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Readings for Next Few Lectures

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 
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Data Dependence Handling: 

More Depth & Implementation
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Remember: Data Dependence Types
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Flow dependence
r3  r1 op  r2 Read-after-Write
r5  r3 op  r4 (RAW)

Anti dependence
r3  r1 op  r2 Write-after-Read
r1  r4 op  r5 (WAR)

Output-dependence
r3  r1 op  r2 Write-after-Write
r5  r3 op  r4 (WAW)
r3  r6 op  r7



How to Handle Data Dependences

 Anti and output dependences are easier to handle 

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect
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RAW Dependence Handling

 Following flow dependences lead to conflicts in the 5-stage 
pipeline
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Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict 
between 2 data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?
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R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF



Safe and Unsafe Movement of Pipeline
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i:rk_

j:_rk Reg Read

Reg Write

iOj

stage X

stage Y

dist(i,j)   dist(X,Y)  ??

dist(i,j)  > dist(X,Y)  ??

RAW Dependence

i:_rk

j:rk_ Reg Write

Reg Read

iAj

WAR Dependence

i:rk_

j:rk_ Reg Write

Reg Write

iDj

WAW Dependence

dist(i,j)   dist(X,Y)  Unsafe to keep j moving

dist(i,j)  > dist(X,Y)  Safe



RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

What about WAW and WAR dependence?

What about memory data dependence?
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R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF



Pipeline Stall: Resolving Data Dependence
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Stall==make the dependent instruction 
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages



How to Implement Stalling

 Stall

 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one 
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Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, must stall when IB in ID stage wants to read a 
register to be written by IA in EX, MEM or WB stage
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Stall Conditions

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to advance 
normally during stall cycles
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Impact of Stall on Performance

 Each stall cycle corresponds to one lost cycle in which no 
instruction can be completed

 For a program with N instructions and S stall cycles, 
Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is 
resolved, i2 and i3 must be okay too
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Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... }
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addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls



Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 “add rx ry rz” literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a communication abstraction

 “add rx ry rz” means 1. get the results of the last instructions to 
define the values of RF[ry] and RF[rz], respectively, and 2. until 
another instruction redefines RF[rx], younger instructions that refer 
to RF[rx] should use this instruction’s result

 What matters is to maintain the correct “dataflow” between 
operations, thus
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ID ID IDIF ID

WBIF ID EX MEMadd ra r- r-

addi  r- ra r- MEMIF EX WB



Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW 
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by IA in 
EX, MEM or WB stage, then the operand required by IB is not yet 
in RF

 retrieve operand from datapath instead of the RF

 retrieve operand from the youngest definition if multiple 
definitions are outstanding
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Data Forwarding Paths (v1)
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Data Forwarding Paths (v2)
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Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

forward operand from WB stage // dist=2

else

use AEX (operand from register file) // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’t use_rs( ) appear in the forwarding logic?
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What does the above not take into account?



Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an immediately 
preceding LW instruction requires a stall
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R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB



Sample Assembly, No Forwarding (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... }
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addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls



Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { ...... }
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addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
nop
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:



Pipelining the LC-3b
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Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence
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An Example LC-3b Pipeline
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Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be 
used in pipelined datapath (can be propagated to stages later 
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of 
dependencies
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Control Store in a Pipelined Machine
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 Pipeline stall: Pipeline does not move because an operation 
in a stage cannot complete

 Stall Signals: Ensure the pipeline operates correctly in the 
presence of such an operation

 Why could an operation in a stage not complete?

Stall Signals

36



Pipelined LC-3b

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-lc3b-pipelining.pdf
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End of Pipelining the LC-3b
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Questions to Ponder

 What is the role of the hardware vs. the software in data 
dependence handling?

 Software based interlocking 

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline 
slots?

 What are the advantages/disadvantages of each?
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Questions to Ponder

 What is the role of the hardware vs. the software in the 
order in which instructions are executed in the pipeline?

 Software based instruction scheduling  static scheduling

 Hardware based instruction scheduling  dynamic scheduling
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More on Software vs. Hardware
 Software based scheduling of instructions  static scheduling

 Compiler orders the instructions, hardware executes them in 
that order

 Contrast this with dynamic scheduling (in which hardware will 
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes 
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction 

 How can the compiler alleviate this (i.e., estimate the 
unknown)?

 Answer: Profiling
41



Control Dependence Handling
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Review: Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched 
instruction is a control-flow instruction?
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Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Different branch types can be handled differently



How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Stall Fetch Until Next PC is Available: Good Idea?
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Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, just 
guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what about the 
remaining 14%?
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Guessing NextPC = PC + 4 

 Always predict the next sequential instruction is the next 
instruction to be executed

 This is a form of next fetch address prediction and branch 
prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential 
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely 
next instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…) 
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Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their 
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution
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Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000))  { … }

 3 conditional branches

 Problem: This increases the number of control 
dependencies

 Idea: Combine predicate operations to feed a single branch 
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture
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Predicated Execution

 Idea: Convert control dependence to data dependence

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;
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Conditional Execution in ARM

 Same as predicated execution

 Every instruction is conditionally executed
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Predicated Execution

 Eliminates branches  enables straight line code (i.e., 

larger basic blocks in code)

 Advantages

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but 
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
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Predicated Execution

 We will get back to this…

 Some readings (optional):

 Allen et al., “Conversion of control dependence to data 
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional Branching 
and Predication for Adaptive Predicated Execution,” MICRO 
2005.
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