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Assignments 

 Lab 1 due today 

 

 Lab 2 out (start early) 

 

 HW1 due next week 

 

 HW0 issues 

 Make sure your forms are correctly filled in and readable 

 Extended deadline to resubmit: Sunday night (January 26) 
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A Single-Cycle Microarchitecture 

A Closer Look 
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Remember… 

 Single-cycle machine 

 

 

 

 

 

 

 

 

 

 

 

4 

ASNext AS Sequential 
Logic  
(State) 

Combinational 
Logic 



Let’s Start with the State Elements 

 Data and control inputs 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



For Now, We Will Assume 

 “Magic” memory and register file 
 

 Combinational read 

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port 

 

 Synchronous write 

 the selected register is updated on the positive edge clock 
transition when write enable is asserted 

 Cannot affect read output in between clock edges 
 

 

 Single-cycle, synchronous memory 

 Contrast this with memory that tells when the data is ready 

 i.e., Ready bit: indicating the read or write is done 
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Instruction Processing 

 5 generic steps (P&H) 

 Instruction fetch (IF) 

 Instruction decode and register operand fetch (ID/RF) 

 Execute/Evaluate memory address (EX/AG) 

 Memory operand fetch (MEM) 

 Store/writeback result (WB)  
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What Is To Come: The Full MIPS Datapath 
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Single-Cycle Datapath for 

Arithmetic and Logical Instructions 
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R-Type ALU Instructions 

 Assembly (e.g., register-register signed addition) 

  ADD rdreg rsreg rtreg 

 

 Machine encoding 

 

 

 

 

 Semantics 

 

  if MEM[PC] == ADD rd rs rt 

   GPR[rd]  GPR[rs] + GPR[rt]   

   PC  PC + 4 
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ALU Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

if MEM[PC] == ADD rd rs rt 
 GPR[rd]  GPR[rs] + GPR[rt]   
 PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



I-Type ALU Instructions 

 Assembly (e.g., register-immediate signed additions) 

  ADDI rtreg rsreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics 

  if MEM[PC] == ADDI rt rs immediate 

           GPR[rt]  GPR[rs] + sign-extend (immediate) 

           PC  PC + 4 
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Datapath for R and I-Type ALU Insts. 
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if MEM[PC] == ADDI rt rs immediate 
GPR[rt]  GPR[rs] + sign-extend (immediate)  
PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 



Single-Cycle Datapath for 

Data Movement Instructions 
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Load Instructions 

 Assembly (e.g., load 4-byte word) 

  LW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==LW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

GPR[rt]  MEM[ translate(EA) ]  

PC  PC + 4 
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LW Datapath 
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Store Instructions 

 Assembly (e.g., store 4-byte word) 

  SW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==SW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

MEM[ translate(EA) ]  GPR[rt]  

PC  PC + 4 
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SW Datapath 
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Load-Store Datapath 
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Datapath for Non-Control-Flow Insts. 
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Single-Cycle Datapath for 

Control Flow Instructions 
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Unconditional Jump Instructions 

 Assembly 

  J immediate26 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==J immediate26 

   target = { PC[31:28], immediate26, 2’b00 }  

   PC  target 

 

22 

J 
6-bit 

immediate 
26-bit 

J-type 



Unconditional Jump Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 

0 

X 
0 
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X 

if MEM[PC]==J immediate26 
    PC = { PC[31:28], immediate26, 2’b00 } 



Conditional Branch Instructions 

 Assembly (e.g., branch if equal) 

  BEQ rsreg rtreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics (assuming no branch delay slot) 

 if MEM[PC]==BEQ rs rt immediate16 

target = PC + 4 + sign-extend(immediate) x 4  

if GPR[rs]==GPR[rt] then  PC  target 

    else  PC  PC + 4 
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Conditional Branch Datapath (For You to Fix) 
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watch out 



Putting It All Together 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted 



Single-Cycle Control Logic 
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Single-Cycle Hardwired Control 

 As combinational function of Inst=MEM[PC] 

 

 

 

 

 

 

 Consider 

 All R-type and I-type ALU instructions 

 LW and SW 

 BEQ, BNE, BLEZ, BGTZ 

 J, JR, JAL, JALR 
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Single-Bit Control Signals 
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When De-asserted When asserted Equation 

MemRead 
Memory read disabled Memory read port 

return load value 
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MemWrite 
Memory write disabled Memory write enabled opcode==SW 

 

PCSrc1 

According to PCSrc2 next PC is based on 26-
bit immediate jump 
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PCSrc2 
next PC = PC + 4 next PC is based on 16-

bit immediate branch 
target 
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ALU Control 

 case opcode 

‘0’  select operation according to funct 

‘ALUi’  selection operation according to opcode  

‘LW’  select addition 

‘SW’  select addition 

‘Bxx’  select bcond generation function 

 __  don’t care 

 

 Example ALU operations 

 ADD, SUB, AND, OR, XOR, NOR, etc. 

 bcond on equal, not equal, LE zero, GT zero, etc. 
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R-Type ALU 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
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I-Type ALU 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
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Elsevier. ALL RIGHTS RESERVED.] 

bcond 

Some control signals are dependent 

on the processing of data 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 

* 



What is in That Control Box? 

 Combinational Logic  Hardwired Control 

 Idea: Control signals generated combinationally based on 
instruction 

 Necessary in a single-cycle microarchitecture… 

 

 Sequential Logic  Sequential/Microprogrammed Control 

 Idea: A memory structure contains the control signals 
associated with an instruction 

 Control Store 

39 



Evaluating the Single-Cycle 

Microarchitecture 

40 



A Single-Cycle Microarchitecture 

 Is this a good idea/design? 

 

 When is this a good design? 

 

 When is this a bad design? 

 

 How can we design a better microarchitecture? 

41 



A Single-Cycle Microarchitecture: Analysis 

 Every instruction takes 1 cycle to execute 

 CPI (Cycles per instruction) is strictly 1 

 

 How long each instruction takes is determined by how long 
the slowest instruction takes to execute 

 Even though many instructions do not need that long to 
execute 

 

 Clock cycle time of the microarchitecture is determined by 
how long it takes to complete the slowest instruction 

 Critical path of the design is determined by the processing 
time of the slowest instruction 
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What is the Slowest Instruction to Process? 

 Let’s go back to the basics 

 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Do each of the above phases take the same time (latency) 
for all instructions? 
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1. Instruction fetch (IF) 
2. Instruction decode and  
    register operand fetch (ID/RF) 
3. Execute/Evaluate memory address (EX/AG) 
4. Memory operand fetch (MEM) 
5. Store/writeback result (WB)  

 



Single-Cycle Datapath Analysis 

 Assume 

 memory units (read or write): 200 ps 

 ALU and adders: 100 ps 

 register file (read or write): 50 ps 

 other combinational logic: 0 ps 
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steps IF ID EX MEM WB 

Delay 
resources mem RF ALU mem RF 

R-type 200 50 100 50 400 

I-type 200 50 100 50 400 

LW 200 50 100 200 50 600 

SW 200 50 100 200 550 

Branch 200 50 100 350 

Jump 200 200 



Let’s Find the Critical Path 
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Branch Taken 
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What About Control Logic?  

 How does that affect the critical path? 

 

 Food for thought for you: 

 Can control logic be on the critical path? 

 A note on CDC 5600: control store access too long… 
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What is the Slowest Instruction to Process? 

 Memory is not magic 

 

 What if memory sometimes takes 100ms to access? 

 

 Does it make sense to have a simple register to register 
add or jump to take {100ms+all else to do a memory 
operation}? 

 

 And, what if you need to access memory more than once to 
process an instruction? 

 Which instructions need this? 

 Do you provide multiple ports to memory? 
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Single Cycle uArch: Complexity 
 Contrived  

 All instructions run as slow as the slowest instruction 
 

 Inefficient 

 All instructions run as slow as the slowest instruction 

 Must provide worst-case combinational resources in parallel as required 
by any instruction 

 Need to replicate a resource if it is needed more than once by an 
instruction during different parts of the instruction processing cycle 

 

 Not necessarily the simplest way to implement an ISA 

 Single-cycle implementation of REP MOVS, INDEX, POLY? 
 

 Not easy to optimize/improve performance 

 Optimizing the common case does not work (e.g. common instructions) 

 Need to optimize the worst case all the time 
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Microarchitecture Design Principles 

 Critical path design 

 Find the maximum combinational logic delay and decrease it 

 

 Bread and butter (common case) design 

 Spend time and resources on where it matters  

 i.e., improve what the machine is really designed to do 

 Common case vs. uncommon case 

 

 Balanced design 

 Balance instruction/data flow through hardware components 

 Balance the hardware needed to accomplish the work 

 

 How does a single-cycle microarchitecture fare in light of 
these principles? 
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Multi-Cycle Microarchitectures 
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Multi-Cycle Microarchitectures 

 Goal: Let each instruction take (close to) only as much time 
it really needs 

 

 Idea 

 Determine clock cycle time independently of instruction 
processing time 

 Each instruction takes as many clock cycles as it needs to take 

 Multiple state transitions per instruction 

 The states followed by each instruction is different 
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Remember: The “Process instruction” Step 

  ISA specifies abstractly what A’ should be, given an 
instruction and A 

 It defines an abstract finite state machine where 

 State = programmer-visible state  

 Next-state logic = instruction execution specification 

 From ISA point of view, there are no “intermediate states” 
between A and A’ during instruction execution 

 One state transition per instruction 
 

 Microarchitecture implements how A is transformed to A’ 

 There are many choices in implementation  

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction 

 Choice 1: AS  AS’ (transform A to A’ in a single clock cycle) 

 Choice 2: AS  AS+MS1  AS+MS2  AS+MS3  AS’ (take multiple 

clock cycles to transform AS to AS’) 
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Multi-Cycle Microarchitecture 

AS = Architectural (programmer visible) state  

at the beginning of an instruction 
 

 

Step 1: Process part of instruction in one clock cycle 

 
 

Step 2: Process part of instruction in the next clock cycle 

 
 

… 

 

AS’ = Architectural (programmer visible) state  

at the end of a clock cycle 
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Benefits of Multi-Cycle Design 

 Critical path design 

 Can keep reducing the critical path independently of the worst-
case processing time of any instruction 

 

 Bread and butter (common case) design 

 Can optimize the number of states it takes to execute “important” 
instructions that make up much of the execution time 
 

 Balanced design 

 No need to provide more capability or resources than really 
needed  

 An instruction that needs resource X multiple times does not require 
multiple X’s to be implemented 

 Leads to more efficient hardware: Can reuse hardware components 
needed multiple times for an instruction 
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Remember: Performance Analysis 

 Execution time of an instruction 

 {CPI}  x  {clock cycle time}  
 

 Execution time of a program 

 Sum over all instructions [{CPI}  x  {clock cycle time}] 

 {# of instructions}  x  {Average CPI}  x  {clock cycle time} 

 

 Single cycle microarchitecture performance  

 CPI = 1 

 Clock cycle time = long 

 Multi-cycle microarchitecture performance 

 CPI = different for each instruction 

 Average CPI  hopefully small 

 Clock cycle time = short 
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Now, we have  

two degrees of freedom 

to optimize independently 


