
18-447

Computer Architecture

Lecture 8: Data and Control

Dependence Handling

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/29/2014

Readings for Next Few Lectures

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

2

Data Dependence Handling:

More Depth & Implementation

3

Remember: Data Dependence Types

4

Flow dependence
r3  r1 op r2 Read-after-Write
r5  r3 op r4 (RAW)

Anti dependence
r3  r1 op r2 Write-after-Read
r1  r4 op r5 (WAR)

Output-dependence
r3  r1 op r2 Write-after-Write
r5  r3 op r4 (WAW)
r3  r6 op r7

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

5

RAW Dependence Handling

 Following flow dependences lead to conflicts in the 5-stage
pipeline

6

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?
7

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Safe and Unsafe Movement of Pipeline

8

i:rk_

j:_rk Reg Read

Reg Write

iOj

stage X

stage Y

dist(i,j)  dist(X,Y)  ??

dist(i,j) > dist(X,Y)  ??

RAW Dependence

i:_rk

j:rk_ Reg Write

Reg Read

iAj

WAR Dependence

i:rk_

j:rk_ Reg Write

Reg Write

iDj

WAW Dependence

dist(i,j)  dist(X,Y)  Unsafe to keep j moving

dist(i,j) > dist(X,Y)  Safe

RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

What about WAW and WAR dependence?

What about memory data dependence?

9

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Pipeline Stall: Resolving Data Dependence

10

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx  _
bubble
bubble
j: _  rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx  _
bubble
bubble
bubble
j: _  rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall==make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages

How to Implement Stalling

 Stall

 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one

11

PC

Instruction

memory

In
s
tr

u
c
ti
o

n

Add

Instruction

[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15– 0]

0

0

M

u

x

0

1

Add
Add

result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction

[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
e

m
W

ri
te

Address

Data

memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, must stall when IB in ID stage wants to read a
register to be written by IA in EX, MEM or WB stage

12

Stall Conditions

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

13

Impact of Stall on Performance

 Each stall cycle corresponds to 1 lost ALU cycle

 For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is
resolved, i2 and i3 must be okay too

14

Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

15

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 “add rx ry rz” literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a computing abstraction

 “add rx ry rz” means 1. get the results of the last instructions to
define the values of RF[ry] and RF[rz], respectively, and 2. until
another instruction redefines RF[rx], younger instructions that
refers to RF[rx] should use this instruction’s result

 What matters is to maintain the correct “dataflow” between
operations, thus

16

ID ID IDIF ID

WBIF ID EX MEMadd ra r- r-

addi r- ra r- MEMIF EX WB

Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by IA in
EX, MEM or WB stage, then the operand required by IB is not yet
in RF

 retrieve operand from datapath instead of the RF

 retrieve operand from the youngest definition if multiple
definitions are outstanding

17

Data Forwarding Paths (v1)

18

Registers

M

u

x M

u

x

ALU

ID/EX MEM/WB

Data

memory

M

u

x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M

u

x

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

dist(i,j)=3

internal
forward?

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding Paths (v2)

19

Registers

M

u

x M

u

x

ALU

ID/EX MEM/WB

Data

memory

M

u

x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M

u

x

Assumes RF forwards internally[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

forward operand from WB stage // dist=2

else

use AEX (operand from register file) // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’t use_rs() appear in the forwarding logic?

20

What does the above not take into account?

Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

21

R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB

Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

22

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
nop
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

Pipelining the LC-3b

23

Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence

24

An Example LC-3b Pipeline

26

27

28

29

30

31

Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be
used in pipelined datapath (can be propagated to stages later
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of
dependencies

32

33

Control Store in a Pipelined Machine

34

 Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

 Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

 Why could an operation in a stage not complete?

Stall Signals

35

Pipelined LC-3b

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-lc3b-pipelining.pdf

36

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

End of Pipelining the LC-3b

37

Questions to Ponder

 What is the role of the hardware vs. the software in data
dependence handling?

 Software based interlocking

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline
slots?

 What are the advantages/disadvantages of each?

38

Questions to Ponder

 What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

 Software based instruction scheduling  static scheduling

 Hardware based instruction scheduling  dynamic scheduling

39

More on Software vs. Hardware
 Software based scheduling of instructions  static scheduling

 Compiler orders the instructions, hardware executes them in
that order

 Contrast this with dynamic scheduling (in which hardware will
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction

 How can the compiler alleviate this (i.e., estimate the
unknown)?

 Answer: Profiling
40

Control Dependence Handling

41

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

42

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

43

Different branch types can be handled differently

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

44

Stall Fetch Until Next PC is Available: Good Idea?

45

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

This is the case with non-control-flow and unconditional br instructions!

Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, just
guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what about the
remaining 14%?

46

Guessing NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction and branch
prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…)

47

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution

48

Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

49

Predicated Execution

 Idea: Convert control dependence to data dependence

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;

50

Predicated Execution

 Eliminates branches  enables straight line code (i.e.,

larger basic blocks in code)

 Advantages

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
51

Predicated Execution

 We will get back to this…

 Some readings (optional):

 Allen et al., “Conversion of control dependence to data
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional Branching
and Predication for Adaptive Predicated Execution,” MICRO
2005.

52

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

53

Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

 Problem: How do you find instructions to fill the delay
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on
instructions in delay slots  difficult to fill the delay slot

54

Delayed Branching (II)

55

A

B

C

BC X

D

E

F

if ex

A

AB

BC

CBC

BC

GX:

--

A

B

C

BC X

D

E

F

GX:

if ex

A

AC

CBC

BCB

BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 If the branch falls through (not taken), the delay slot
instruction is not executed

 Why could this help?

56

A

B

C

BC X

D

E

X:

Normal code: Delayed branch code:

A

B

C

BC X

D

E

X:

NOP

Delayed branch w/ squashing:

A

B

C

BC X

D

E

X:

A

Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
57

An Aside: Filling the Delay Slot

58

a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

a new
instruction
added to not-
taken path??

a new
instruction
added to
taken??

Safe?

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

59

Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts. Each cycle,
fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, there is
no need to fetch another instruction from the same thread

 Branch/instruction resolution latency overlapped with
execution of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

60

Fine-grained Multithreading

 Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

61

Fine-grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 available queue vs. unavailable (waiting) queue for threads

 each thread can only have 1 instruction in the processor pipeline; each thread
independent

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff

62

Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages  800 ns to

complete an
instruction

 assuming no memory
access

63

Multithreaded Pipeline Example

 Slide from Joel Emer

64

Sun Niagara Multithreaded Pipeline

65

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
66

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

67

0x00040x00050x00060x00070x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to Fetch

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

0x0007

0x00030x00040x00050x00060x0007

D-$

PC

DEC WB

70

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3B1

D

E

F

AB1 AB1 AD B1 ADE B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEFB3

What to fetch next?Fetch from the correct target

 Processors are pipelined to increase concurrency

 How do we keep the pipeline full in the presence of branches?

 Guess the next instruction when a branch is fetched

 Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction: Always PC+4

71

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

ALU

ID

IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
insth (so called “wrong-path”
instructions) must be flushedInsth is a branch

Pipeline Flush on a Misprediction

72

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

IFtarget

MEM

ID

IF

WB

killed

killed

ALU

ID

IF

ALU

ID

IF

WB

Insth is a branch

Performance Analysis

 correct guess  no penalty ~86% of the time

 incorrect guess  2 bubbles

 Assume

 no data hazards

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [1 + (0.20*0.7) * 2] =

= [1 + 0.14 * 2] = 1.28

73

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early

74

PC
Instruction

memory

4

Registers

M

u

x

M

u

x

M

u

x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data

memory

M

u

x

Hazard

detection

unit

Forwarding

unit

IF.Flush

IF/ID

Sign

extend

Control

M

u

x

=

Shift

left 2

M

u

x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Branch Prediction (Enhanced)

 Idea: Predict the next fetch address (to be used in the next
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address
Cache

75

76

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches taken)

77

target address

More Sophisticated Branch Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

78

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

79

Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40%

 Compiler can layout code such that the likely path is the “not-
taken” path

 Always taken

 No direction prediction

 Better accuracy: ~60-70%

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken
80

Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch
using profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide)  accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN  50% accuracy
TNTNTNTNTNTNTNTNTNTN  50% accuracy

-- Accuracy depends on the representativeness of profile input
set

81

Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine
statically-predicted direction

 Opcode heuristic: Predict BLEZ as NT (negative integers used as
error values in many programs)

 Loop heuristic: Predict a branch guarding a loop execution as taken
(i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate
82

Static Branch Prediction (III)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

83

Aside: Pragmas

 Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

84

Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What are common disadvantages of all three techniques?

 Cannot adapt to dynamic changes in branch behavior

 This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads…)

85

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

 Disadvantages

-- More complex (requires additional hardware)

86

Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN  90% accuracy

 Always mispredicts the last iteration and the first iteration
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN  0% accuracy

87

Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 85% accuracy)

Implementing the Last-Time Predictor

88

BTB

BTB idx

N-bit
tag
table

1 0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with
the correct outcome after each execution of a branch

tag

One
Bit
Per
branch

taken?

State Machine for Last-Time Prediction

89

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from
TNT or NTT too quickly

 even though the branch may be mostly taken or mostly not
taken

 Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch
instead of a single bit

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

90

Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN  50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

91

2BC predictor CPI = [1 + (0.20*0.10) * 2] = 1.04 (90% accuracy)

State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 There is a symbol for maximum and minimum values

92

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Hysteresis Using a 2-bit Counter

93

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Enough?

 ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?

94

Rethinking the The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 Stalling on a branch wastes instruction processing bandwidth
(i.e. reduces IPC)

 N x IW instruction slots are wasted (IW: issue width)

 How do we keep the pipeline full after a branch?

 Problem: Need to determine the next fetch address when
the branch is fetched (to avoid a pipeline bubble)

95

Importance of The Branch Problem
 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution

latency

 How long does it take to fetch 500 instructions?

 Assume no fetch breaks and 1 out of 5 instructions is a branch

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

96

Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

97

Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path
is correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

98

Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

99

Global Branch Correlation (III)

 Eqntott, SPEC 1992

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

….

}

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e. bb=0@B3)
then B3 is certainly taken

100

Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a
register  Global History Register (GHR)

 Use GHR to index into a table of that recorded the outcome that
was seen for that GHR value in the recent past  Pattern

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)
101

Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

102

1 1 ….. 1 0

GHR

(global

history

register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

103

Intel Pentium Pro Branch Predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower
order bits of the branch address

104

Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

105

106

target address

One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

107

target address

Two-Level Global History Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

108

target address

Two-Level Gshare Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

109

Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

110

Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction is based on the outcome of the branch the
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register +
history at that history register value)

111

Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

112

1 1 ….. 1 0

Local history

registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

113

target address

Two-Level Local History Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

 Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

114

Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
115

Branch Prediction Accuracy (Example)

 Bimodal: table of 2bc indexed by branch address

116

Biased Branches

 Observation: Many branches are biased in one direction
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction
structures  make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

 Solution: Detect such biased branches, and predict them
with a simpler predictor

 Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

117

