
18-447

Computer Architecture

Lecture 8: Data and Control

Dependence Handling

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/29/2014

Readings for Next Few Lectures

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

2

Data Dependence Handling:

More Depth & Implementation

3

Remember: Data Dependence Types

4

Flow dependence
r3 r1 op r2 Read-after-Write
r5 r3 op r4 (RAW)

Anti dependence
r3 r1 op r2 Write-after-Read
r1 r4 op r5 (WAR)

Output-dependence
r3 r1 op r2 Write-after-Write
r5 r3 op r4 (WAW)
r3 r6 op r7

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

5

RAW Dependence Handling

 Following flow dependences lead to conflicts in the 5-stage
pipeline

6

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?
7

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Safe and Unsafe Movement of Pipeline

8

i:rk_

j:_rk Reg Read

Reg Write

iOj

stage X

stage Y

dist(i,j) dist(X,Y) ??

dist(i,j) > dist(X,Y) ??

RAW Dependence

i:_rk

j:rk_ Reg Write

Reg Read

iAj

WAR Dependence

i:rk_

j:rk_ Reg Write

Reg Write

iDj

WAW Dependence

dist(i,j) dist(X,Y) Unsafe to keep j moving

dist(i,j) > dist(X,Y) Safe

RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) dist(ID, WB) = 3

What about WAW and WAR dependence?

What about memory data dependence?

9

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Pipeline Stall: Resolving Data Dependence

10

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx _
j: _ rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx _
bubble
j: _ rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx _
bubble
bubble
j: _ rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx _
bubble
bubble
bubble
j: _ rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall==make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages

How to Implement Stalling

 Stall

 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one

11

PC

Instruction
memory

In
s
tr

u
c
ti
o

n

Add

Instruction
[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction
[15– 0]

0

0

M
u
x

0

1

Add
Add

result

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction
[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

M
e

m
W

ri
te

Address

Data
memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) dist(ID, WB) = 3

 In other words, must stall when IB in ID stage wants to read a
register to be written by IA in EX, MEM or WB stage

12

Stall Conditions

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

13

Impact of Stall on Performance

 Each stall cycle corresponds to 1 lost ALU cycle

 For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is
resolved, i2 and i3 must be okay too

14

Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

15

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 “add rx ry rz” literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a computing abstraction

 “add rx ry rz” means 1. get the results of the last instructions to
define the values of RF[ry] and RF[rz], respectively, and 2. until
another instruction redefines RF[rx], younger instructions that
refers to RF[rx] should use this instruction’s result

 What matters is to maintain the correct “dataflow” between
operations, thus

16

ID ID IDIF ID

WBIF ID EX MEMadd ra r- r-

addi r- ra r- MEMIF EX WB

Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB) dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by IA in
EX, MEM or WB stage, then the operand required by IB is not yet
in RF

 retrieve operand from datapath instead of the RF

 retrieve operand from the youngest definition if multiple
definitions are outstanding

17

Data Forwarding Paths (v1)

18

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data

memory

M
u
x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M
u
x

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

dist(i,j)=3

internal
forward?

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding Paths (v2)

19

Registers

M
u
x M

u
x

ALU

ID/EX MEM/WB

Data

memory

M
u
x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M
u
x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M
u
x

Assumes RF forwards internally[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

forward operand from WB stage // dist=2

else

use AEX (operand from register file) // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’t use_rs() appear in the forwarding logic?

20

What does the above not take into account?

Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

21

R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB

Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

22

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
nop
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

Pipelining the LC-3b

23

Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence

24

An Example LC-3b Pipeline

26

27

28

29

30

31

Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be
used in pipelined datapath (can be propagated to stages later
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of
dependencies

32

33

Control Store in a Pipelined Machine

34

 Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

 Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

 Why could an operation in a stage not complete?

Stall Signals

35

Pipelined LC-3b

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-lc3b-pipelining.pdf

36

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

End of Pipelining the LC-3b

37

Questions to Ponder

 What is the role of the hardware vs. the software in data
dependence handling?

 Software based interlocking

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline
slots?

 What are the advantages/disadvantages of each?

38

Questions to Ponder

 What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

 Software based instruction scheduling static scheduling

 Hardware based instruction scheduling dynamic scheduling

39

More on Software vs. Hardware
 Software based scheduling of instructions static scheduling

 Compiler orders the instructions, hardware executes them in
that order

 Contrast this with dynamic scheduling (in which hardware will
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction

 How can the compiler alleviate this (i.e., estimate the
unknown)?

 Answer: Profiling
40

Control Dependence Handling

41

Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

42

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

43

Different branch types can be handled differently

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

44

Stall Fetch Until Next PC is Available: Good Idea?

45

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

This is the case with non-control-flow and unconditional br instructions!

Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, just
guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what about the
remaining 14%?

46

Guessing NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction and branch
prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…)

47

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions

combine predicates (predicate combining)

2. Convert control dependences into data dependences

predicated execution

48

Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

49

Predicated Execution

 Idea: Convert control dependence to data dependence

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1 R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b 4;

CMOV !condition, b 3;

50

Predicated Execution

 Eliminates branches enables straight line code (i.e.,

larger basic blocks in code)

 Advantages

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
51

Predicated Execution

 We will get back to this…

 Some readings (optional):

 Allen et al., “Conversion of control dependence to data
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional Branching
and Predication for Adaptive Predicated Execution,” MICRO
2005.

52

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

53

Delayed Branching (I)

 Change the semantics of a branch instruction

 Branch after N instructions

 Branch after N cycles

 Idea: Delay the execution of a branch. N instructions (delay
slots) that come after the branch are always executed
regardless of branch direction.

 Problem: How do you find instructions to fill the delay
slots?

 Branch must be independent of delay slot instructions

 Unconditional branch: Easier to find instructions to fill the delay slot

 Conditional branch: Condition computation should not depend on
instructions in delay slots difficult to fill the delay slot

54

Delayed Branching (II)

55

A

B

C

BC X

D

E

F

if ex

A

AB

BC

CBC

BC

GX:

--

A

B

C

BC X

D

E

F

GX:

if ex

A

AC

CBC

BCB

BG

--G

Normal code: Timeline: Delayed branch code: Timeline:

6 cycles 5 cycles

Fancy Delayed Branching (III)

 Delayed branch with squashing

 In SPARC

 If the branch falls through (not taken), the delay slot
instruction is not executed

 Why could this help?

56

A

B

C

BC X

D

E

X:

Normal code: Delayed branch code:

A

B

C

BC X

D

E

X:

NOP

Delayed branch w/ squashing:

A

B

C

BC X

D

E

X:

A

Delayed Branching (IV)
 Advantages:

+ Keeps the pipeline full with useful instructions in a simple way assuming

1. Number of delay slots == number of instructions to keep the pipeline
full before the branch resolves

2. All delay slots can be filled with useful instructions

 Disadvantages:

-- Not easy to fill the delay slots (even with a 2-stage pipeline)

1. Number of delay slots increases with pipeline depth, superscalar
execution width

2. Number of delay slots should be variable with variable latency
operations. Why?

-- Ties ISA semantics to hardware implementation

-- SPARC, MIPS, HP-PA: 1 delay slot

-- What if pipeline implementation changes with the next design?
57

An Aside: Filling the Delay Slot

58

a. From before b. From target c. From fall through

sub $t4, $t5, $t6

…

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s1 = 0 then

 sub $t4, $t5, $t6

add $s1, $s2, $s3

if $s2 = 0 then

BecomesBecomesBecomes

Delay slot

Delay slot

Delay slot

sub $t4, $t5, $t6

if $s2 = 0 then

 add $s1, $s2, $s3

within same
basic block

a new
instruction
added to not-
taken path??

a new
instruction
added to
taken??

Safe?

reordering data
independent
(RAW, WAW,
WAR)
instructions
does not change
program semantics

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

59

Fine-Grained Multithreading

 Idea: Hardware has multiple thread contexts. Each cycle,
fetch engine fetches from a different thread.

 By the time the fetched branch/instruction resolves, there is
no need to fetch another instruction from the same thread

 Branch/instruction resolution latency overlapped with
execution of other threads’ instructions

+ No logic needed for handling control and

data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough

threads to cover the whole pipeline

60

Fine-grained Multithreading

 Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

 Tolerates the control and data dependency latencies by
overlapping the latency with useful work from other threads

 Improves pipeline utilization by taking advantage of multiple
threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

61

Fine-grained Multithreading: History

 CDC 6600’s peripheral processing unit is fine-grained
multithreaded

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 1964.

 Processor executes a different I/O thread every cycle

 An operation from the same thread is executed every 10 cycles

 Denelcor HEP (Heterogeneous Element Processor)
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 120 threads/processor

 available queue vs. unavailable (waiting) queue for threads

 each thread can only have 1 instruction in the processor pipeline; each thread
independent

 to each thread, processor looks like a non-pipelined machine

 system throughput vs. single thread performance tradeoff

62

Fine-grained Multithreading in HEP

 Cycle time: 100ns

 8 stages 800 ns to

complete an
instruction

 assuming no memory
access

63

Multithreaded Pipeline Example

 Slide from Joel Emer

64

Sun Niagara Multithreaded Pipeline

65

Kongetira et al., “Niagara: A 32-Way Multithreaded Sparc Processor,” IEEE Micro 2005.

Fine-grained Multithreading

 Advantages

+ No need for dependency checking between instructions

(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic

+ Otherwise-bubble cycles used for executing useful instructions from
different threads

+ Improved system throughput, latency tolerance, utilization

 Disadvantages

- Extra hardware complexity: multiple hardware contexts, thread
selection logic

- Reduced single thread performance (one instruction fetched every N
cycles)

- Resource contention between threads in caches and memory

- Some dependency checking logic between threads remains (load/store)
66

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

67

0x00040x00050x00060x00070x0008

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

0x0001

BRZERO 0x0001

0x0002

0x0003

DEC

ADD R3, R2, #1
0x0004

LD R2, MEM[R2]

MUL R1, R2, R3
0x0005

0x0006

LD R0, MEM[R2]
0x0007

12 cycles

8 cycles

D-$

PC ??

Branch prediction

WB

Branch Prediction: Guess the Next Instruction to Fetch

LD R0, MEM[R2]

LD R2, MEM[R2]

BRZERO 0x0001

Misprediction Penalty

I-$ RF

LD R1, MEM[R0]

ADD R2, R2, #1

ADD R3, R2, #1

0x0001

0x0002

0x0003

0x0004

MUL R1, R2, R3
0x0005

0x0006

0x0007

0x00030x00040x00050x00060x0007

D-$

PC

DEC WB

70

Branch Prediction

Fetch Decode Rename Schedule RegisterRead Execute

Target Misprediction Detected! Flush the pipeline

Pipeline

A

B3B1

D

E

F

AB1 AB1 AD B1 ADE B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEF B1 ADEFB3

What to fetch next?Fetch from the correct target

 Processors are pipelined to increase concurrency

 How do we keep the pipeline full in the presence of branches?

 Guess the next instruction when a branch is fetched

 Requires guessing the direction and target of a branch

Branch condition, TARGET

Verify the Prediction

Branch Prediction: Always PC+4

71

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

Insth branch condition and target
evaluated in ALU

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

ALU

ID

IFtarget

MEM

When a branch resolves
- branch target (Instk) is fetched
- all instructions fetched since
insth (so called “wrong-path”
instructions) must be flushedInsth is a branch

Pipeline Flush on a Misprediction

72

IFPC+4

IFPC

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

ID

IFPC+8

IFtarget

MEM

ID

IF

WB

killed

killed

ALU

ID

IF

ALU

ID

IF

WB

Insth is a branch

Performance Analysis

 correct guess no penalty ~86% of the time

 incorrect guess 2 bubbles

 Assume

 no data hazards

 20% control flow instructions

 70% of control flow instructions are taken

 CPI = [1 + (0.20*0.7) * 2] =

= [1 + 0.14 * 2] = 1.28

73

penalty for
a wrong guess

probability of
a wrong guess

Can we reduce either of the two penalty terms?

Reducing Branch Misprediction Penalty

 Resolve branch condition and target address early

74

PC
Instruction

memory

4

Registers

M
u
x

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

IF.Flush

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

CPI = [1 + (0.2*0.7) * 1] = 1.14[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Is this a good idea?

Branch Prediction (Enhanced)

 Idea: Predict the next fetch address (to be used in the next
cycle)

 Requires three things to be predicted at fetch stage:

 Whether the fetched instruction is a branch

 (Conditional) branch direction

 Branch target address (if taken)

 Observation: Target address remains the same for a
conditional direct branch across dynamic instances

 Idea: Store the target address from previous instance and access
it with the PC

 Called Branch Target Buffer (BTB) or Branch Target Address
Cache

75

76

target address

Fetch Stage with BTB and Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current branch

Always taken CPI = [1 + (0.20*0.3) * 2] = 1.12 (70% of branches taken)

77

target address

More Sophisticated Branch Direction Prediction

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current branch

Simple Branch Direction Prediction Schemes

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

78

More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

79

Static Branch Prediction (I)

 Always not-taken

 Simple to implement: no need for BTB, no direction prediction

 Low accuracy: ~30-40%

 Compiler can layout code such that the likely path is the “not-
taken” path

 Always taken

 No direction prediction

 Better accuracy: ~60-70%

 Backward branches (i.e. loop branches) are usually taken

 Backward branch: target address lower than branch PC

 Backward taken, forward not taken (BTFN)

 Predict backward (loop) branches as taken, others not-taken
80

Static Branch Prediction (II)

 Profile-based

 Idea: Compiler determines likely direction for each branch
using profile run. Encodes that direction as a hint bit in the
branch instruction format.

+ Per branch prediction (more accurate than schemes in
previous slide) accurate if profile is representative!

-- Requires hint bits in the branch instruction format

-- Accuracy depends on dynamic branch behavior:

TTTTTTTTTTNNNNNNNNNN 50% accuracy
TNTNTNTNTNTNTNTNTNTN 50% accuracy

-- Accuracy depends on the representativeness of profile input
set

81

Static Branch Prediction (III)

 Program-based (or, program analysis based)

 Idea: Use heuristics based on program analysis to determine
statically-predicted direction

 Opcode heuristic: Predict BLEZ as NT (negative integers used as
error values in many programs)

 Loop heuristic: Predict a branch guarding a loop execution as taken
(i.e., execute the loop)

 Pointer and FP comparisons: Predict not equal

+ Does not require profiling

-- Heuristics might be not representative or good

-- Requires compiler analysis and ISA support

 Ball and Larus, ”Branch prediction for free,” PLDI 1993.

 20% misprediction rate
82

Static Branch Prediction (III)

 Programmer-based

 Idea: Programmer provides the statically-predicted direction

 Via pragmas in the programming language that qualify a branch as
likely-taken versus likely-not-taken

+ Does not require profiling or program analysis

+ Programmer may know some branches and their program better than
other analysis techniques

-- Requires programming language, compiler, ISA support

-- Burdens the programmer?

83

Aside: Pragmas

 Idea: Keywords that enable a programmer to convey hints
to lower levels of the transformation hierarchy

 if (likely(x)) { ... }

 if (unlikely(error)) { … }

 Many other hints and optimizations can be enabled with
pragmas

 E.g., whether a loop can be parallelized

 #pragma omp parallel

 Description

 The omp parallel directive explicitly instructs the compiler to
parallelize the chosen segment of code.

84

Static Branch Prediction

 All previous techniques can be combined

 Profile based

 Program based

 Programmer based

 How would you do that?

 What are common disadvantages of all three techniques?

 Cannot adapt to dynamic changes in branch behavior

 This can be mitigated by a dynamic compiler, but not at a fine
granularity (and a dynamic compiler has its overheads…)

85

Dynamic Branch Prediction

 Idea: Predict branches based on dynamic information
(collected at run-time)

 Advantages

+ Prediction based on history of the execution of branches

+ It can adapt to dynamic changes in branch behavior

+ No need for static profiling: input set representativeness
problem goes away

 Disadvantages

-- More complex (requires additional hardware)

86

Last Time Predictor

 Last time predictor

 Single bit per branch (stored in BTB)

 Indicates which direction branch went last time it executed

TTTTTTTTTTNNNNNNNNNN 90% accuracy

 Always mispredicts the last iteration and the first iteration
of a loop branch

 Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of iterations

-- Loop branches for loops will small number of iterations

TNTNTNTNTNTNTNTNTNTN 0% accuracy

87

Last-time predictor CPI = [1 + (0.20*0.15) * 2] = 1.06 (Assuming 85% accuracy)

Implementing the Last-Time Predictor

88

BTB

BTB idx

N-bit
tag
table

1 0

PC+4

nextPC

=

The 1-bit BHT (Branch History Table) entry is updated with
the correct outcome after each execution of a branch

tag

One
Bit
Per
branch

taken?

State Machine for Last-Time Prediction

89

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Improving the Last Time Predictor

 Problem: A last-time predictor changes its prediction from
TNT or NTT too quickly

 even though the branch may be mostly taken or mostly not
taken

 Solution Idea: Add hysteresis to the predictor so that
prediction does not change on a single different outcome

 Use two bits to track the history of predictions for a branch
instead of a single bit

 Can have 2 states for T or NT instead of 1 state for each

 Smith, “A Study of Branch Prediction Strategies,” ISCA
1981.

90

Two-Bit Counter Based Prediction

 Each branch associated with a two-bit counter

 One more bit provides hysteresis

 A strong prediction does not change with one single
different outcome

 Accuracy for a loop with N iterations = (N-1)/N

TNTNTNTNTNTNTNTNTNTN 50% accuracy

(assuming init to weakly taken)

+ Better prediction accuracy

-- More hardware cost (but counter can be part of a BTB entry)

91

2BC predictor CPI = [1 + (0.20*0.10) * 2] = 1.04 (90% accuracy)

State Machine for 2-bit Saturating Counter
 Counter using saturating arithmetic

 There is a symbol for maximum and minimum values

92

pred
taken

11

pred
taken

10

pred
!taken

01

pred
!taken

00

actually
taken

actually
taken

actually
!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Hysteresis Using a 2-bit Counter

93

pred
taken

pred
taken

pred
!taken

pred
!taken

actually
taken

actually
taken actually

!taken

actually
!taken

actually
!taken

actually
!taken

actually
taken

actually
taken

Change prediction after 2 consecutive mistakes

“weakly
taken”

“strongly
taken”

“weakly
!taken”

“strongly
!taken”

Is This Enough?

 ~85-90% accuracy for many programs with 2-bit counter
based prediction (also called bimodal prediction)

 Is this good enough?

 How big is the branch problem?

94

Rethinking the The Branch Problem

 Control flow instructions (branches) are frequent

 15-25% of all instructions

 Problem: Next fetch address after a control-flow instruction
is not determined after N cycles in a pipelined processor

 N cycles: (minimum) branch resolution latency

 Stalling on a branch wastes instruction processing bandwidth
(i.e. reduces IPC)

 N x IW instruction slots are wasted (IW: issue width)

 How do we keep the pipeline full after a branch?

 Problem: Need to determine the next fetch address when
the branch is fetched (to avoid a pipeline bubble)

95

Importance of The Branch Problem
 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution

latency

 How long does it take to fetch 500 instructions?

 Assume no fetch breaks and 1 out of 5 instructions is a branch

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

96

Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

97

Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path
is correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

98

Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

99

Global Branch Correlation (III)

 Eqntott, SPEC 1992

if (aa==2) ;; B1

aa=0;

if (bb==2) ;; B2

bb=0;

if (aa!=bb) { ;; B3

….

}

If B1 is not taken (i.e. aa==0@B3) and B2 is not taken (i.e. bb=0@B3)
then B3 is certainly taken

100

Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a
register Global History Register (GHR)

 Use GHR to index into a table of that recorded the outcome that
was seen for that GHR value in the recent past Pattern

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)
101

Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

102

1 1 ….. 1 0

GHR

(global

history

register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

103

Intel Pentium Pro Branch Predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower
order bits of the branch address

104

Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

105

106

target address

One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

107

target address

Two-Level Global History Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

108

target address

Two-Level Gshare Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

Can We Do Better?

 Last-time and 2BC predictors exploit “last-time”
predictability

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (other than the outcome
of the branch “last-time” it was executed)

 Local branch correlation

109

Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

110

Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction is based on the outcome of the branch the
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register +
history at that history register value)

111

Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

112

1 1 ….. 1 0

Local history

registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

113

target address

Two-Level Local History Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

+ Better accuracy: different predictors are better for different branches

+ Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

 Disadvantages:

-- Need “meta-predictor” or “selector”

-- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

114

Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.
115

Branch Prediction Accuracy (Example)

 Bimodal: table of 2bc indexed by branch address

116

Biased Branches

 Observation: Many branches are biased in one direction
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction
structures make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

 Solution: Detect such biased branches, and predict them
with a simpler predictor

 Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

117

