
18-447

Computer Architecture

Lecture 8: Data and Control

Dependence Handling

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/31/2014

Readings for Next Few Lectures

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

2

Data Dependence Handling:

More Depth & Implementation

3

Remember: Data Dependence Types

4

Flow dependence
r3  r1 op r2 Read-after-Write
r5  r3 op r4 (RAW)

Anti dependence
r3  r1 op r2 Write-after-Read
r1  r4 op r5 (WAR)

Output-dependence
r3  r1 op r2 Write-after-Write
r5  r3 op r4 (WAW)
r3  r6 op r7

How to Handle Data Dependences

 Anti and output dependences are easier to handle

 write to the destination in one stage and in program order

 Flow dependences are more interesting

 Five fundamental ways of handling flow dependences

 Detect and wait until value is available in register file

 Detect and forward/bypass data to dependent instruction

 Detect and eliminate the dependence at the software level

 No need for the hardware to detect dependence

 Predict the needed value(s), execute “speculatively”, and verify

 Do something else (fine-grained multithreading)

 No need to detect

5

RAW Dependence Handling

 Following flow dependences lead to conflicts in the 5-stage
pipeline

6

MEM

WBIF ID

IF

EX

ID

MEM

EX WB

addi ra r- -

addi r- ra -

MEMIF ID EX

IF ID EX

IF ID

IF

addi r- ra -

addi r- ra -

addi r- ra -

addi r- ra -

?

Register Data Dependence Analysis

 For a given pipeline, when is there a potential conflict
between 2 data dependent instructions?

 dependence type: RAW, WAR, WAW?

 instruction types involved?

 distance between the two instructions?
7

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Safe and Unsafe Movement of Pipeline

8

i:rk_

j:_rk Reg Read

Reg Write

iOj

stage X

stage Y

dist(i,j)  dist(X,Y)  ??

dist(i,j) > dist(X,Y)  ??

RAW Dependence

i:_rk

j:rk_ Reg Write

Reg Read

iAj

WAR Dependence

i:rk_

j:rk_ Reg Write

Reg Write

iDj

WAW Dependence

dist(i,j)  dist(X,Y)  Unsafe to keep j moving

dist(i,j) > dist(X,Y)  Safe

RAW Dependence Analysis Example

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

What about WAW and WAR dependence?

What about memory data dependence?

9

R/I-Type LW SW Br J Jr

IF

ID read RF read RF read RF read RF read RF

EX

MEM

WB write RF write RF

Pipeline Stall: Resolving Data Dependence

10

IF

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

IF ID MEM

IF ID ALU

IF ID

Insti

Instj

Instk

Instl

WB

WB

i: rx  _
j: _  rx dist(i,j)=1

i

j

Insth

WB

MEM

ALU

i: rx  _
bubble
j: _  rx dist(i,j)=2

WB

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

t0 t1 t2 t3 t4 t5

MEM

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

IF

IF ID ALU

IF ID
i: rx  _
bubble
bubble
j: _  rx dist(i,j)=3

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID ALU

IF ID

t0 t1 t2 t3 t4 t5

IF

MEM

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

i: rx  _
bubble
bubble
bubble
j: _  rx dist(i,j)=4

IF

IF ID ALU MEM

IF ID ALU MEM

IF ID

IF

t0 t1 t2 t3 t4 t5

ALU

ID

Insti

Instj

Instk

Instl

WB

WBi

j

Insth

ID

IF

ID

IF

ID

IF

Stall==make the dependent instruction
wait until its source data value is available

1. stop all up-stream stages
2. drain all down-stream stages

How to Implement Stalling

 Stall

 disable PC and IR latching; ensure stalled instruction stays in its stage

 Insert “invalid” instructions/nops into the stage following the stalled one

11

PC

Instruction

memory

In
s
tr

u
c
ti
o

n

Add

Instruction

[20– 16]

M
e

m
to

R
e

g

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction

[15–0]

0

0

M

u

x

0

1

Add
Add

result

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Sign

extend

M

u

x

1

ALU

result

Zero

Write

data

Read

data

M

u

x

1

ALU

control

Shift

left 2

R
e

g
W

ri
te

MemRead

Control

ALU

Instruction

[15– 11]

6

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M

u

x

0

1

M
e

m
W

ri
te

Address

Data

memory

Address

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Stall Conditions

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, must stall when IB in ID stage wants to read a
register to be written by IA in EX, MEM or WB stage

12

Stall Conditions

 Helper functions

 rs(I) returns the rs field of I

 use_rs(I) returns true if I requires RF[rs] and rs!=r0

 Stall when

 (rs(IRID)==destEX) && use_rs(IRID) && RegWriteEX or

 (rs(IRID)==destMEM) && use_rs(IRID) && RegWriteMEM or

 (rs(IRID)==destWB) && use_rs(IRID) && RegWriteWB or

 (rt(IRID)==destEX) && use_rt(IRID) && RegWriteEX or

 (rt(IRID)==destMEM) && use_rt(IRID) && RegWriteMEM or

 (rt(IRID)==destWB) && use_rt(IRID) && RegWriteWB

 It is crucial that the EX, MEM and WB stages continue to advance
normally during stall cycles

13

Impact of Stall on Performance

 Each stall cycle corresponds to one lost cycle in which no
instruction can be completed

 For a program with N instructions and S stall cycles,
Average CPI=(N+S)/N

 S depends on

 frequency of RAW dependences

 exact distance between the dependent instructions

 distance between dependences

suppose i1,i2 and i3 all depend on i0, once i1’s dependence is
resolved, i2 and i3 must be okay too

14

Sample Assembly (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

15

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Data Forwarding (or Data Bypassing)

 It is intuitive to think of RF as state

 “add rx ry rz” literally means get values from RF[ry] and RF[rz]
respectively and put result in RF[rx]

 But, RF is just a part of a communication abstraction

 “add rx ry rz” means 1. get the results of the last instructions to
define the values of RF[ry] and RF[rz], respectively, and 2. until
another instruction redefines RF[rx], younger instructions that refer
to RF[rx] should use this instruction’s result

 What matters is to maintain the correct “dataflow” between
operations, thus

16

ID ID IDIF ID

WBIF ID EX MEMadd ra r- r-

addi r- ra r- MEMIF EX WB

Resolving RAW Dependence with Forwarding

 Instructions IA and IB (where IA comes before IB) have RAW
dependence iff

 IB (R/I, LW, SW, Br or JR) reads a register written by IA (R/I or LW)

 dist(IA, IB)  dist(ID, WB) = 3

 In other words, if IB in ID stage reads a register written by IA in
EX, MEM or WB stage, then the operand required by IB is not yet
in RF

 retrieve operand from datapath instead of the RF

 retrieve operand from the youngest definition if multiple
definitions are outstanding

17

Data Forwarding Paths (v1)

18

Registers

M

u

x M

u

x

ALU

ID/EX MEM/WB

Data

memory

M

u

x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M

u

x

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

dist(i,j)=3

internal
forward?

[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Forwarding Paths (v2)

19

Registers

M

u

x M

u

x

ALU

ID/EX MEM/WB

Data

memory

M

u

x

Forwarding

unit

EX/MEM

b. With forwarding

ForwardB

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

ForwardA

M

u

x

ALU

ID/EX MEM/WB

Data

memory

EX/MEM

a. No forwarding

Registers

M

u

x

Assumes RF forwards internally[Based on original figure from P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

dist(i,j)=1
dist(i,j)=2

dist(i,j)=3

Data Forwarding Logic (for v2)

if (rsEX!=0) && (rsEX==destMEM) && RegWriteMEM then

forward operand from MEM stage // dist=1

else if (rsEX!=0) && (rsEX==destWB) && RegWriteWB then

forward operand from WB stage // dist=2

else

use AEX (operand from register file) // dist >= 3

Ordering matters!! Must check youngest match first

Why doesn’t use_rs() appear in the forwarding logic?

20

What does the above not take into account?

Data Forwarding (Dependence Analysis)

 Even with data-forwarding, RAW dependence on an immediately
preceding LW instruction requires a stall

21

R/I-Type LW SW Br J Jr

IF

ID use

EX
use

produce use use use

MEM produce (use)

WB

Sample Assembly, No Forwarding (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

22

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

3 stalls

3 stalls

3 stalls

3 stalls

3 stalls
3 stalls

Sample Assembly, Revisited (P&H)

 for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) { }

23

addi $s1, $s0, -1
for2tst: slti $t0, $s1, 0

bne $t0, $zero, exit2
sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
nop
slt $t0, $t4, $t3
beq $t0, $zero, exit2
.........
addi $s1, $s1, -1
j for2tst

exit2:

Pipelining the LC-3b

24

Pipelining the LC-3b

 Let’s remember the single-bus datapath

 We’ll divide it into 5 stages

 Fetch

 Decode/RF Access

 Address Generation/Execute

 Memory

 Store Result

 Conservative handling of data and control dependences

 Stall on branch

 Stall on flow dependence

25

An Example LC-3b Pipeline

27

28

29

30

31

32

Control of the LC-3b Pipeline

 Three types of control signals

 Datapath Control Signals

 Control signals that control the operation of the datapath

 Control Store Signals

 Control signals (microinstructions) stored in control store to be
used in pipelined datapath (can be propagated to stages later
than decode)

 Stall Signals

 Ensure the pipeline operates correctly in the presence of
dependencies

33

34

Control Store in a Pipelined Machine

35

 Pipeline stall: Pipeline does not move because an operation
in a stage cannot complete

 Stall Signals: Ensure the pipeline operates correctly in the
presence of such an operation

 Why could an operation in a stage not complete?

Stall Signals

36

Pipelined LC-3b

 http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=18447-lc3b-pipelining.pdf

37

http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf
http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?media=18447-lc3b-pipelining.pdf

End of Pipelining the LC-3b

38

Questions to Ponder

 What is the role of the hardware vs. the software in data
dependence handling?

 Software based interlocking

 Hardware based interlocking

 Who inserts/manages the pipeline bubbles?

 Who finds the independent instructions to fill “empty” pipeline
slots?

 What are the advantages/disadvantages of each?

39

Questions to Ponder

 What is the role of the hardware vs. the software in the
order in which instructions are executed in the pipeline?

 Software based instruction scheduling  static scheduling

 Hardware based instruction scheduling  dynamic scheduling

40

More on Software vs. Hardware
 Software based scheduling of instructions  static scheduling

 Compiler orders the instructions, hardware executes them in
that order

 Contrast this with dynamic scheduling (in which hardware will
execute instructions out of the compiler-specified order)

 How does the compiler know the latency of each instruction?

 What information does the compiler not know that makes
static scheduling difficult?

 Answer: Anything that is determined at run time

 Variable-length operation latency, memory addr, branch direction

 How can the compiler alleviate this (i.e., estimate the
unknown)?

 Answer: Profiling
41

Control Dependence Handling

42

Review: Control Dependence

 Question: What should the fetch PC be in the next cycle?

 Answer: The address of the next instruction

 All instructions are control dependent on previous ones. Why?

 If the fetched instruction is a non-control-flow instruction:

 Next Fetch PC is the address of the next-sequential instruction

 Easy to determine if we know the size of the fetched instruction

 If the instruction that is fetched is a control-flow instruction:

 How do we determine the next Fetch PC?

 In fact, how do we even know whether or not the fetched
instruction is a control-flow instruction?

43

Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

44

Different branch types can be handled differently

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

45

Stall Fetch Until Next PC is Available: Good Idea?

46

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IFIF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth ID ALU

IF

MEM

ID

IF

WB

ALU

IF

MEM

ID

IF

WB

ALU

IF

IF

t0 t1 t2 t3 t4 t5

Insti

Instj

Instk

Instl

Insth

This is the case with non-control-flow and unconditional br instructions!

Doing Better than Stalling Fetch …

 Rather than waiting for true-dependence on PC to resolve, just
guess nextPC = PC+4 to keep fetching every cycle

Is this a good guess?

What do you lose if you guessed incorrectly?

 ~20% of the instruction mix is control flow

 ~50 % of “forward” control flow (i.e., if-then-else) is taken

 ~90% of “backward” control flow (i.e., loop back) is taken

Overall, typically ~70% taken and ~30% not taken
[Lee and Smith, 1984]

 Expect “nextPC = PC+4” ~86% of the time, but what about the
remaining 14%?

47

Guessing NextPC = PC + 4

 Always predict the next sequential instruction is the next
instruction to be executed

 This is a form of next fetch address prediction and branch
prediction

 How can you make this more effective?

 Idea: Maximize the chances that the next sequential
instruction is the next instruction to be executed

 Software: Lay out the control flow graph such that the “likely
next instruction” is on the not-taken path of a branch

 Hardware: ??? (how can you do this in hardware…)

48

Guessing NextPC = PC + 4

 How else can you make this more effective?

 Idea: Get rid of control flow instructions (or minimize their
occurrence)

 How?

1. Get rid of unnecessary control flow instructions 

combine predicates (predicate combining)

2. Convert control dependences into data dependences 

predicated execution

49

Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction instead of having one branch for each

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

-- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

50

Predicated Execution

 Idea: Convert control dependence to data dependence

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;

51

Conditional Execution in ARM

 Same as predicated execution

 Every instruction is conditionally executed

52

Predicated Execution

 Eliminates branches  enables straight line code (i.e.,

larger basic blocks in code)

 Advantages

 Always-not-taken prediction works better (no branches)

 Compiler has more freedom to optimize code (no branches)

 control flow does not hinder inst. reordering optimizations

 code optimizations hindered only by data dependencies

 Disadvantages

 Useless work: some instructions fetched/executed but
discarded (especially bad for easy-to-predict branches)

 Requires additional ISA support

 Can we eliminate all branches this way?
53

Predicated Execution

 We will get back to this…

 Some readings (optional):

 Allen et al., “Conversion of control dependence to data
dependence,” POPL 1983.

 Kim et al., “Wish Branches: Combining Conditional Branching
and Predication for Adaptive Predicated Execution,” MICRO
2005.

54

