18-447

Computer Architecture
Lecture 7: Pipelining

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/29/2014

Can We Do Better than Microprogrammed Designs?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

a “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening

Can We Use the Idle Hardware to Improve Concurrency?

Goal: Concurrency - throughput (more “work” completed
in one cycle)

Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

a Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...

Example: |

Hxecution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F |D|E

W

i

Time

pelined: 4 cycles per 4 instructions (steady state)

F (D |E

W

Is life always this beautiful?

| -

F|D|E |W

Time

The Laundry Analogy

8 9 10 11 12 1 2AM

° llll
v

= “place one dirty load of clothes in the washer”
= “when the washer is finished, place the wet load in the dryer”
= “when the dryer is finished, take out the dry load and fold”

= “when folding is finished, ask your roommate (??) to put the clothes

away”’ .
- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry

) 6 PM 7 8 9 10 11 12 1 2 AM
T'me_m_ﬁ_ﬁ_ﬁ_'

TaskO
order 5

B

C

— ==
0 =l

6 PM 7 8 9 10 11 12 1 2AM

Timem 1 1 | | |

TaskO
order

'@% - 4 loads of laundry in parallel
° 'ﬁ.. - no additional resources

/—3 =
_,
 —
—/

C = - throughput increased by 4
’ '. - latency per load is the same

Based on ori

iginal figure

from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

-

Pipelining Multiple Loads of Laundry: In Practice

6 PM 7 8 9 10 11 12 1 2 AM

T e — [

the slowest step decides throughput

8

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelining Multiple Loads of Laundry: In Practice

Throughput restored (2 loads per hour) using 2 dryers
9

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
10

Ideal Pipelining

L, BW="(2/T)

. , combinational logic (F,D,E,M,W) L, BW=~(1/T)
T psec

— * T/2 ps (F,D,E) * T/2 ps (M,W)

| LT3 | /3 \E
ps (F,D) ps (E,M) ps (M,W)

> BW="~(3/T)

11

More Realistic Pipeline: Throughput

Nonpipelined version with delay T
BW = 1/(T+S) where S = latch delay

k-stage pipelined version
BW, stage = 1 [/ (T/k +S)
BW_ .. =1/(1gatedelay+S)

T/k

— > » | —> 6 o o6 o6 o o6 o6 —)

pS

T/k
ps

12

More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G
Cost = G+L where L = latch cost

— » G gates "

k-stage pipelined version
Costy 1age = G + LK

N » G/k > —> o o 0 0o 0 0 0o —» G/k

13

Pipelining Instruction Processing

14

Remember: The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

o~ W

15

Remember the Single-Cycle Uarch

Instruction [25—0] | % Jump address [31-0]

\ \
2 @28

PC+4 [31-28]

Add

Read
address

InstructionO]
[31-0]

Instruction

memory

Instruction [31-26]
—————————

Instruction [25—-21]

Instruction [20— 16]

L.

i
u

Instruction [15—11] 1X
—_

Instruction [15—-0]

Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]

0 |
M M
Pr— | u u
X X
ALU
Add result \l/ 0
Jump
Read[
register 1 Readl
ReadD data 1
register 2
~Registers Readll ALU ALu |
Writel) data 2 0 result Address Readll 7
register M data M
u
Writed X u
| data 1 Datal] X
_ memory 0
Writed
bcond”| gata
16 . 32
\ SignOf\
N Tlextend | M
Instruction [5- 0] r
— » T >

— BW="(1/T)

16

Dividing Into Stages

200ps 100ps 200ps 200ps 100ps
IF: Instruction fetch ID: Instruction decode/] EX: Execute/O MEM: Memory access | WB: Write back
register file read address calculation
0
M{
ul]
X
- ignore
........... for now
Add “
4
ReadD
—| PC Address register 1 Readl
Readd datal prssrsasrrannnas
register 2 Zero > :
Instruction Registers d ALU H :
Write[J daRtgaZ ’ re/s\tILt‘| u Address %e?d i 1
Instruction] register batal) ata M H RF
memory #X‘g;e'] memory)L: - erte :
Write 0 :
data
. [\ } o
\ SignO|_\

\@\

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

17

Instruction Pipeline Throughput

Programl]
executiond _ 2 200 400 600 800 1000 1200 1400 1800
orderr] Time T T T T T T 1 I >
(in instructions)
we 10060) [feegl sy | 22
< > Instruction Datal
Iw $2, 200($0) 800ps fetch Regl ALU access
< > Instruction(]]
lw $3, 300($0) 800ps fetch
A 4
800ps
ProgramyJ 5, 200 400 600 800 1000 1200 1400
execution[] . _
order(] Time ! ! ! ! ! |]
(in instructions)
Instructi Datall
lw $1, 100($0) nsf;lscchlon Reg| ALU acc?gzs Reg
w $2, 200($0) Instruction Re ALU Datal Re
’ 200ps fetch 9 access 9
<+—™Instruction] Datal
w $3, 300($0) 200ps | fetch Regl ALV | ccess |Re9

v

200ps

200ps

200ps

200ps

— P P P P—»
200ps

5-stage speedup is 4, not 5 as predicted by the ideal model. Why?

18

Enabling Pipelined Processing: Pipeline Registers

6 No resource is used by more than 1 stage!
X
1
IF/ID ID/EX EX/MEM MEM/WB
v
b=
Add +D 1S
O o
4 o [
§ Raster 1
— Address E= I
(@) 34 Read
o % Read(] data 1 _._,E
Instructiond L = reglstekZ) 8 ™ =
memory Lo egisters Read] Read[]] o
o Write[data 2 < Address s O (1
—_ register ata E M
| WriteO mgreﬁsr?/ g
data
\éVriteD 0
ata
L > =
N gl o 5
E J <

T/k T/k

—> > > —» © 0 0 0 ¢ o0 o —)p

ps ps

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

'

Pipelined Operation Example

All instruction classes must follow the same path and timing

through the pipeline stages. Any performance impact?
pr— 0
M
u
X
r 1
IF/ID EX/MEM MEM/WB
Add
4
c ReadO
—| PC Address -% register 1 Readl]
% Readl] data 1 R
Instruction(] L, i reglstek2) >
memory egisters Read el
Write[data 2 Address —
register Datall data .
| WriteJ memory .
data
WriteO
m data
l\6 Signd 3(2 I
N @ Y

20

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Pipelined Operation Example

| sub $11, $2, $3 |

| Write back

IF/ID ID/EX EX/IMEM MEM/WB
— — L —
Add > > ‘\E
Add
4 Add result
Shift!
left 2
c Readl
| PC Address 2 register 1 Read] [\
= data 1
= Readl
InstructionC] £ register 2 zero o
=] — Registers Read([] ALU aALup
memory Write[) data 2 I m result Address Read —»m
1 register M | data
L] L] L]
Is life always this beautiful?
16 / . \ 32
\ SignO]_\
X @ X
Clock 6 - L s -

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

[lustrating Pipeline Operation: Operation View

Inst,
Inst,
Inst,
Inst,
Inst,

To 5] 15 U3 Ly s —

IF ID EX |[MEM]|[wWB
IF ID EX |[MEM]|[wWB
IF ID EX |[MEM]|[wWB

IF ID EX [|[MEM|/WB <

IF ID EX ||MEM

IF ID EX <

IF D <

IF =2

22

[lustrating Pipeline Operation: Resource View

F |, [| P e P N A N

ID I R N I P PO I T

EX I R U N P PO N A
MEM I T R Lol e |

WB s 1L | Lol |

Control Points 1n a Pipeline

PCSrc
0
MO
ugd
X
|
IF/ID ID/EX EX/MEM MEM/WB
Add ,\
Add
4 > Add result
Branch
ShiftC)
RegWrite left 2
s Readl MemWrite
PC [~8=>| Address = register 1 Readll] ,\
= data 1
2 Readl ALUSrc oS MemtoReg
Instructionl] = register 2 "
memor = — . _Registers Readln ALU ALur]
y WritelJ data2 [| result »| Address Readll]
register data
. Datall
Write
| data - memory
Write
data
Instructiond T
[15-0] 16 6 ‘
\ \ ALU
A} \ control MemRead
Instructiond
[20-16]
0
. MOl ALUOp
Instructiond ud
[15-11] X
Based on original figure from [P&H CO&D, 1
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.] RegDst

Identical set of control points as the single-cycle datapath!! 24

Control Signals in a Pipeline

= For a given instruction
0 same control signals as single-cycle, but
0 control signals required at different cycles, depending on stage
- decode once using the same logic as single-cycle and buffer control

signals until consumed e L
Instruction f
—| Control [M .| WB L
EX[— M — “|we|
IF/ID ID/EX EX/MEM MEM/WB

. orcarry relevant “instruction word/field” down the pipeline and
decode locally within each or in a previous stage

Which one is better?

Pipelined Control Signals

PCSrc

I—‘><C§O

Control

R \ IF/ID
>Add
Add
4 —’/ © >Add result g
g Shift Branch
left 2 jo]
ALUSrc ’;‘
c Read0 £ >
] " | register 1 S
PC Address 3 9 Readll] x
S)
2 | Reads data 1 o 1 || g
nstruciond L f | = regISterRze;gisters Read(] 0 ALU ALUf V >
memor . ea
y \r/ggitsetgr data 2 (I)VI result Address %%?g i 1
: u Datall l\ljl
_| WriteO X memory x
data | 1 0
WriteO
data
Instruction[l16 6
[15-0) Y A\ MemRead
A} AN
Instruction
[20-16]
0
M
Instruction u
[15-11] X
|| L
RegDst
Based on original figure from [P&H CO&D, 2/

COPYRIGHT 2004 Elsevier. ALL RIGHTS

RESERVED.]

An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
27

Instruction Pipeline: Not An Ideal Pipeline

|dentical operations ... NOT!

= different instructions do not need all stages
- Forcing different instructions to go through the same multi-function pipe

- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

= difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work
- internal fragmentation (some pipe stages are too fast but all take the
same clock cycle time)
Independent operations ... NOT!

=> instructions are not independent of each other

- Need to detect and resolve inter-instruction dependencies to ensure the
pipeline operates correctly

— Pipeline is not always moving (it stalls)
28

Issues 1n Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls

29

Causes of Pipeline S7alls

Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations

30

Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependencies dictate ordering requirements between
Instructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately

31

Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?

32

Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

a For all of them, we need to ensure semantics of the program
IS correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them

33

Flow dependence
rs <~ r,opr,
e r; op ry,

Anti dependence
s <~ r,opr,

/
Iy < I, 0P [I¢

Output-dependence

rs «—r,opr,
—

rs < g Op 1y

Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)

34

Pipelined Operation Example

e
O
Ol

=

I

| sub $11, $2, $3 |
| Write back !

IF/ID ID/EX EX/IMEM MEM/WB
— — L —
Add - ‘\E
Add
4 Add result
Shift!
left 2
c Readl
L PC| Address fi register 1 dReald I [\
= Readl ata
[} >
: £ register 2 Zero —>
Instructiont] = — Registers ALU
memory _ Read(] 5 ALUP Readt
Write[] data 2 I | result Address cadl__, | —»m
1 register M | data
[]
What if the SUB were dependent on LW?
16 / . \ 32 l
\ SignO]_\ .
A @ A
Clock 6 — - - —

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Data Dependence Handling

Readings for Next Few Lectures

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

37

How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
o Detect and wait until value is available in register file
o Detect and forward/bypass data to dependent instruction

o Detect and eliminate the dependence at the software level
No need for the hardware to detect dependence

o Predict the needed value(s), execute “speculatively”, and verify

o Do something else (fine-grained multithreading)
No need to detect

38

Interlocking

Detection of dependence between instructions in a
pipelined processor to guarantee correct execution

Software based interlocking
VS.

Hardware based interlocking

MIPS acronym?

39

Approaches to Dependence Detection (1)

Scoreboarding
o Each register in register file has a Valid bit associated with it
o An instruction that is writing to the register resets the Valid bit

o An instruction in Decode stage checks if all its source and
destination registers are Valid

Yes: No need to stall... No dependence
No: Stall the instruction

Advantage:
o Simple. 1 bit per register

Disadvantage:
o Need to stall for all types of dependences, not only flow dep.

40

Not Stalling on Anti and Output Dependences

= What changes would you make to the scoreboard to enable
this?

41

Approaches to Dependence Detection (11

Combinational dependence check logic

o Special logic that checks if any instruction in later stages is
supposed to write to any source register of the instruction that
IS being decoded

o Yes: stall the instruction/pipeline
o No: no need to stall... no flow dependence

Advantage:
o No need to stall on anti and output dependences

Disadvantage:
o Logic is more complex than a scoreboard

o Logic becomes more complex as we make the pipeline deeper

and wider (flash-forward: think superscalar execution)
42

Once You Detect the

Dependence in Hardware

What do you do afterwards?

Observation: Dependence

between two instructions is

detected before the communicated data value becomes

available

Option 1: Stall the depenc
Option 2: Stall the depenc

necessary - data forward
Option 3: ...

ent instruction right away

ent instruction only when
ing/bypassing

43

Data Forwarding/Bypassing

Problem: A consumer (dependent) instruction has to wait in
decode stage until the producer instruction writes its value
in the register file

Goal: We do not want to stall the pipeline unnecessarily

Observation: The data value needed by the consumer
instruction can be supplied directly from a later stage in the
pipeline (instead of only from the register file)

Idea: Add additional dependence check logic and data
forwarding paths (buses) to supply the producer’s value to
the consumer right after the value is available

Benefit: Consumer can move in the pipeline until the point
the value can be supplied - less stalling

44

A Special Case of Data Dependence

Control dependence
o Data dependence on the Instruction Pointer / Program Counter

45

Control Dependence

Question: What should the fetch PC be in the next cycle?

Answer: The address of the next instruction
o All instructions are control dependent on previous ones. Why?

If the fetched instruction is a non-control-flow instruction:
o Next Fetch PC is the address of the next-sequential instruction
o Easy to determine if we know the size of the fetched instruction

If the instruction that is fetched is a control-flow instruction:
2 How do we determine the next Fetch PC?

In fact, how do we know whether or not the fetched

instruction is a control-flow instruction?
46

