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As signments

Lab 2 due next Friday (start early)
HW1 due next week

HWO
o Make sure you submitted this!



Extra Credit for Lab Assignment 2

Complete your normal (single-cycle) implementation first, and
get it checked off in lab.

Then, implement the MIPS core using a microcoded approach
similar to what we will discuss in class.

We are not specifying any particular details of the microcode
format or the microarchitecture; you can be creative.

For the extra credit, the microcoded implementation should
execute the same programs that your ordinary
implementation does, and you should demo it by the normal
lab deadline.

You will get maximum 4% of course grade
Document what you have done and demonstrate well



Readings for Today

P&P, Revised Appendix C
o Microarchitecture of the LC-3b
o Appendix A (LC-3b ISA) will be useful in following this

P&H, Appendix D
o Mapping Control to Hardware

Optional

o Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer Inaugural
Conf., 1951.



Readings for Next Lecture

= Pipelining
o P&H Chapter 4.5-4.8

= Pipelined LC-3b Microarchitecture

a http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=18447-lc3b-pipelining.pdf
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Quick Recap ot Past Five Lectures

Basics
o Why Computer Architecture
a Levels of Transformation

o Memory Topics: DRAM Refresh and Memory Performance
Attacks

ISA Tradeoffs
Single-Cycle Microarchitectures
Multi-Cycle Microarchitectures

Performance Analysis
o Amdahl’s Law

Microarchitecture Design Principles



Microarchitecture Design Principles

Critical path design
o Find the maximum combinational logic delay and decrease it

Bread and butter (common case) design

o Spend time and resources on where it matters
i.e., improve what the machine is really designed to do

o Common case vs. uncommon case

Balanced design
o Balance instruction/data flow through hardware components
o Balance the hardware needed to accomplish the work

How does a single-cycle microarchitecture fare in light of
these principles?



Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

o Determine clock cycle time independently of instruction
processing time
o Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different



A Multi-Cycle Microarchitecture
A Closer ook




How Do We Implement This?

Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

The concept of microcoded/microprogrammed machines

Realization

o One can implement the “process instruction” step as a finite
state machine that sequences between states and eventually
returns back to the “fetch instruction” state

o A state is defined by the control signals asserted in it
o Control signals for the next state determined in current state
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The Instruction Processing Cycle

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

o oo 0o 0O O O
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A Basic Multi-Cycle Microarchitecture

= Instruction processing cycle divided into "states”
= A stage in the instruction processing cycle can take multiple states

= A multi-cycle microarchitecture sequences from state to
state to process an instruction

= The behavior of the machine in a state is completely determined by
control signals in that state

= The behavior of the entire processor is specified fully by a
finite state machine

= In a state (clock cycle), control signals control
= How the datapath should process the data
= How to generate the control signals for the next clock cycle

12



Microprogrammed Control Terminology

Control signals associated with the current state
o Microinstruction

Act of transitioning from one state to another

o Determining the next state and the microinstruction for the
next state

o Microsequencing

Control store stores control signals for every possible state
o Store for microinstructions for the entire FSM

Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

13



What Happens In A Clock Cycle?

The control signals (microinstruction) for the current state
control

o Processing in the data path

o Generation of control signals (microinstruction) for the next
cycle

o See Supplemental Figure 1 (next slide)

Datapath and microsequencer operate concurrently

Question: why not generate control signals for the current
cycle in the current cycle?

o This will lengthen the clock cycle
o Why would it lengthen the clock cycle?

o See Supplemental Figure 2
14
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A Bad Clock Cycle!
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A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
% 35
Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



What Determines Next-State Control Signals?

What is happening in the current clock cycle

o See the 9 control signals coming from “Control” block
What are these for?

The instruction that is being executed
o IR[15:11] coming from the Data Path

Whether the condition of a branch is met, if the instruction
being processed is a branch

o BEN bit coming from the datapath

Whether the memory operation is completing in the current
cycle, if one is in progress
a R bit coming from memory
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A Simple LLC-3b Control and Datapath

Memory, /O =] 3
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Data, i Data
Inst. 16
R . 16 Addr
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. 7
=
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(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



The State Machine tor Multi-Cycle Processing

The behavior of the LC-3b uarch is completely determined by
a the 35 control signals and
o additional 7 bits that go into the control logic from the datapath

35 control signals completely describe the state of the control
structure

We can completely describe the behavior of the LC-3b as a
state machine, i.e. a directed graph of

o Nodes (one corresponding to each state)
o Arcs (showing flow from each state to the next state(s))

20



An 1.C-3b State Machine

Patt and Patel, App C, Figure C.2

Each state must be uniquely specified
o Done by means of state variables

31 distinct states in this LC-3b state machine
o Encoded with 6 state variables

Examples

o State 18,19 correspond to the beginning of the instruction
processing cycle

o Fetch phase: state 18, 19 - state 33 > state 35
o Decode phase: state 32
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PC <! PC+2

32

1011
BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

BR
DR<! SR1+OP2* IJMP
set CC JSR
LDB LDw STB -
To 18
DR<! SR1&0OP2*
1
set CC €C<. PC+LSHF(0ff9,1)
To 18 9
DR<! SR1 XOR OP2* To 18
set CC
To 18 - 15

6AR<! LSH F(ZEXT[IR[7:0]],9 To18

1010

MDR<! M[MAR]
R7<! PC

R7<! PC
PC<! BaseR

R7<! PC
To'18 \ PC<! PC+LSHF(off11,1)

13
R<! SH F(SR,A,D,amt4D

To ISCD

set CC To 18
/ 14 2 6 7 3
To 18 DR<! PC+LSHF(off9, 1)
set CC CMAR<! B+off6) G/IAR<! B+LSHF(off6,1D G/IAR<! B+LSHF(off6,1) CMAR<! B+off6)
To 18
29 A 4 25 \ 4 y 23 4
NOTES CG/IDFK! M[MAR[]S:I]’OD G/IDR<! MI[MAR] MDR<! SR
B+off6 : Base + SEXT[offset6] —_—
PC+0ff9 : PC + SEXT[offset9] R Ry >7 v R R 16 .
*OP2 may be SR2 or SEXT[imm5] 31 : DR<! MDR
** [15:8] or [7:0] depending on GR<- SEXT[BYTEDATA} ( : ) (M[MAR]<! MDR h P@[MAR]Q MDR*ﬁ
set CC set CC
MAR[O]
R R $ R R

To 18 To 18 To 18 To 19



LLC-3b State Machine: Some Questions

How many cycles does the fastest instruction take?
How many cycles does the slowest instruction take?
Why does the BR take as long as it takes in the FSM?

What determines the clock cycle?
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[LC-3b Datapath

Patt and Patel, App C, Figure C.3

Single-bus datapath design

o At any point only one value can be “gated” on the bus (i.e.,
can be driving the bus)

o Advantage: Low hardware cost: one bus

o Disadvantage: Reduced concurrency — if instruction needs the
bus twice for two different things, these need to happen in
different states

Control signals (26 of them) determine what happens in the
datapath in one clock cycle

o Patt and Patel, App C, Table C.1
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Signal Name  Signal Values
LDMAFRS: NO,LOAD
LDMDES: NO,LOAD
LDIR/A: KO,LOAD
LDEBEN/l: NKO,LOAD
LDEREG/: KO, LOAD
LDCC/l: NO,LOAD
LDPCAl: KO, LOAD
GatePC/l: NO,YES
GateMDE/: N0, YES
Gate AT/l  NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO,YES
PCML/2: PCH2 select po+-2
BUS ;select value from bus
ADDER ;select output of address adder
DEMUXM: 119 sdestination TR[11:9]
R7 ;destination B7
SEIMUXE: 11.9 source TR[11:9]
B6 source IR[3:6]
ADDRIMUX/:  PC, BaseR
ADDRIMUXZ: ZERO :select the value zero
offsets select SEXTIR[5:0]]
PCoffsetd select SEXTIR[E:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX: 70 select LSHF(ZEXTIR[T:07].1)
ADDER ;select oufput of address adder
ALUEK/Z: ADD, AND, XOR, PASSA
MIOEN/: NO.YES
EW/l: ED WE
DATA SIZE1: BYTE, WOED
L5SHF1/1: NO,YES

Table C.1: Data path control signals



[LC-3b Datapath: Some Questions

How does instruction fetch happen in this datapath
according to the state machine?

What is the difference between gating and loading?

Is this the smallest hardware you can design?
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LLC-3b Microprogrammed Control Structure

Patt and Patel, App C, Figure C.4

Three components:
o Microinstruction, control store, microsequencer

Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

Each microinstruction is stored in a unigue location in the
control store (a special memory structure)

Unigue location:. address of the state corresponding to the
microinstruction
o Remember each state corresponds to one microinstruction

Microsequencer determines the address of the next

microinstruction (i.e., next state)
29



IR[15:11]
BEN

!

Microsequencer
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Control Store

2% x 35

//35

Microinstruction

A9 %26

(J, COND, IRD)




0,0,IR[15:12]

RE

BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[O]
<] IRD

ia

Address of Next State



000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)



LLC-3b Microsequencer

Patt and Patel, App C, Figure C.5

The purpose of the microsequencer is to determine the
address of the next microinstruction (i.e., next state)

Next address depends on 9 control signals

Signal Name  Signal Values

1/6:
COND/2: CONDqp ‘Unconditional
COND :Memory Ready
CONDg :Branch
COND3 :Addressing Mode

IRD/1: NO,YES

Table C.2: Microsequencer control signals
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0,0,IR[15:12]

RE

BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[O]
<] IRD

ia

Address of Next State



The Microsequencer: Some Questions

When is the IRD signal asserted?

What happens if an illegal instruction is decoded?
What are condition (COND) bits for?

How is variable latency memory handled?

How do you do the state encoding?

o Minimize number of state variables

o Start with the 16-way branch

o Then determine constraint tables and states dependent on COND
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An Exercise 1n
Microprogramming
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Handouts

= 7/ pages of Microprogrammed LC-3b design

= http://www.ece.cmu.edu/~eced447/s14/doku.php?id=techd
0CS

= http://www.ece.cmu.edu/~ece447/s14/lib/exe/fetch.php?m
edia=Ic3b-figures.pdf
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A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
% 35
Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



PC <! PC+2

32

1011
BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

BR
DR<! SR1+OP2* IJMP
set CC JSR
LDB LDw STB -
To 18
DR<! SR1&0OP2*
1
set CC €C<. PC+LSHF(0ff9,1)
To 18 9
DR<! SR1 XOR OP2* To 18
set CC
To 18 - 15

6AR<! LSH F(ZEXT[IR[7:0]],9 To18

1010

MDR<! M[MAR]
R7<! PC

R7<! PC
PC<! BaseR

R7<! PC
To'18 \ PC<! PC+LSHF(off11,1)

13
R<! SH F(SR,A,D,amt4D

To ISCD

set CC To 18
/ 14 2 6 7 3
To 18 DR<! PC+LSHF(off9, 1)
set CC CMAR<! B+off6) G/IAR<! B+LSHF(off6,1D G/IAR<! B+LSHF(off6,1) CMAR<! B+off6)
To 18
29 A 4 25 \ 4 y 23 4
NOTES CG/IDFK! M[MAR[]S:I]’OD G/IDR<! MI[MAR] MDR<! SR
B+off6 : Base + SEXT[offset6] —_—
PC+0ff9 : PC + SEXT[offset9] R Ry >7 v R R 16 .
*OP2 may be SR2 or SEXT[imm5] 31 : DR<! MDR
** [15:8] or [7:0] depending on GR<- SEXT[BYTEDATA} ( : ) (M[MAR]<! MDR h P@[MAR]Q MDR*ﬁ
set CC set CC
MAR[O]
R R $ R R

To 18 To 18 To 18 To 19
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Signal Name  Signal Values
LDMAFRS: NO,LOAD
LDMDES: NO,LOAD
LDIR/A: KO,LOAD
LDEBEN/l: NKO,LOAD
LDEREG/: KO, LOAD
LDCC/l: NO,LOAD
LDPCAl: KO, LOAD
GatePC/l: NO,YES
GateMDE/: N0, YES
Gate AT/l  NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO,YES
PCML/2: PCH2 select po+-2
BUS ;select value from bus
ADDER ;select output of address adder
DEMUXM: 119 sdestination TR[11:9]
R7 ;destination B7
SEIMUXE: 11.9 source TR[11:9]
B6 source IR[3:6]
ADDRIMUX/:  PC, BaseR
ADDRIMUXZ: ZERO :select the value zero
offsets select SEXTIR[5:0]]
PCoffsetd select SEXTIR[E:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX: 70 select LSHF(ZEXTIR[T:07].1)
ADDER ;select oufput of address adder
ALUEK/Z: ADD, AND, XOR, PASSA
MIOEN/: NO.YES
EW/l: ED WE
DATA SIZE1: BYTE, WOED
L5SHF1/1: NO,YES

Table C.1: Data path control signals



IR[15:11]
BEN
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0,0,IR[15:12]

RE
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000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)



0,0,IR[15:12]

RE

BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[O]
<] IRD
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Address of Next State



End of the Exercise in
Microprogramming
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Homework 2

You will write the microcode for the entire LC-3b as
specified in Appendix C
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Lab 2 Extra Credit

Microprogrammed ARM implementation

Exercise your creativity!
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The Microsequencer: Some Questions

When is the IRD signal asserted?

What happens if an illegal instruction is decoded?
What are condition (COND) bits for?

How is variable latency memory handled?

How do you do the state encoding?

o Minimize number of state variables

o Start with the 16-way branch

o Then determine constraint tables and states dependent on COND
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The Control Store: Some Questions

What control signals can be stored in the control store?
VS.

What control signals have to be generated in hardwired

logic?

o i.e., what signal cannot be available without processing in the
datapath?
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Variable-Latency Memory

The ready signal (R) enables memory read/write to execute
correctly

o Example: transition from state 33 to state 35 is controlled by
the R bit asserted by memory when memory data is available

Could we have done this in a single-cycle
microarchitecture?
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The Microsequencer: Advanced Questions

What happens if the machine is interrupted?
What if an instruction generates an exception?

How can you implement a complex instruction using this
control structure?

o Think REP MOVS
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The Power of Abstraction

The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

The designer can translate any desired operation to a
sequence microinstructions

All the designer needs to provide is

o The sequence of microinstructions needed to implement the
desired operation

o The ability for the control logic to correctly sequence through
the microinstructions

o Any additional datapath control signals needed (no need if the
operation can be “translated” into existing control signals)
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Let’s Do Some More Microprogramming

Implement REP MOVS in the LC-3b microarchitecture

What changes, if any, do you make to the
o state machine?

o datapath?

o control store?

0 Mmicrosequencer?

Show all changes and microinstructions
Coming up in Homework 37?
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Aside: Alignment Correction in Memory

Remember unaligned accesses

LC-3b has byte load and byte store instructions that move
data not aligned at the word-address boundary

o Convenience to the programmer/compiler

How does the hardware ensure this works correctly?
o Take a look at state 29 for LDB

o States 24 and 17 for STB

o Additional logic to handle unaligned accesses
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Aside: Memory Mapped 1/0

Address control logic determines whether the specified
address of LDx and STx are to memory or I/O devices

Correspondingly enables memory or I/O devices and sets
up muxes

Another instance where the final control signals (e.g.,
MEM.EN or INMUX/2) cannot be stored in the control store

o Dependent on address
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Advantages of Microprogrammed Control

Allows a very simple design to do powerful computation by
controlling the datapath (using a sequencer)

o High-level ISA translated into microcode (sequence of microinstructions)
o Microcode (ucode) enables a minimal datapath to emulate an ISA
o Microinstructions can be thought of a user-invisible ISA

Enables easy extensibility of the ISA
o Can support a new instruction by changing the ucode
o Can support complex instructions as a sequence of simple microinstructions

If I can sequence an arbitrary instruction then I can sequence

an arbitrary “program” as a microprogram sequence

o will need some new state (e.g. loop counters) in the microcode for sequencing
more elaborate programs
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Update of Machine Behavior

The ability to update/patch microcode in the field (after a
processor is shipped) enables

o Ability to add new instructions without changing the processor!
o Ability to “fix"” buggy hardware implementations

Examples

o IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot

o IBM System z: Similar to 370/145.

Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

o B1700 microcode can be updated while the processor is running
User-microprogrammable machine!
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Horizontal Microcode

)
-]
(O
Mi deld 5
crocode 0 ALUSFCA =
storage o
lorD n
Outputs < IRWrite e
i o+
PCWrite c
PCWriteCond o
O
- 3
. . -
n-bit uPCinput |_ 5
]
} v
\ Sequencing(]]
- Microprogram counter 9 9
AV 4 \croprog . control
Adder i
Address select logic |«
Ar A
Inputs from instructiond
register opcode field
[Based on original figure from P&H CO&D, COPYRIGHT 61

2004 Elsevier. ALL RIGHTS RESERVED.]

Control Store: 2"x k bit (not including sequencing)



Vertical Microcode

1-bit signal means do this RT
"""""" (or combination of RTs)
Microcodel] - “PC <= PC+4”
storage “PC < ALUOUt”
“PC«PC[31:28],IR[ 25:0],2" b00” ]
OUtpUtS < “IR CMEM[PC]”
“A <« RF[IR[ 25:21]1]”
L “B <« RF[IR[20:16]1]"
n—bit MPC input A e —
) } m-bit input
l V% l’ Microprogram counter ?sr?tl::)elncing[] ROM
Adder i

Address select logic | :
° k-bit output
[Based on original figure from P&H CO&D, COPYRIGHT ‘ ‘ ‘

2004 Elsevier. ALL RIGHTS RESERVED.] Inputs from instructiond o

register opcode field 353 =39 E
309G
SN

(@)

=)

o

If done right (i.e., m<<n, and m<<k), two ROMs together

(2"xm+2™xk bit) should be smaller than horizontal microcode ROM (2"xk bit) 62




Nanocode and Millicode

Nanocode: a level below traditional pucode

o uprogrammed control for sub-systems (e.g., a complicated floating-
point module) that acts as a slave in a pcontrolled datapath

Millicode: a level above traditional pcode

a ISA-level subroutines that can be called by the pucontroller to handle
complicated operations and system functions

o E.g., Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

In both cases, we avoid complicating the main pcontroller

You can think of these as “microcode” at different levels of
abstraction
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Nanocode Concept lllustrated
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a ucoded processor implementation
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Multi-Cycle vs. Single-Cycle uArch

Advantages
Disadvantages

You should be very familiar with this right now
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Microprogrammed vs. Hardwired Control

= Advantages
= Disadvantages

= You should be very familiar with this right now
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Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

a “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening
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Can We Use the Idle Hardware to Improve Concurrency?

Goal: Concurrency - throughput (more “work” completed
in one cycle)

Idea: When an instruction is using some resources in its

processing phase, process other instructions on idle

resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
Instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (Id/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

68



Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

o Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

a Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...
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Example: Execution of Four Independent ADDs

Multi-cycle: 4 cycles per instruction

F|D|E|W
F|D|E |W
F|D|E |W
F|D|E|W
Time

Pipelined: 4 cycles per 4 instructions (steady state)

F|D|E|W
F|D|E|W
F|D|E|W
F|D|E |W

Time
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The Laundry Analogy

8 9 10 11 12 1 2AM

° llll
v

= “place one dirty load of clothes in the washer”
= “when the washer is finished, place the wet load in the dryer”
= “when the dryer is finished, take out the dry load and fold”

= “when folding is finished, ask your roommate (??) to put the clothes

away”’ .
- steps to do a load are sequentially dependent

- no dependence between different loads
- different steps do not share resources

71
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Pipelining Multiple Loads of Laundry

) 6 PM 7 8 9 10 11 12 1 2 AM
T|me_m_ﬁ_ﬁ_ﬁ_’
TaskO
order 5
B
C
—] "
0 =l
6 PM 7 8 9 10 11 12 1 2 AM

Timem 1 1 | | |

Task
order
'@%. - 4 loads of laundry in parallel
° 'ﬁ. - no additional resources
: .. - throughput increased by 4
° '. - latency per load is the same

Based on ori

iginal figure
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Pipelining Multiple Loads of Laundry: In Practice

6 PM 7 8 9 10 11 12 1 2 AM

T e — [

the slowest step decides throughput
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Pipelining Multiple Loads of Laundry: In Practice

Throughput restored (2 loads per hour) using 2 dryers
74
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An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing can be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
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Ideal Pipelining

L, BW="(2/T)

. , combinational logic (F,D,E,M,W) L, BW=~(1/T)
T psec

— * T/2 ps (F,D,E) * T/2 ps (M,W)

| LT3 | /3 \E
ps (F,D) ps (E,M) ps (M,W)

> BW="~(3/T)
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More Realistic Pipeline: Throughput

Nonpipelined version with delay T
BW = 1/(T+S) where S = latch delay

k-stage pipelined version
BW, stage = 1 [/ (T/k +S)
BW_ .. =1/(1gatedelay+S)

T/k

— > » | —> 6 o o6 o6 o o6 o6 —)

pS

T/k
ps
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More Realistic Pipeline: Cost

Nonpipelined version with combinational cost G
Cost = G+L where L = latch cost

— » G gates "

k-stage pipelined version
Costy 1age = G + LK

N » G/k > —> o o 0 0o 0 0 0o —» G/k
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Pipelining Instruction Processing
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Remember: The Instruction Processing Cycle

. Instruction fetch (IF)
2. Instruction decode and
register operand fetch (ID/RF)
. Execute/Evaluate memory address (EX/AG)
. Memory operand fetch (MEM)
. Store/writeback result (WB)

o~ W
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Remember the Single-Cycle Uarch

Instruction [25—0] | % Jump address [31-0]

\ \
2 @28

PC+4 [31-28]

Add

Read
address

InstructionO]
[31-0]

Instruction

memory

Instruction [31-26]
—————————

Instruction [25—-21]

Instruction [20— 16]

L.

i
u

Instruction [15—11] 1X
—_

Instruction [15—-0]

Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]

0 |
M M
Pr— | u u
X X
ALU
Add result \l/ 0
Jump
Read[
register 1 Readl
ReadD data 1
register 2
~Registers Readll ALU ALu |
Writel) data 2 0 result Address Readll 7
register M data M
u
Writed X u
| data 1 Datal] X
_ memory 0
Writed
bcond”| gata
16 . 32
\ SignOf\
N Tlextend | M
Instruction [5- 0] r
— » T >

— BW="(1/T)
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Dividing Into Stages

200ps 100ps 200ps 200ps 100ps
IF: Instruction fetch ID: Instruction decode/] EX: Execute/O MEM: Memory access | WB: Write back
register file read address calculation
0
M{
ul]
X
- ignore
........... for now
Add “
4
ReadD
—| PC Address register 1 Readl
Readd datal prssrsasrrannnas
register 2 Zero > :
Instruction Registers d ALU H :
Write[J daRtgaZ ’ re/s\tILt‘| u Address %e?d i 1
Instruction] register batal) ata M H RF
memory #X‘g;e'] memory )L: - erte :
Write 0 :
data
. [\ } o
\ SignO|_\

\@\

Is this the correct partitioning?
Why not 4 or 6 stages? Why not different boundaries?

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Instruction Pipeline Throughput

Programl]
executiond _ 2 200 400 600 800 1000 1200 1400 1600 1800
orderr] Time T T T T T T I | | >
(in instructions)
ws1,10060) ["EE"Regf AL | B0 fReg
< > Instruction Datal
Iw $2, 200($0) 800ps fetch | X€9| ALY access |9
< > Instructionlf]
| lw $3, 300($0) 800ps fetch
800ps
ProgramyJ 5, 200 400 600 800 1000 1200 1400
execution[] : _
ordern Time , T T T T T | e
(in instructions)
Instructi Datall
lw $1, 100($0) nsf;lscchlon Reg| ALU acc?gzs Reg
<*+——>|Instruction|] Datal
lw $2, 200($0) 200ps fetch Reg| ALU access | R°9
<+—™Instruction] Datal
w $3, 300($0) 200ps | fetch Regl ALV | ccess |Re9
v
— r¢+——— P ¢+— P ¢————r<¢——>

200ps 200ps 200ps 200ps 200ps

5-stage speedup is 4, not 5 as predicated by the ideal model. Why?
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Enabling Pipelined Processing: Pipeline Registers

6 No resource is used by more than 1 stage!
X
1
IF/ID ID/EX EX/MEM MEM/WB
v
b=
Add +D 1S
O o
4 o [
§ Raster 1
— Address E= I
(@) 34 Read
o % Read(] data 1 _._,E
Instructiond L = reglstekZ ) 8 ™ =
memory Lo egisters Read ] Read[]] o
o Write[ data 2 < Address s O (1
—_ register ata E M
| WriteO mgreﬁsr?/ g
data
\éVriteD 0
ata
L > =
N gl o 5
E J <

T/k T/k

—> > > —» © 0 0 0 ¢ o0 o —)p

ps ps

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]
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Pipelined Operation Example

All instruction classes must follow the same path and timing

through the pipeline stages. Any performance impact?
pr— 0
M
u
X
r 1
IF/ID EX/MEM MEM/WB
Add
4
c ReadO
—| PC Address -% register 1 Readl]
% Readl] data 1 R
Instruction(] L, i reglstek2 ) >
memory egisters Read el
Write[ data 2 Address —
register Datall data .
| WriteJ memory .
data
WriteO
m data
l\6 Signd 3(2 I
N @ Y
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Pipelined

Operation Exam

le

| PC

EX/MEM
L
Add
Add result
Zero = >
ALU - ALup
result Address
Datal]
memory
Write
data

Read
data

)| IF/ID IDIEX
Add > .
4 —
Shift!
left 2
c Readl
Address 2 register 1 Readlh
% Read data 1
Instructiond = register 2
N Registers Read(fl
memory Write[] data 2 0
register M
u
Write X
data {1
16 ) 32
\ SignO|\
N Tlextend| N
Clock 6 T L

| sub $11, $2, $3 |

Write back

MEM/WB
—L

Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



[lustrating Pipeline Operation: Operation View

Inst,
Inst,
Inst,
Inst,
Inst,

To 5] 15 U3 Ly s —

IF ID EX |[MEM]|[wWB
IF ID EX |[MEM]|[wWB
IF ID EX |[MEM]|[wWB

IF ID EX [|[MEM|/WB <

IF ID EX ||MEM

IF ID EX <

IF D <

IF =2
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[lustrating Pipeline Operation: Resource View

F |, [ | P e P N A N

ID I R N I P PO I T

EX I R U N P PO N A
MEM I T R Lol e |

WB s 1L | Lol |




Control Points 1n a Pipeline

PCSrc
0
MO
ugd
X
|
IF/ID ID/EX EX/MEM MEM/WB
Add ,\
Add
4 > Add result
Branch
ShiftC)
RegWrite left 2
s Readl MemWrite
PC [~8=>| Address = register 1 Readll] ,\
= data 1
2 Readl ALUSrc oS MemtoReg
Instructionl] = register 2 "
memor = — . _Registers  Readln ALU ALur]
y WritelJ data2 [ | result »| Address Readll ]
register data
. Datall
Write
| data - memory
Write
data
Instructiond T
[15-0] 16 6 ‘
\ \ ALU
A} \ control MemRead
Instructiond
[20-16]
0
. MOl ALUOp
Instructiond ud
[15-11] X
Based on original figure from [P&H CO&D, 1
COPYRIGHT 2004 Elsevier. ALL RIGHTS
RESERVED.] RegDst

Identical set of control points as the single-cycle datapath!! 89



Control Signals in a Pipeline

= For a given instruction
0 same control signals as single-cycle, but
0 control signals required at different cycles, depending on stage
- decode once using the same logic as single-cycle and buffer control

signals until consumed e L
Instruction f
—| Control [ M .| WB L
EX[— M — “|we|
IF/ID ID/EX EX/MEM MEM/WB

. orcarry relevant “instruction word/field” down the pipeline and
decode locally within each stage (still same logic)

Which one is better?




Pipelined Control Signals

PCSrc

I—‘><C§O

Control

R \ IF/ID
>Add
Add
4 / o >Add result 4
g Shift Branch
left 2 jo]
ALUSrc ’;‘
c ReadO £ =
] " | register 1 s
PC Address 3 {¢] Readll] x
> —
2 | Reads data 1 o 1 || g
nstuctond |} | = o egisters Readl: 0 A adff | )
memor . ea
y \r/ggitsetgr data 2 (I)VI result Address %%?g i 1
. u Datal] l\ljl
_| WriteDD X memory "
data —| 1 0
WriteO
data
Instruction[l16 6
[15-0] A 2\ MemRead
A} A}
Instruction
[20-16]
0
M
Instruction u
[15-11] X
|| L
RegDst
Based on original figure from [P&H CO&D, 91

COPYRIGHT 2004 Elsevier. ALL RIGHTS
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An Ideal Pipeline

Goal: Increase throughput with little increase in cost
(hardware cost, in case of instruction processing)

Repetition of identical operations

o The same operation is repeated on a large number of different
inputs

Repetition of independent operations
o No dependencies between repeated operations
Uniformly partitionable suboperations

o Processing an be evenly divided into uniform-latency
suboperations (that do not share resources)

Fitting examples: automobile assembly line, doing laundry

o What about the instruction processing “cycle”?
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Instruction Pipeline: Not An Ideal Pipeline

|dentical operations ... NOT!

= different instructions do not need all stages
- Forcing different instructions to go through the same multi-function pipe

- external fragmentation (some pipe stages idle for some instructions)

Uniform suboperations ... NOT!

= difficult to balance the different pipeline stages

- Not all pipeline stages do the same amount of work
- internal fragmentation (some pipe stages are too-fast but take the
same clock cycle time)
Independent operations ... NOT!

=> instructions are not independent of each other

- Need to detect and resolve inter-instruction dependencies to ensure the
pipeline operates correctly

— Pipeline is not always moving (it stalls)
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Issues 1n Pipeline Design

Balancing work in pipeline stages
o How many stages and what is done in each stage

Keeping the pipeline correct, moving, and full in the
presence of events that disrupt pipeline flow

o Handling dependences
Data
Control

o Handling resource contention
o Handling long-latency (multi-cycle) operations

Handling exceptions, interrupts

Advanced: Improving pipeline throughput
o Minimizing stalls
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Causes of Pipeline S7alls

Resource contention

Dependences (between instructions)
o Data
o Control

Long-latency (multi-cycle) operations
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Dependences and Their Types

Also called “dependency” or /ess desirably “hazard”

Dependencies dictate ordering requirements between
Instructions

Two types
o Data dependence
o Control dependence

Resource contention is sometimes called resource
dependence

o However, this is not fundamental to (dictated by) program
semantics, so we will treat it separately
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Handling Resource Contention

Happens when instructions in two pipeline stages need the
same resource

Solution 1: Eliminate the cause of contention

o Duplicate the resource or increase its throughput
E.g., use separate instruction and data memories (caches)
E.g., use multiple ports for memory structures

Solution 2: Detect the resource contention and stall one of
the contending stages

o Which stage do you stall?

o Example: What if you had a single read and write port for the
register file?
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Data Dependences

Types of data dependences

o Flow dependence (true data dependence — read after write)
o Output dependence (write after write)

o Anti dependence (write after read)

Which ones cause stalls in a pipelined machine?

o For all of them, we need to ensure semantics of the program
are correct

o Flow dependences always need to be obeyed because they
constitute true dependence on a value

o Anti and output dependences exist due to limited number of
architectural registers
They are dependence on a name, not a value
We will later see what we can do about them
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Flow dependence
rs <~ r,opr,
e r; op ry,

Anti dependence
s <~ r,opr,

/
Iy < I, 0P [I¢

Output-dependence

rs «—r,opr,
—

rs < g Op 1y

Data Dependence Types

Read-after-Write
(RAW)

Write-after-Read
(WAR)

Write-after-Write
(WAW)
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How to Handle Data Dependences

Anti and output dependences are easier to handle
o write to the destination in one stage and in program order

Flow dependences are more interesting

Five fundamental ways of handling flow dependences
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