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As signments

Lab 1 due today
Lab 2 out (start early)
HW1 due next week

HWO issues
o Make sure your forms are correctly filled in and readable
o Extended deadline to resubmit: Sunday night (January 26)



A Single-Cycle Microarchitecture
A Closer L.ook




Remember...

= Single-cycle machine

AS Next

Combinational
Logic

AS

Sequential |
Logic
(State)




Iet’s Start with the State Elements

Data and control inputs

=5| Readl
register 1
Read
2| ReadO data 1
register 2
Registers
> PC— S | Write[
register Read|]
WriteOd data 2
—
data
‘ RegWrite
‘ MemWrite
| Instructiond
address
»| Address Readlll _
data
Instruction je—
- Write [ Datall
Instructiond —p
memory data memory
MemRead

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write

o the selected register is updated on the positive edge clock
transition when write enable is asserted

Cannot affect read output in between clock edges

Single-cycle, synchronous memory
o Contrast this with memory that tells when the data is ready
o i.e., Ready bit: indicating the read or write is done



Instruction Processing

= 5 generic steps (P&H)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)

Q

o Execute/Evaluate memory address (EX/AG)
o Memory operand fetch (MEM)
Q

Store/writeback result (WB)

PC =] Address Instruction

Instructiond
memory

L Data

Register #
Registers
ister #

Register #

$ALU

| -

Address

Datall
memory

**Base!

d on original figure from [P&H CO&D, COPYRIGHT 2004 El

sevier.

ALL RIGHTS RESERVED.]



What Is To Come: The Full MIPS Datapath

PCSrc,=Jump
Instruction [25-0]  [shiftty,  Jump address [31-0]
~\left2 [} I_.
26 UZS 0 1
M M
PC+4 [31-28] u u
\ X X
> ALU
>Add result S 0
Add \
> | PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
Control
Instruction [25—-21] Readl
I Readl register 1 Read
address . data 1
Instruction [20— 16] Read] ata beond
) register 2 con
|nstr[l?1’ctlonD l_. 0 ~Registers Readl A >ALU ALU Readll
. M Write[] data 2 result Address dea {1
Instruction u register M o Mo
memaory Instruction [15—11] % Write[d ;J v
1 J Datal] X
ata 1
] memory 0
Writel
"| data
Instruction [15-0] 1\6 Sign0J %2

Y lextend [ ¥ ALU operation

Instruction [5—- 0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitteé



Single-Cycle Datapath tor
Avrithmetic and 1 ogical Instructions




R-Type ALU Instructions

Assembly (e.q., register-register signed addition)

ADD rd g I'Sieq e
Machine encoding
0 rs rt rd 0 ADD R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

Semantics

if MEM[PC] == ADD rd rs rt
GPR[rd] <- GPR[rs] + GPR[rt]
PC« PC+ 4
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ALU Datapath

[ —
ReadD 25:21] Read
ea '
| pcld4— Readl] register 1 Readl
20:16| Read data 1
register 2 ‘
Instruction Registers ALU  ALU
15:11] WriteO result
Instructiond register Readl
memory | writeo data 2
data
|F ID EX MEM| WB
if MEM[PC] == ADD rd rs rt Combinational

GPR[rd] «— GPR[rs] + GPR]rt]

PC <« PC+4 state update logic

11

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU Instructions

Assembly (e.q., register-immediate signed additions)
ADDI rt, rs,, immediate,

Machine encoding

ADDI__ |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt] «<- GPR[rs] + sign-extend (immediate)
PC« PC+ 4
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Datapath for R and I-Type ALU Insts.

ReadO
address

Instructiond
memory

Instruction

>Add

Read
register 1

Read

Read[[l
data 1

isltype

\ .| SignO

| @_‘

register 2
. __Registers >ALU ALU
register Readl
| Write[D data 2
| data

if MEM[PC] == ADDI rt rs immediate
GPR[rt] <~ GPR]rs] + sign-extend (immediate)

PC<«-PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

|F ID

EX

MEM

WB

Combinational
state-updatelogic;




Single-Cycle Datapath tor

Data Movement Instructions




lL.oad Instructions

Assembly (e.g., load 4-byte word)
LW rt,, Offset;¢ (base,,)

Machine encoding

LW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] « MEM] translate(EA) ]
PC« PC+ 4

|-type
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LW Datapath

Readl

| address

Instructiond
memory

Instruction

isltype

_| Readl

register 1

ReadO
Writed
registe

Write[d
data

"| register 2

Registers

r

Read
data 1

Read
data 2

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] <~ MEM[ translate(EA) ]

PC < PC+4

—>| Address Readll _
ALU ALU data
result
—| WriteD Datall
data memory
|F ID EX MEM| WB
Combinational

state update logic 16




Store Instructions

Assembly (e.g., store 4-byte word)
SW rt,, Offset;¢ (base,,)

Machine encoding

SW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
MEM[ translate(EA) ] < GPR[rt]
PC« PC+ 4

|-type
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SW Datapath

Readl

| address

Instructiond
memory

Instruction

isltype

_| Readl

register 1

ReadO
Writed
registe

Write[d
data

"| register 2

Registers

r

Read
data 1

Read
data 2

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]

MEM][ translate(EA) ] <~ GPR|[rt]
PC«~PC+4

—>| Address Readll _
ALU ALU data
result
—| WriteD Datall
data memory
|F ID EX MEM| WB
Combinational

state update logic s




LLoad-Store Datapath

4 —
ReadO
—|PC address
Instruction
Instructiond
memory
isltype

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

ReadO
register 1 Readll
ReadO data 1
register 2
__Registers >A|—U ALU
Writel] _ result Address I?jead I
register ReadD T ata
. data 2
\é\;rtl;eﬂ Datall
memor
Writed y
data
Sign0d
extend
19




Datapath tor Non-Control-Flow Insts.

v

—{pPC

ReadO
address

Instructiond
memory

Instruction

isltype

Read[
register 1 Readl
Read[] data 1
register 2

. _Registers
Writed R
register Readl »
Writed data 2
data

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Readl
Address data
Datal]
memo
_| WriteO Y
| data
20




Single-Cycle Datapath tor

Control Flow Instructions




Unconditional Jump Instructions

Assembly
J immediate,

Machine encoding

J immediate

6-bit 26-bit

Semantics

if MEM[PC]==1J immediate,
target = { PC[31:28], immediate,,, 2" b00 }
PC « target

J-type

22



Unconditional Jump Datapath

>
—> PC
-

v

ReadO
address

Instructiond
memory

Instruction

v

Read
register 1

Read
register 2

. _Registers
Write[d

register

Writed
data

Read[

3 ALU operation

data 1

Read[
data 2

~J

Pa

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC]==J immediate26

MemWrite
Read
Address data
Datall
memo
WriteD i
data
MemRead

PC = { PC[31:28], immediate26, 2" b0O0 }

What about JR, JAL, JAIR?




Conditional Branch Instructions

Assembly (e.g., branch if equal)
BEQ S It,, immediate;¢

Machine encoding

BEQ rs rt immediate

6-bit 5-bit 5-bit 16-bit

Semantics (assuming no branch delay slot)
if MEM[PC]==BEQ rs rt immediate
target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC « target
else PC«~ PC+ 4

I-type

24



Conditional Branch Datapath (For You to Fix)

LAA A
T

PC |=p—b]

ReadO
address

Instructiond
memory

Instruction J

_| ReadO

watch

PC + 4 from instruction datapath ===

ReadO

register 1 Readll

out

>Add Sum = Branch target

ALU operation

data 1

register 2
Registers

Write

register

Read(l

To branchO
control logic

Writed data 2

data

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to uphold the delayed branch semantiés?



Putting It All Together

PCSrc,=Jump
Instruction [25-0] | ®\ Jump address [31- 0]

\
26 @28 L.

PC+4 [31-28]

./

|—\><C§o

1
M
u
X

0

N

ALU
>Add result
Add \
> | PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
Control
Instruction [25—-21] Read[]
Read register 1
—(PC address ) ’ Read
Instruction [20— 16] Read] data 1
: register 2 bcond
|n5tf[l?J’Ctl°nD l—» 0 ~ Registers Read[s >A|—U ALU
. M WritelJ data 2 0 result Address Féead (1
Instructiond u register M aa M
memory Instruction [15-11] | X Writel ;J 0
1 3 Datal] X
ata 1
) memory 0
Writel
"| data
Instruction [15-0] 1\6 Sign0J %2

Y lextend [ ¥ ALU operation

Instruction [5—- 0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittgg



Single-Cycle Control Logic




Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

31

26

21

16

11

6

0

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

31 26 21 16 0
opcode |rs rt immediate
6-bit 5-bit 5-bit 16-bit

31 26 0
opcode |[immediate
6-bit 26-bit

Consider

Q

Q
Q
Q

All R-type and I-type ALU instructions

LW and SW
BEQ, BNE, BLEZ, BGTZ

J, JR, JAL, JALR

R-type

I-type

J-type

28



Single-Bit Control Signals

When De-asserted

When asserted

Equation

GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

2"d ALU input from 2nd
GPR read port

2" ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&
(opcode!=BEQ) &&
(opcode!=BNE)

Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

GPR write disabled

GPR write enabled

(opcode!l=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))




Single-Bit Control Signals

bit immediate jump
target

When De-asserted When asserted Equation
Memory read disabled | Memory read port opcode==LW
return load value
Memory write disabled | Memory write enabled | opcode==SW
According to next PCis based on 26- | (opcode==J) ||

(opcode==JAL)

next PC=PC+4

next PC is based on 16-
bit immediate branch
target

(opcode==Bxx) &&
“bcond is satisfied”




ALU Control

case opcode

‘0’ = select operation according to funct

"‘ALUi" = selection operation according to opcode
‘LW’ = select addition

‘SW’ = select addition

‘Bxx’ = select bcond generation function
__=don’t care

Example ALU operations
o ADD, SUB, AND, OR, XOR, NOR, etc.

o bcond on equal, not equal, LE zero, GT zero, etc.

31



R-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] -
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
'”S”[‘é‘itlog]m L. o RE9ISErs Readh >ALU ALU read
) 4 re data 2 result Address ‘
Instructiond y register data
memory Instruction [15—11] ‘ Write[ Datar
ata
data ) . memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
V" |extend unCt ALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2

2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Read register 1 O
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStrlé(itloon[l Registers Readll >ALU ALU
—0] Write[ >0 Read||
) ! data 2 result Address
Instructiond u register M data
memory Instruction [15—11] lx WriteD y Datar
ata
data ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2

N lextend [ M

?pcodé
Instruction [5-0]

LU operation O

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 . 3
Elsevier. ALL RIGHTS RESERVED.]



LW

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump

4 ey

Instruction [31-26]

> Control

Instruction [25—21] Read] o

Readl register 1 O
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
'”S”‘é‘itlog]m " Registers Read(l . >ALU ALU rond
) WritelJ data 2 g result Address ea
Instructiond u register M data
memory Instruction [15-11] [ X WriteD y
1 data Datall
) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2
N lextend [V Add ALU operation 1
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 o, 4

Elsevier. ALL RIGHTS RESERVED.]



SW

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Readl register 1 1
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll 5 >ALU ALU Read
) rite data 2 " result Address ‘
Instructiond register M data
memory Instruction [15—11] lx WriteD y Datar
atal
data ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2
N lextend [V Add ALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 . 5

Elsevier. ALL RIGHTS RESERVED.]



Branch Not Taken

Some control signals are dependent
on the processing of data

/

Instruction [25-0] | @\

Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

>Add

Read
address

Instruction]
[

Instruction]
memory

\d

./

ALU
>Add result

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read] o
register 1 Readl O
Instruction [20—-16] Read] data 1
l register 2 bcond
0 ~_Registers Read[l >ALU ALU
M Writel] data 2 result Address Read|
register data
Instruction [15—-11] Write[
1 data Datall
) memaory
Write[d
data

Instruction [15-0]

16 /\32
\ SignO| \

\@\

Instruction [5-0]

cond 0

**Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]




Branch Taken

Some control signals are dependent
on the processing of data

ALU
>Add result ﬁ L i

Instruction [25-0] \ [ shiftCy
\ \
26 \ M2 /o5

PC+4 [31-28]

Jump address [31-0]

xcZ ©

/

>Add

2

Jump
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Read register 1 O
—|PC address ] 9 Read
Instruction [20—-16] Read] data 1
) register 2 bcond
Instr[uctlonD l_. 0 Registers Readll >ALU ALU Read
_ M WritelJ data 2 result Address eady
Instruction] ) register data
memory Instruction [15-11] | Write[
1 data Datall
T ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0d 3;2
‘ U | Béond 0
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT . 7

2004 Elsevier. ALL RIGHTS RESERVED.]



Jump

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 ) L

PC+4 [31-28]

./

M
u
X

0

/

ALU
>Add result \l/
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] o
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll 5 >ALU ALU Read
. M rite data 2 " It Address ‘
Instruction] register M rest data
memory Instruction [15—-11] Writell
1 data Datal]
) . memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
N lextend [V * ALU operation O
Instruction [5-0] r
**Based on original figure from [P&H CO&D, COPYRIGHT . 8

2004 Elsevier. ALL RIGHTS RESERVED.]



What is in That Control Box?

Combinational Logic - Hardwired Control

o Idea: Control signals generated combinationally based on
Instruction

o Necessary in a single-cycle microarchitecture...

Sequential Logic = Sequential/Microprogrammed Control

o Idea: A memory structure contains the control signals
associated with an instruction

o Control Store

39



Evaluating the Single-Cycle
Microarchitecture




A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?

41



A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
o CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Ciritical path of the design is determined by the processing
time of the slowest instruction

42



What is the Slowest Instruction to Process?

= Let’s go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

o Fetch 1. Instruction fetch (IF)

o Decode 2. Instruction decode and

o Evaluate Address register operand fetch (ID/RF)

o Fetch Operands 3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)

2 Execute 5. Store/writeback result (WB)

o Store Result

= Do each of the above phases take the same time (latency)
for all instructions?

43



Single-Cycle Datapath Analysis

Assume

o memory units (read or write): 200 ps
o ALU and adders: 100 ps

o register file (read or write): 50 ps

o other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350

Jump 200 4}




Let’s Find the Critical Path

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28 L.

0 1
PC+4 [31-28] v M
\ X X
ALU
>Add result \l/ 0
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] ReadO
ReadO register 1
—>|PC address , 9 Readl]
Instruction [20—16] Read(] data 1
; | register 2 bcond
Instr[uctlonEI 0  Registers Readl] >ALU ALU
) M Write[J data 2 >0 result Address Read|
Instructiond u register M data
memory Instruction [15—11] | X Writer :(J
1 data Datal]
1 ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0J 3;2
N lextend [V ALU operation
Instruction [5-0] r
[Based on original figure from P&H CO&D, COPYRIGHT 2004 5

Elsevier. ALL RIGHTS RESERVED.]



R-Type and I-Type ALU

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] IL/I l\ljl
X X
ALU
>Add result 1
Add \
i PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl
ReadU register 1 Readl
2() 3 lgstruction [20—16 data 1 |
| ion[] S bcond
n [ o 0 ~ Registers ALU ALu
i M Write data 2 . Address Readll /7
Instructiond u data
memory Instruction [15—11 X : 400 p
[ ] 1 \é\értl;eD s X 3 5 c Datal] X
1 p D memory 0
Write(
data
Instruction [15-0] 1\6 SignQ 3;2
N Tlextend [ M ALU operati

Instruction [5-0] r

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



LW

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] IL/I l\ljl
X X
ALU
>Add result 1
Add \
i PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl
ReadU register 1 Readh
2( 3 lgstruction [20—16 data 1
I G S bcond
n [ o 0 ~ Registers ALU ALu
i M Write data 2 It Addres:
InstructionC] u
memory Instruction [15-11] [ X i u
1 3 5 p ‘5 Datal] X
memo
TWriteD v 0
data
Instruction [15-0] 1\6 SignOd 3;2

N lextend [ M

Instruction [5-0] r

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



SW

100ps

Add
4 ey
Read
In ion[J
[
Instruction]
memory

Jump
Instruction [31-26]
> Control
Instruction [25-21] Readl
register 1 Readl

lgstruction [20—16 data 1

0 Registers

M Writel) data 2

u register
Instruction [15-11] | X Write[

1 data

Instruction [15-0]

16 ) 32
\ SignO| \

S

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] M M
u u
X X
ALU
>Add result 1

PCSrc,=Br Taken

bcond
ALU ALy

Addr

350ps, 550ps

N lextend

Instruction [5-0]

\

-

data

S

Read]
data

atal]

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




Branch Taken

PCSrc,=Ju
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 5 1
PC+4 [31-28] 2 u '\S
100ps > .
p A AL
Add .
Shift PCSrc,=Br Taken
Jump left 2
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl 3 p S
Readl register 1 Readh
2 () 3 lgstruction [20—16 data 1 |
| - S bcond
n [ o 0 ~ Registers ALU ALu
_ M Write[ data 2 Address Read|
Instructiont u register data
memory Instruction [15-11] [ X Writeld X
1 data Datal]
1 ) memory
Write[
data
Instruction [15-0] 1\6 SignOd 3;2
N Tlextend [ M ALU operation

Instruction [5-0] r

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]



Instructio

PC+4 [31-28]

200ps

|

In

Instruction]
memory

4

Instruction [25—-21]

[20-16]

\ I@truction
-

L.

Instruction [15—-11]

i—‘><C§O

Instruction [15-0]

Readl
register 1 Read
Readl data 1
register 2

Registers Read
Write[d data 2
register
Writel
data

\d

16 ) 32
\ SignO| \

./

dd ALU

>

result

0
M
u
X
L/

0

PCSrc,=Br Taken

bcond
> ALU ALy
>0 result Address
M
u
X
1
Write[d
data

N lextend

Instruction [5-0]

\

Read]
data

Datall
memory

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]




What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?
o A note on CDC 5600: control store access too long...
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What is the Slowest Instruction to Process?

Memory is not magic
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?
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Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient
o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS, INDEX, POLY?

Not easy to optimize/improve performance
o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
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Microarchitecture Design Principles

Critical path design
o Find the maximum combinational logic delay and decrease it

Bread and butter (common case) design

o Spend time and resources on where it matters
i.e., improve what the machine is really designed to do

o Common case vs. uncommon case

Balanced design
o Balance instruction/data flow through hardware components
o Balance the hardware needed to accomplish the work

How does a single-cycle microarchitecture fare in light of
these principles?
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Multi-Cycle Microarchitectures
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Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

a Determine clock cycle time independently of instruction
processing time

o Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different
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Remember: The “Process instruction™ Step

ISA specifies abstractly what A’ should be, given an
instruction and A

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution
One state transition per instruction

Microarchitecture implements how A is transformed to A’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS > AS’ (transform A to A’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to ASY) =



Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

¢

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle
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Beneftits of Multi-Cycle Design

Critical path design

a Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Bread and butter (common case) design

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Balanced design

o No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X’s to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction
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Remember: Performance Analysis

Execution time of an instruction
o {CPI} x {clock cycle time}

Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
a {# of instructions} x {Average CPI} x {clock cycle time}

Single cycle microarchitecture performance
a CPI=1

o Clock cycle time = long

Multi-cycle microarchitecture performance

o CPI = different for each instruction Now. we have
Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
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