18-447

Computer Architecture
Lecture 8: Data and Control
Dependence Handling

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/31/2014

Readings for Next Few Lectures

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

Data Dependence Handling:
More Depth & Implementation

Remember: Data Dependence Types

Flow dependence
s <~ r,opr, Read-after-Write
s T r; op r, (RAW)

Anti dependence

s < r,opr, Write-after-Read
/
r < I, Op Ic (WAR)

Output-dependence

rs <~ r,opr, Write-after-Write
(— (WAW)

s < rg Op 1y

How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction
o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence
o Predict the needed value(s), execute “speculatively”, and verify
o Do something else (fine-grained multithreading)
No need to detect

RAW Dependence Handling

Following flow dependences lead to conflicts in the 5-stage
pipeline

addi rar- -

addi r-la- ‘E* At
addi r-ry- * F

addi r-ra- *

addi r-ra -

addi r-ra -

Register Data Dependence Analysis

R/I-Type | LW SW Br J Ir

IF

EX

MEM

WB write RF | write RF

For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

o dependence type: RAW, WAR, WAW?
o instruction types involved?
o distance between the two instructions?

Safe and Unsate Movement of Pipeline

st l l

X
Reg Readﬁ I Reg Write Jin—_ Reg Write

l l l

lstagc v l l

Reg Write ii_<r, Reg Read i <—_ Reg Write
RAW Dependence WAR Dependence WAW Dependence

dist(i,j) < dist(X,Y) = Unsafe to keep j moving
dist(i,j) > dist(X,Y) = Safe

RAW Dependence Analysis Example

R/I-Type LW SW Br J Jr

IF

ID

EX

MEM

WB write RF | write RF

Instructions |, and I (where 1, comes before I;) have RAW
dependence iff
o g (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
o dist(l,, I5) < dist(ID, WB) = 3
What about WAW and WAR dependence?
What about memory data dependence?

Pipeline Stall: Resolving Data Dependence

Inst,
Inst.
Inst,
Inst,
Inst,

To 5] 15 U3 Ly s -
IF D |[ALU |[MEM]|[WB
i [IF ID |[|ALU |[MEM||WB I\
. [IF_Jp—]—p0—][Ib]lA 3
E—pe—1pe—iF _[[iD <
IF =2

Stall==make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages

2. drain all down-stream stages

How to Implement Stalling

PCSrc

|

&

Add

IF/ID

Control

EX/MEM

wB

—>| Address

InstructionC]
memory

RegWrite

ReadO

l Instruction

register 1 Read

ReadO data 1

register 2
Registers Read
WriteO

register

WriteO
data

data 2

§

L

M

LM.EM/WB

Instruction
[15-0] "6

Instruction(]
20-16]

Branch

1 -

MemWrite

WB|

—

result

Address

Write

' o

InstructionO
15-11]

N lcontrol

xcz O

data

MemRead

RegDst

— |

MemtoReg

o disable PC and IR latching; ensure stalled instruction stays in its stage

o Insert “invalid” instructions/nops into the stage following the stalled one

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

11

Stall Conditions

Instructions |, and I; (where |, comes before I;) have RAW
dependence iff

o g (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
a dist(l,, I5) < dist(ID, WB) = 3

In other words, must stall when |5 in ID stage wants to read a
register to be written by 1, in EX, MEM or WB stage

12

Stall Conditions

= Helper functions
a rs(l) returns the rs field of |

0 use_rs(l) returns true if | requires RF[rs] and rs!=r0

» Stall when

2 (rs(IRp)==) && use rs(IR,;) && or

2 (rs(IRp)==) && use rs(IR,;) && or
2 (rs(IRp)==) && use rs(IR,;) && or

2 (rt(Ir)==) && use rt(Ir,) && or

2 (rt(Ir)==) && use rt(Ir) && or
2 (rt(Ir)==) && use rt(Ir,) &&

= lItis crucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

13

Impact ot Stall on Performance

Each stall cycle corresponds to one lost cycle in which no
instruction can be completed

For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

S depends on

o frequency of RAW dependences

0 exact distance between the dependent instructions
o distance between dependences

. . . . « 7 .
suppose i, i, and i, all depend on iy, once i; sdependence is
resolved, i, and i; must be okay too

14

Sample Assembly (P&H)

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

$51,550,-1 _—— 3 stalls

5t0,$s1,0 __— 3 stalls
St0, Szero, exit2

Stl1,8s1,2 _— 3 stalls

$t2,5a0,5t1 —3 stalls
St3, 0(St2)

St4,4(St2) _— 3 stalls
S$t0, St4, 513 — 3 stalls

St0, Szero, exit2

Ss1, Ss1, -1
for2tst

15

Data Forwarding (or Data Bypassing)

It is intuitive to think of RF as state

11

Q

respectively and put result in

7 g
literally means get values from

and

But, RF is just a part of a communication abstraction

11

Q

define the values of
another instruction redefines

to

and

” means 1. get the results of the last instructions to

, respectively, and 2. until
, younger instructions that refer

should use this instruction’ s result

What matters is to maintain the correct “dataflow’ between

operations, thus

add rar-r

addi r-rar

|F

1D

WB\

|F

EX MEM
i

MEM

WB

16

Resolving RAW Dependence with Forwarding

Instructions |, and I; (where |, comes before I;) have RAW
dependence iff

o g (R/I, LW, SW, Br or JR) reads a register written by I, (R/I or LW)
a dist(l,, I5) < dist(ID, WB) = 3

In other words, if I in ID stage reads a register written by |, in
EX, MEM or WB stage, then the operand required by I; is not yet
in RF

= retrieve operand from datapath instead of the RF

= retrieve operand from the youngest definition if multiple
definitions are outstanding

17

Data Forwarding Paths (v1)

__ dist(i,j)=3

!

N

internal
forward?

3

dist(i j)=3

r Forwar
T

i

N

|4 xcZ
[]

L

ForwardB

>ALU

dist(i,j)=1

Forwarding[l

Datall

dist(i,j)=2

o

memory

X/MEM.RegisterRu

VIEM/WB.RegisterRd

unit

MO
ull
X

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.]

18

Data Forwarding Paths (v2)

ID/EX EX/IMEM MEM/WB

dist(i j)=3

o

v

1)

|4 xc<Z
[]

ForwardA >ALU

_ 4
]] II

dist(i,j)=2
d|St(|’J):1 Datal |

memory g I Mo
ul]
X

Rs ForwardB
Rt -
Rt ML .
rRdl [R | vO R EX/MEM.Reglstequ B
X
! ’ Forwa_ftdingﬂ) MEM/WB.RegisterRd
uni «

b. With forwarding

Assumes RF forwards internally

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding Logic (for v2)

if (rs.,!1=0) && (rs,, ==) && then
forward operand from MEM stage // dist=1

else if (rs.,1=0) && (rs,,==) && then
forward operand from WB stage // dist=2

else
use A, (operand from register file) // dist >=3

Ordering matters!! Must check youngest match first

Why doesn’ t use_rs() appear in the forwarding logic?

What does the above not take into account?

20

Data Forwarding (Dependence Analysts)

R/I-Type LW SW Br J Jr
IF
ID
EX produce
MEM produce (use)
WB

Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

21

Sample Assembly, No Forwarding (P&H)

m for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1){ }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

$51,550,-1 _—— 3 stalls

5t0,$s1,0 __— 3 stalls
St0, Szero, exit2

Stl1,8s1,2 _— 3 stalls

$t2,5a0,5t1 —3 stalls
St3, 0(St2)

St4,4(St2) _— 3 stalls
S$t0, St4, 513 — 3 stalls

St0, Szero, exit2

Ss1, Ss1, -1
for2tst

22

Sample Assembly, Revisited (P&H)

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

for2tst:

exit2:

addi
slti
bne
sl
add
lw
lw

Ss1, SsO, -1

St0, Ss1, 0

St0, Szero, exit2
St1, Ss1, 2

St2, Sao0, Stl
St3, 0(St2)

St4, 4(St2)

Sto, St4, St3
St0, Szero, exit2

Ss1, Ss1, -1
for2tst

23

Pipelining the L.LC-3b

Pipelining the L.C-3b

Let’s remember the single-bus datapath

We'll divide it into 5 stages
o Fetch

Decode/RF Access

Address Generation/Execute
Memory

Store Result

Conservative handling of data and control dependences
o Stall on branch
o Stall on flow dependence

25

LD.IR—

GateMARMUX

GatePC

LD.pC——@ __PC |

2

Pt

ZEXT &
LSHF1
&7:0] 2
ADDR2MUX

[10:0]

—ADDRIMUX

LD REG—>

3
SR2 +«>

REG
FILE

0

<—<—DR
SR2 SR1

3
ouT OUT [<74SR1

GateMDR

LOGIC

<—MAR[0]

6

LOGIC

g L.D MDR

AR MIO.EN

<+—DATA.SIZE

MEM.EN |<

v

R

(I

Z=DATASIZE
<—MAR[0]

INMUX 4‘I

/—c> SR2MUX
CONTROL
T f I Y
R
A v
2 B A
ALUK
. .
GateALU GateSHF
6
El.D MAR
»
R.W
WE
<
Logic|_ v o 0 09— - — — — ——1n H E BN
l J; “paTa MIO.EN | ;npyT) OUTPUT L=
v ! -
SIZE | |
WET WEO y KBDR "DDR | -
4 ADDR.CTL
e KBSR
MEMORY [KBSR |

An Example LLC-3b Pipeline

FETCH DECODE AGEX MEM SR
I
! A Y
/ Address
Register = Generation - -
File Logic
Y D—Cache -
- 'II’CI— i Destination Reg.
Value .
Select Logic
Y - A
A
Control Store ALU L _
ROM -
I-CACHE ™ SHF [™
Y ™| Branch
Logic
Dependency
! Check Logic
_I Fetch Control Logic
A%
- -

T

From other stages

From other stages

27

FETCH STAGE

TRAP.PC

TARGET .PC

N Y

INPUTS____

LOGIC

LD.PC

77
1
/i{ﬁ /kﬁ fﬁ /ﬁ "%
Y
+2 T
LD DE
i
16
’ //16
PC
‘16
Y
//"
I-CACHE 16

l

ICACHER ~ INPUTS—

LOGIC

N

7

|

LDDE

DE.NPC

DE.IR

DE.V

YV.DEBRSTALL

AGEX.CS

AGEX.IR

AGEX.5R1

AGEX.SR2Z

AGEX.CC

AGEX.DRID
AGEX.V

29

LD AGEX

DECODE STAGE

R Ty N N i
J.,,“,,,,H.,mUM.H,HHM.H”m,H”M,H../,,,,,,“”,m,H,”;m&mmyk%v%ﬁﬁﬁ RN R
i i . i A [+ m
[on]
. -
. 2 : H
B = m
H A
= = = ™ a -
g = - B H # =
™ B
= &
wl & = =
=1 — —
- — =
= VIVODHE HE 5
le m - e VLVE DO S
I = CHHOTHS A —— = L
o = m = O g H
h Nk Gl v o o 5 m
P ORHOHS S = 55 2
A i [g & g -
o e
=) < =& w
3 = o=
big) ..,_..,_.,1._ ﬂ
b
s - U e T HS A
o o) < = 0" e MANTTWEW A
= = o
E5 L. - N mm — DAATXADVA
S @ £ ~ s - m m ..TM3| CIHTHS
: :
m & » m il|x3rf| CITHCT INHIN
AEHE 5 A AN XEDY
slz |2 2
2 M 5] =
S8 12/ g
74 SN T B 2885
% |2 e m m o
il z & i
Y a |a g &
ot ..nﬂ,. ,..A//.,ﬁ..é, o ﬂﬂ 4 e
NN NN\ 2
j
W e - &
= m a
7 g
i a =
o

AGEX STAGE

5 -
AGEX. NPC | 716 h .
.’.r - 16 J—
LSHIT LSHF1 [7¢™ 0 15 MEM. ADDRESS
ADDRIMUX ‘5’6

ADDRESSMUX

Annmmx% 2 3

N
DAMMMNN

AGEX. CS ’ -
116 & | MEM. C8
’I{ﬁ 14 7| _ AGEXCS[19:9] ™ .;p’{',
o (& = . 7
Ml % 5 E i
s [+] :H: :-'__z" e
N B g AGEX.NPC T ';% MEM. NPC
= = = P
nl o= = co MEM. CC
AGEX. IR .8 ACEX.CC —l,.fj—h- S
A //,r;:,r”
s
'_':::-' # I - Fa -
AGEX.SR1| T SHF araal] ///?j / MEMALU RESULT
f/f 16 ///".-
- A 777
AGEX. SR2 16 o - r,;:.-.-
RE40 |_SEXT |t 6 |0 ALU e 7
6 = g = ALURESULTMUX 4 MEM. IR
AGEX. CC E = z AGEXIR —7{z—*| M DRI
SRIMUX 7 ‘
o = AGEXDRID _, ol 777
AGEX.DRID | g g g : } ’é
. A, ﬁ E » l_"'::":'.":'."-'.‘ MEM.V
g g Q ALUK
AGEX.Y = T LD MEM
$ J' \l.* INPUTS—* LOGIC
= LOGIC

YV.AGEXLD.CC '=_|

VAGEXLDREG =
AGEX DRID VAGEX BRSTALL = 0
7
3

MEM STAGE

MEM ADDRESS

MEMCS

MEMNEC

MEMCC

MEMALU.RESULT

MEMIR

MEMDRID
MEM.V

MEM.STALL

- ,Mfﬁ % L TRAPFC
2
. 7 _ Ny
% 16 =y g % 3 % //;
DATASIZE — “ w2 %

é DCACHER/W — IE:E}IC g g % %
Z . =
/// e iy
7 DCACHER WE1 WE0 //{(/,,//
% R ADDR | ?/?
//////; DCAChII-l{E ELJ;:I;: — V.DCACHE EN END—CACI—[E 16| LOGIC //, Z
5/?//5 DATA MEM.CS[10:7] —.F-? /
. i y
yﬁ”/f 416 7 //
/ p o - . ¥ 7
/ o toaie e e
'5/ -)
| 3 .
. 2 M.CC g%é MEM.ALU RESULT #//4
’%/ B 5 | MEMV Ao ? /
/ “IR[11:9] I 777 - /{y////,

% BROP___ | ZEE = MEMIR —7%7
// UNCONOP | BR %%%é 16 ///
\/\&{‘\J TRAP.OP LOGIC MEMDRID g///
] DN

3 2 V.MEM.LD.CE™—
MEM.DRID v:gﬁg:;ﬁiﬂ_ LOGIC INPUTS ™| LOGIC
= MEM PCMUX

SR.ADDRESS

SRDATA

SR.CS

SRNPC

SR.ALURESULT

SRIR
SR.DRID

SR.V

31

SR STAGE

SR.ADDRESS

SR.DATA

SR.CS

SR.INPC

SRALURESULT

SR.IR
SR.DRID

SR.V

e rp——
VARLDEREG
B EEmm—
V.5ELD.CC

N
DN

%

LOGIC

SRV
SRJIC5[3:2]

\

/

3
™ SR.CCDATA

]

o
a
0

16

TA

= SRREGDA

e

T

DA

7

\
N

N

\

_

.

SE.DRID

32

Control of the L.C-3b Pipeline

Three types of control signals

Datapath Control Signals
o Control signals that control the operation of the datapath

Control Store Signals

o Control signals (microinstructions) stored in control store to be

used in pipelined datapath (can be propagated to stages later
than decode)

Stall Signals

o Ensure the pipeline operates correctly in the presence of
dependencies

33

Slage Sipmal dame Sipnal Values
FETCH MEM.PCMLUIN2: 4 PO+ sselect posl
TARCGET.RC sselect MEM TARGETPC (branch target)
TEAPPC sselect MEM TRAFPC
LD Tt MO0, LA
LIDDEN:$ MO0, LOAINT)
DECODE DEMLUXA: 119 westinstion IR[11:%]
kT wlestimation BT
SR NEEDED: NOND, YES(LY samsserted i instruction needs SR
SRINEEDEDS: MO0, YES(LY sasserted i instruction needs SR2
DE.BRAOFL: MO0y, BR{Dy ;BR Opeode
SE2IDMLUIX:4 20 ssearce TR[Z:0]
118 ssouree [R]11:9]
LD AGEX/:4 MO0, LOAINT)
VAGEX LD MO0, LOAINT)
VIMEM LD MO0, LOAINT)
VERLDUCC:H MO0, LOAINT)
WAGEX LD REG: MO0, LOAINT)
V.MEMLDEREG: 11 MO0, LOAINT)
V.ERLDREG: MO0, LOAINT)
AGEX ADDRIMLUN: NPT sselect valoe from AGEX.NPC
BaseR sselect valoe from AGEX. SR 1(BaseR)
ADDEIMLUNT: ZERQ sselect the value 2em
offsels sselect SEXTIIRISD]
Pl sselect SEXTIRIED]
PCoffwetll sselect SEXTIR] 10:07)
LSHF1s1: MO0, Thit Left shife(1)
ADDRESSMLUNIL: T sselect LIHFZEXTIIR[741110
ADDER sselect outpat of addness sdder
SRIMLIX: SR sselect From AGEX.SE2
4.0 JAR[E:0)
ALURST: ADDHOE, ANIDNDL)
MOR(ID), PASSBEI1L)
ALURESULTMLUNSL: SHIFTER sselect autpal of the shifter
ALU select 1put out the ALL
LD AEN MO0, LOAI 1)
MEM DCACHE BN MO, YES(1) ssserted i the Instruction scoesses memory
DUCACHE BWL: RINO), WRIL)
DATA BIFEN: BYTED, WD L)
BRE O WOy, BR{DY BR
LTNCON 0F L WO, Uncond BRI DY ARPRET, ISR, ISRER
TRAPORL: WOy, Trapi Ly TRAF
SR DR VALUEMUXT: ADDRESS sselect value from SEADDRESS
DATA ssilect value from SR.DATA
NPC ssilect value om SR.NPC
ALL ssilect valee from SRLALLU RESULT
LINREG: MO0, LOAINT)
LDUCCs L MO0, LOAIT)

Tahle 1: Data Path Contral Signals

tz The comtral sipral is penerated by lopic inthat stage
11: The cantrol signal s generated by bogic in another stage

34

Control Store in a Pipelined Machine

Number Signal Name Stages

0 SRI.NEEDED DECODE

1 SR2Z.NEEDED DECODE

2 DEMUX DECODE

3 ADDRIMUX AGEX

4 ADDRZMUXI AGEX

3 ADDRIMUXID AGEX

6 LSHF1 AGEX

7 ADDRESSMUX AGEX

8 SRIMUX AGEX

9 ALUKI AGEX

10 ALUKO AGEX

11 ALURESULTMUX AGEX

12 BR.OP DECODE, MEM
13 UNCON.OP MEM

14 TRAP.OP MEM

15 BR.STALL DECODE, AGEX, MEM
16 DCACHE.EN MEM

17 DCACHE.RW MEM

18 DATA SIZE MEM

19 DR VALUEMUX]1 SR

20 DR.VALUEMUXO SR

21 LD.REG AGEX, MEM, SR
22 LD.CC AGEX, MEM, SR

Table 2: Control Store ROM Signals

Stall Signals

= Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

= Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

= Why could an operation in a stage not complete?

Signal Name (renerated in
ICACHE.R/1: FETCH NO, READY
DEP.STALL/I: DEC NO, STALL
VIDE.BR.STALL/IL: DEC NO, STALL
V.AGEX.BRE.STALL/L: AGEX NO, STALL
MEM.STALL/I: MEM NO, STALL
V.MEM.BR.STALL/L: MEM NO, STALL

Table 3: STALL Signals

Pipelined L.C-3b

= http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-Ic3b-pipelining.pdf

37

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

End of Pipelining the I.C-3b

Questions to Ponder

What is the role of the hardware vs. the software in data
dependence handling?

o Software based interlocking

o Hardware based interlocking

o Who inserts/manages the pipeline bubbles?
a

Who finds the independent instructions to fill “empty” pipeline
slots?

o What are the advantages/disadvantages of each?

39

Questions to Ponder

What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

o Software based instruction scheduling - static scheduling
o Hardware based instruction scheduling - dynamic scheduling

40

More on Software vs. Hardware

Software based scheduling of instructions - static scheduling

o Compiler orders the instructions, hardware executes them in
that order

o Contrast this with dynamic scheduling (in which hardware will
execute instructions out of the compiler-specified order)

o How does the compiler know the latency of each instruction?

What information does the compiler not know that makes
static scheduling difficult?

o Answer: Anything that is determined at run time
Variable-length operation latency, memory addr, branch direction

How can the compiler alleviate this (i.e., estimate the
unknown)?

o Answer: Profiling
41

Control Dependence Handling

Review: Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
a2 How do we determine the next Fetch PC?

In fact, how do we even know whether or not the fetched

instruction is a control-flow instruction?
43

Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently

44

How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address

Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

45

Stall Fetch Until Next PC 1s Available: Good Idea?

Inst, [IF][__ID][ALU][MEM][WB
Inst R IF ALU|[MEM][wB

Inst, |F IDf| ALU
Inst, - |F
Inst,

This is the case with non-control-flow and unconditional br instructions!

Doing Better than Stalling Fetch ...

= Rather than waiting for true-dependence on PC to resolve, just
guess nextPC = PC+4 to keep fetching every cycle
Is this a good guess?

What do you lose if you guessed incorrectly?

= ~20% of the instruction mix is control flow
a0 ~50 % of “forward” control flow (i.e., if-then-else) is taken
o ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

= Expect “nextPC=PC+4” ~86% of the time, but what about the
remaining 14%?

47

Guessing NextPC = PC + 4

Always predict the next sequential instruction is the next
instruction to be executed

This is a form of next fetch address prediction and branch
prediction

How can you make this more effective?

Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

o Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

o Hardware: ??? (how can you do this in hardware...)

48

Guessing NextPC = PC + 4

= How else can you make this more effective?

= Idea: Get rid of control flow instructions (or minimize their
occurrence)

= How?

1. Get rid of unnecessary control flow instructions ->
combine predicates (predicate combining)

2. Convert control dependences into data dependences =
predicated execution

49

Predicate Combining (nof Predicated Execution)

Complex predicates are converted into multiple branches
o if((@a==Db)&& (c<d)&&(a>5000)) {..}
3 conditional branches

Problem: This increases the number of control
dependencies

Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

o Predicates stored and operated on using condition registers
o A single branch checks the value of the combined predicate

+ Fewer branches in code - fewer mipredictions/stalls
-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates
Condition registers exist in IBM RS6000 and the POWER architecture

50

Predicated Execution

Idea: Convert control dependence to data dependence

Suppose we had a Conditional Move instruction...
o CMOV condition, R1 €« R2

o R1 = (condition == true) ? R2 : R1

o Employed in most modern ISAs (x86, Alpha)

Code example with branches vs. CMOVs
if (@==5){b=4;}else{b=3;}

CMPEQ condition, a, 5;
CMOV condition, b < 4;
CMOV Icondition, b < 3;

51

Conditional Execution in ARM

Same as predicated execution

Every instruction is conditionally executed

52

Predicated Execution

Eliminates branches - enables straight line code (i.e.,
larger basic blocks in code)

Advantages
o Always-not-taken prediction works better (no branches)

o Compiler has more freedom to optimize code (no branches)
control flow does not hinder inst. reordering optimizations
code optimizations hindered only by data dependencies

Disadvantages

a Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

o Requires additional ISA support

Can we eliminate all branches this way?
53

Predicated Execution

We will get back to this...

Some readings (optional):
a Allen et al., "Conversion of control dependence to data
dependence,” POPL 1983.

o Kim et al., "Wish Branches: Combining Conditional Branching

and Predication for Adaptive Predicated Execution,” MICRO
2005.

54

