predicated code

Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.

86



Wish Jump/Join

Hoytih Conflidiemoe

O O|UU ™

pl = (cond)

(!p1) mov b,1

A
V \\|
C B
pl = (cond)
branch pl, TARGET
mov b, 1
jmp JOIN
TARGET:
mov b,0

(p1) mov b,0

normal branch code

predicated code

C

D

wish jump/join code

A |wish jump

pl=(cond)
wish.jump pl TARGET

('41) mov b,1
wighsieioitp (LJQININ

‘\OQ

TARGET:
(1) mov b,0

JOIN:

87



Wish Branches vs. Predicated Execution

Advantages compared to predicated execution

a

a

Reduces the overhead of predication

Increases the benefits of predicated code by allowing the compiler to
generate more aggressively-predicated code

Makes predicated code less dependent on machine configuration (e.g.
branch predictor)

Disadvantages compared to predicated execution

a

a

Extra branch instructions use machine resources

Extra branch instructions increase the contention for branch predictor table
entries

Constrains the compiler’s scope for code optimizations

38



How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

89



Multi-Path Execution

Idea: Execute both paths after a conditional branch

o For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

o For a hard-to-predict branch: Use dynamic confidence estimation

Advantages:
+ Improves performance if misprediction cost > useless work
+ No ISA change needed

Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

-- Paths followed quickly become exponential
-- Each followed path requires its own registers, PC, GHR

-- Wasted work (and reduced performance) if paths merge
90



Dual-Path Execution versus Predication

Dual-path Predicated Execution
C B C B C B
\/
\ 4 A 4 A 4 D
E E E
A\ 4 A 4 A 4 E
F F F
F

91



Remember: Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

92



Call and Return Prediction

. . Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
I.'\.’.eturn
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack > > 95% accuracy

93



Indirect Branch Prediction (I)

Register-indirect branches have multiple targets

A br.cond TARGET A R1 = MEM[R2]
Ay \NA 2 branch R1
A
TARG A+1
a | Blo]p
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls

94



Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
o Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses

95



Issues in Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4

96



Issues in Branch Prediction (II)

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size ———»
BTB target ' Next Fetch
Return Address Stack target > > Address

Indirect Branch Predictor target —
Resolved target from Backend —

?7?77?

97



Complications 1n Superscalar Processors

“Superscalar” processors
0 attempt to execute more than 1 instruction-per-cycle
o must fetch multiple instructions per cycle

Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst
nPC=PC+38
(case 2) One of the insts is a taken control flow inst

nPC = predicted target addr

*NOTE* both instructions could be control-flow; prediction based on
the first one predicted taken

If the 1stinstruction is the predicted taken branch
- nullify 2" instruction fetched

98



Multiple Instruction Fetch: Concepts

[E‘So g] W)
[FID|E| W e Fetd 4 Ingd | cycle.
LElolL ElW :
o] E [w]|. - Downsrde .
W o .El'i""‘s bettToncck.

If you feteh | instloycle.

D [Ejw Yoo carmed- fin@h S| mst
Flp /ey ol
F|D w
D |E
) e Feteh 44 medloycle

Twe meje gperpeches

1) VLTw

Compller decides wined- nets.
Con be opecvicd pn pourall el
—3 Swrple hodhapre.

2) Suypo-scaler

|Aodome deteehs dopoedexcies
Lobhwoen mstwowns frod-

ST Jeboheo an e Sorve. S

aryole- . 99



Review of LLast Few Lectures

Control dependence handling in pipelined machines
o Delayed branching
o Fine-grained multithreading

o Branch prediction
Compile time (static)
o Always NT, Always T, Backward T Forward NT, Profile based
Run time (dynamic)
0 Last time predictor
0 Hysteresis: 2BC predictor
0 Global branch correlation - Two-level global predictor
0 Local branch correlation > Two-level local predictor

o Predicated execution
o Multipath execution

100



