18-447

Computer Architecture
Lecture 5: Single-Cycle Microarchitectures

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/24/2014




As signments

Lab 1 due today
Lab 2 out (start early)
HW1 due next week

HWO issues
o Make sure your forms are correctly filled in and readable
o Extended deadline to resubmit: Sunday night (January 26)



A Single-Cycle Microarchitecture
A Closer L.ook




Remember...

= Single-cycle machine

AS Next

Combinational
Logic

AS

Sequential |
Logic
(State)




Iet’s Start with the State Elements

Data and control inputs

=5| Readl
register 1
Read
2| ReadO data 1
register 2
Registers
> PC— S | Write[
register Read|]
WriteOd data 2
—
data
‘ RegWrite
‘ MemWrite
| Instructiond
address
»| Address Readlll _
data
Instruction je—
- Write [ Datall
Instructiond —p
memory data memory
MemRead

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write

o the selected register is updated on the positive edge clock
transition when write enable is asserted

Cannot affect read output in between clock edges

Single-cycle, synchronous memory
o Contrast this with memory that tells when the data is ready
o i.e., Ready bit: indicating the read or write is done



Instruction Processing

= 5 generic steps (P&H)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)

Q

o Execute/Evaluate memory address (EX/AG)
o Memory operand fetch (MEM)
Q

Store/writeback result (WB)

PC =] Address Instruction

Instructiond
memory

L Data

Register #
Registers
ister #

Register #

$ALU

| -

Address

Datall
memory

**Base!

d on original figure from [P&H CO&D, COPYRIGHT 2004 El

sevier.

ALL RIGHTS RESERVED.]



What Is To Come: The Full MIPS Datapath

PCSrc,=Jump
Instruction [25-0]  [shiftty,  Jump address [31-0]
~\left2 [} I_.
26 UZS 0 1
M M
PC+4 [31-28] u u
\ X X
> ALU
>Add result S 0
Add \
> | PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
Control
Instruction [25—-21] Readl
I Readl register 1 Read
address . data 1
Instruction [20— 16] Read] ata beond
) register 2 con
|nstr[l?1’ctlonD l_. 0 ~Registers Readl A >ALU ALU Readll
. M Write[] data 2 result Address dea {1
Instruction u register M o Mo
memaory Instruction [15—11] % Write[d ;J v
1 J Datal] X
ata 1
] memory 0
Writel
"| data
Instruction [15-0] 1\6 Sign0J %2

Y lextend [ ¥ ALU operation

Instruction [5—- 0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omitteé



Single-Cycle Datapath tor
Avrithmetic and 1 ogical Instructions




R-Type ALU Instructions

Assembly (e.q., register-register signed addition)

ADD rd g I'Sieq e
Machine encoding
0 rs rt rd 0 ADD R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

Semantics

if MEM[PC] == ADD rd rs rt
GPR[rd] <- GPR[rs] + GPR[rt]
PC« PC+ 4

10



ALU Datapath

[ —
ReadD 25:21] Read
ea '
| pcld4— Readl] register 1 Readl
20:16| Read data 1
register 2 ‘
Instruction Registers ALU  ALU
15:11] WriteO result
Instructiond register Readl
memory | writeo data 2
data
|F ID EX MEM| WB
if MEM[PC] == ADD rd rs rt Combinational

GPR[rd] «— GPR[rs] + GPR]rt]

PC <« PC+4 state update logic

11

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU Instructions

Assembly (e.q., register-immediate signed additions)
ADDI rt, rs,, immediate,

Machine encoding

ADDI__ |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt] «<- GPR[rs] + sign-extend (immediate)
PC« PC+ 4

12



Datapath for R and I-Type ALU Insts.

ReadO
address

Instructiond
memory

Instruction

>Add

Read
register 1

Read

Read[[l
data 1

isltype

\ .| SignO

| @_‘

register 2
. __Registers >ALU ALU
register Readl
| Write[D data 2
| data

if MEM[PC] == ADDI rt rs immediate
GPR[rt] <~ GPR]rs] + sign-extend (immediate)

PC<«-PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

|F ID

EX

MEM

WB

Combinational
state-updatelogic;




Single-Cycle Datapath tor

Data Movement Instructions




lL.oad Instructions

Assembly (e.g., load 4-byte word)
LW rt,, Offset;¢ (base,,)

Machine encoding

LW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] « MEM] translate(EA) ]
PC« PC+ 4

|-type

15



LW Datapath

Readl

| address

Instructiond
memory

Instruction

isltype

_| Readl

register 1

ReadO
Writed
registe

Write[d
data

"| register 2

Registers

r

Read
data 1

Read
data 2

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] <~ MEM[ translate(EA) ]

PC < PC+4

—>| Address Readll _
ALU ALU data
result
—| WriteD Datall
data memory
|F ID EX MEM| WB
Combinational

state update logic 16




Store Instructions

Assembly (e.g., store 4-byte word)
SW rt,, Offset;¢ (base,,)

Machine encoding

SW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
MEM[ translate(EA) ] < GPR[rt]
PC« PC+ 4

|-type

17



SW Datapath

Readl

| address

Instructiond
memory

Instruction

isltype

_| Readl

register 1

ReadO
Writed
registe

Write[d
data

"| register 2

Registers

r

Read
data 1

Read
data 2

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]

MEM][ translate(EA) ] <~ GPR|[rt]
PC«~PC+4

—>| Address Readll _
ALU ALU data
result
—| WriteD Datall
data memory
|F ID EX MEM| WB
Combinational

state update logic s




LLoad-Store Datapath

4 —
ReadO
—|PC address
Instruction
Instructiond
memory
isltype

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

ReadO
register 1 Readll
ReadO data 1
register 2
__Registers >A|—U ALU
Writel] _ result Address I?jead I
register ReadD T ata
. data 2
\é\;rtl;eﬂ Datall
memor
Writed y
data
Sign0d
extend
19




Datapath tor Non-Control-Flow Insts.

v

—{pPC

ReadO
address

Instructiond
memory

Instruction

isltype

Read[
register 1 Readl
Read[] data 1
register 2

. _Registers
Writed R
register Readl »
Writed data 2
data

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Readl
Address data
Datal]
memo
_| WriteO Y
| data
20




Single-Cycle Datapath tor

Control Flow Instructions




Unconditional Jump Instructions

Assembly
J immediate,

Machine encoding

J immediate

6-bit 26-bit

Semantics

if MEM[PC]==1J immediate,
target = { PC[31:28], immediate,,, 2" b00 }
PC « target

J-type

22



Unconditional Jump Datapath

>
—> PC
-

v

ReadO
address

Instructiond
memory

Instruction

v

Read
register 1

Read
register 2

. _Registers
Write[d

register

Writed
data

Read[

3 ALU operation

data 1

Read[
data 2

~J

Pa

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC]==J immediate26

MemWrite
Read
Address data
Datall
memo
WriteD i
data
MemRead

PC = { PC[31:28], immediate26, 2" b0O0 }

What about JR, JAL, JAIR?




Conditional Branch Instructions

Assembly (e.g., branch if equal)
BEQ S It,, immediate;¢

Machine encoding

BEQ rs rt immediate

6-bit 5-bit 5-bit 16-bit

Semantics (assuming no branch delay slot)
if MEM[PC]==BEQ rs rt immediate
target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC « target
else PC«~ PC+ 4

I-type

24



Conditional Branch Datapath (For You to Fix)

LAA A
T

PC |=p—b]

ReadO
address

Instructiond
memory

Instruction J

_| ReadO

watch

PC + 4 from instruction datapath ===

ReadO

register 1 Readll

out

>Add Sum = Branch target

ALU operation

data 1

register 2
Registers

Write

register

Read(l

To branchO
control logic

Writed data 2

data

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to uphold the delayed branch semantiés?



Putting It All Together

PCSrc,=Jump
Instruction [25-0] | ®\ Jump address [31- 0]

\
26 @28 L.

PC+4 [31-28]

./

|—\><C§o

1
M
u
X

0

N

ALU
>Add result
Add \
> | PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
Control
Instruction [25—-21] Read[]
Read register 1
—(PC address ) ’ Read
Instruction [20— 16] Read] data 1
: register 2 bcond
|n5tf[l?J’Ctl°nD l—» 0 ~ Registers Read[s >A|—U ALU
. M WritelJ data 2 0 result Address Féead (1
Instructiond u register M aa M
memory Instruction [15-11] | X Writel ;J 0
1 3 Datal] X
ata 1
) memory 0
Writel
"| data
Instruction [15-0] 1\6 Sign0J %2

Y lextend [ ¥ ALU operation

Instruction [5—- 0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittgg



Single-Cycle Control Logic




Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

31

26

21

16

11

6

0

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

31 26 21 16 0
opcode |rs rt immediate
6-bit 5-bit 5-bit 16-bit

31 26 0
opcode |[immediate
6-bit 26-bit

Consider

Q

Q
Q
Q

All R-type and I-type ALU instructions

LW and SW
BEQ, BNE, BLEZ, BGTZ

J, JR, JAL, JALR

R-type

I-type

J-type

28



Single-Bit Control Signals

When De-asserted

When asserted

Equation

GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

2"d ALU input from 2nd
GPR read port

2" ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&
(opcode!=BEQ) &&
(opcode!=BNE)

Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

GPR write disabled

GPR write enabled

(opcode!l=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))




Single-Bit Control Signals

bit immediate jump
target

When De-asserted When asserted Equation
Memory read disabled | Memory read port opcode==LW
return load value
Memory write disabled | Memory write enabled | opcode==SW
According to next PCis based on 26- | (opcode==J) ||

(opcode==JAL)

next PC=PC+4

next PC is based on 16-
bit immediate branch
target

(opcode==Bxx) &&
“bcond is satisfied”




ALU Control

case opcode

‘0’ = select operation according to funct

"‘ALUi" = selection operation according to opcode
‘LW’ = select addition

‘SW’ = select addition

‘Bxx’ = select bcond generation function
__=don’t care

Example ALU operations
o ADD, SUB, AND, OR, XOR, NOR, etc.

o bcond on equal, not equal, LE zero, GT zero, etc.

31



R-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] -
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
'”S”[‘é‘itlog]m L. o RE9ISErs Readh >ALU ALU read
) 4 re data 2 result Address ‘
Instructiond y register data
memory Instruction [15—11] ‘ Write[ Datar
ata
data ) . memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
V" |extend unCt ALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2

2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Read register 1 O
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStrlé(itloon[l Registers Readll >ALU ALU
—0] Write[ >0 Read||
) ! data 2 result Address
Instructiond u register M data
memory Instruction [15—11] lx WriteD y Datar
ata
data ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2

N lextend [ M

?pcodé
Instruction [5-0]

LU operation O

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 . 3
Elsevier. ALL RIGHTS RESERVED.]



LW

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump

4 ey

Instruction [31-26]

> Control

Instruction [25—21] Read] o

Readl register 1 O
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
'”S”‘é‘itlog]m " Registers Read(l . >ALU ALU rond
) WritelJ data 2 g result Address ea
Instructiond u register M data
memory Instruction [15-11] [ X WriteD y
1 data Datall
) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2
N lextend [V Add ALU operation 1
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 o, 4

Elsevier. ALL RIGHTS RESERVED.]



SW

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Readl register 1 1
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll 5 >ALU ALU Read
) rite data 2 " result Address ‘
Instructiond register M data
memory Instruction [15—11] lx WriteD y Datar
atal
data ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2
N lextend [V Add ALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 . 5

Elsevier. ALL RIGHTS RESERVED.]



Branch Not Taken

Some control signals are dependent
on the processing of data

/

Instruction [25-0] | @\

Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

>Add

Read
address

Instruction]
[

Instruction]
memory

\d

./

ALU
>Add result

Jump
Instruction [31-26]
> Control
Instruction [25-21] Read] o
register 1 Readl O
Instruction [20—-16] Read] data 1
l register 2 bcond
0 ~_Registers Read[l >ALU ALU
M Writel] data 2 result Address Read|
register data
Instruction [15—-11] Write[
1 data Datall
) memaory
Write[d
data

Instruction [15-0]

16 /\32
\ SignO| \

\@\

Instruction [5-0]

cond 0

**Based on original figure from [P&H CO&D, COPYRIGHT 2004

Elsevier. ALL RIGHTS RESERVED.]




Branch Taken

Some control signals are dependent
on the processing of data

ALU
>Add result ﬁ L i

Instruction [25-0] \ [ shiftCy
\ \
26 \ M2 /o5

PC+4 [31-28]

Jump address [31-0]

xcZ ©

/

>Add

2

Jump
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Read register 1 O
—|PC address ] 9 Read
Instruction [20—-16] Read] data 1
) register 2 bcond
Instr[uctlonD l_. 0 Registers Readll >ALU ALU Read
_ M WritelJ data 2 result Address eady
Instruction] ) register data
memory Instruction [15-11] | Write[
1 data Datall
T ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0d 3;2
‘ U | Béond 0
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT . 7

2004 Elsevier. ALL RIGHTS RESERVED.]



Jump

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 ) L

PC+4 [31-28]

./

M
u
X

0

/

ALU
>Add result \l/
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] o
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll 5 >ALU ALU Read
. M rite data 2 " It Address ‘
Instruction] register M rest data
memory Instruction [15—-11] Writell
1 data Datal]
) . memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
N lextend [V * ALU operation O
Instruction [5-0] r
**Based on original figure from [P&H CO&D, COPYRIGHT . 8

2004 Elsevier. ALL RIGHTS RESERVED.]



What is in That Control Box?

Combinational Logic - Hardwired Control

o Idea: Control signals generated combinationally based on
Instruction

o Necessary in a single-cycle microarchitecture...

Sequential Logic = Sequential/Microprogrammed Control

o Idea: A memory structure contains the control signals
associated with an instruction

o Control Store

39



Evaluating the Single-Cycle
Microarchitecture




A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?

41



A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
o CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Ciritical path of the design is determined by the processing
time of the slowest instruction

42



What is the Slowest Instruction to Process?

= Let’s go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

o Fetch 1. Instruction fetch (IF)

o Decode 2. Instruction decode and

o Evaluate Address register operand fetch (ID/RF)

o Fetch Operands 3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)

2 Execute 5. Store/writeback result (WB)

o Store Result

= Do each of the above phases take the same time (latency)
for all instructions?

43



Single-Cycle Datapath Analysis

Assume

o memory units (read or write): 200 ps
o ALU and adders: 100 ps

o register file (read or write): 50 ps

o other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350

Jump 200 4}




Let’s Find the Critical Path

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28 L.

0 1
PC+4 [31-28] v M
\ X X
ALU
>Add result \l/ 0
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] ReadO
ReadO register 1
—>|PC address , 9 Readl]
Instruction [20—16] Read(] data 1
; | register 2 bcond
Instr[uctlonEI 0  Registers Readl] >ALU ALU
) M Write[J data 2 >0 result Address Read|
Instructiond u register M data
memory Instruction [15—11] | X Writer :(J
1 data Datal]
1 ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0J 3;2
N lextend [V ALU operation
Instruction [5-0] r
[Based on original figure from P&H CO&D, COPYRIGHT 2004 5

Elsevier. ALL RIGHTS RESERVED.]



R-Type and I-Type ALU

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] IL/I l\ljl
X X
ALU
>Add result 1
Add \
i PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl
ReadU register 1 Readl
2() 3 lgstruction [20—16 data 1 |
| ion[] S bcond
n [ o 0 ~ Registers ALU ALu
i M Write data 2 . Address Readll /7
Instructiond u data
memory Instruction [15—11 X : 400 p
[ ] 1 \é\értl;eD s X 3 5 c Datal] X
1 p D memory 0
Write(
data
Instruction [15-0] 1\6 SignQ 3;2
N Tlextend [ M ALU operati

Instruction [5-0] r

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



LW

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] IL/I l\ljl
X X
ALU
>Add result 1
Add \
i PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl
ReadU register 1 Readh
2( 3 lgstruction [20—16 data 1
I G S bcond
n [ o 0 ~ Registers ALU ALu
i M Write data 2 It Addres:
InstructionC] u
memory Instruction [15-11] [ X i u
1 3 5 p ‘5 Datal] X
memo
TWriteD v 0
data
Instruction [15-0] 1\6 SignOd 3;2

N lextend [ M

Instruction [5-0] r

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



SW

100ps

Add
4 ey
Read
In ion[J
[
Instruction]
memory

Jump
Instruction [31-26]
> Control
Instruction [25-21] Readl
register 1 Readl

lgstruction [20—16 data 1

0 Registers

M Writel) data 2

u register
Instruction [15-11] | X Write[

1 data

Instruction [15-0]

16 ) 32
\ SignO| \

S

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] M M
u u
X X
ALU
>Add result 1

PCSrc,=Br Taken

bcond
ALU ALy

Addr

350ps, 550ps

N lextend

Instruction [5-0]

\

-

data

S

Read]
data

atal]

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




Branch Taken

PCSrc,=Ju
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 5 1
PC+4 [31-28] 2 u '\S
100ps > .
p A AL
Add .
Shift PCSrc,=Br Taken
Jump left 2
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl 3 p S
Readl register 1 Readh
2 () 3 lgstruction [20—16 data 1 |
| - S bcond
n [ o 0 ~ Registers ALU ALu
_ M Write[ data 2 Address Read|
Instructiont u register data
memory Instruction [15-11] [ X Writeld X
1 data Datal]
1 ) memory
Write[
data
Instruction [15-0] 1\6 SignOd 3;2
N Tlextend [ M ALU operation

Instruction [5-0] r

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]



Instructio

PC+4 [31-28]

200ps

|

In

Instruction]
memory

4

Instruction [25—-21]

[20-16]

\ I@truction
-

L.

Instruction [15—-11]

i—‘><C§O

Instruction [15-0]

Readl
register 1 Read
Readl data 1
register 2

Registers Read
Write[d data 2
register
Writel
data

\d

16 ) 32
\ SignO| \

./

dd ALU

>

result

0
M
u
X
L/

0

PCSrc,=Br Taken

bcond
> ALU ALy
>0 result Address
M
u
X
1
Write[d
data

N lextend

Instruction [5-0]

\

Read]
data

Datall
memory

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]




What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?
o A note on CDC 5600: control store access too long...

51



What is the Slowest Instruction to Process?

Memory is not magic
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?

52



Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient
o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS, INDEX, POLY?

Not easy to optimize/improve performance
o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
53



Microarchitecture Design Principles

Critical path design
o Find the maximum combinational logic delay and decrease it

Bread and butter (common case) design

o Spend time and resources on where it matters
i.e., improve what the machine is really designed to do

o Common case vs. uncommon case

Balanced design
o Balance instruction/data flow through hardware components
o Balance the hardware needed to accomplish the work

How does a single-cycle microarchitecture fare in light of
these principles?

54



Multi-Cycle Microarchitectures

55



Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

a Determine clock cycle time independently of instruction
processing time

o Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different

56



Remember: The “Process instruction™ Step

ISA specifies abstractly what A’ should be, given an
instruction and A

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution
One state transition per instruction

Microarchitecture implements how A is transformed to A’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS > AS’ (transform A to A’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to ASY) =



Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

¢

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

58



Beneftits of Multi-Cycle Design

Critical path design

a Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Bread and butter (common case) design

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Balanced design

o No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X’s to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

59



Remember: Performance Analysis

Execution time of an instruction
o {CPI} x {clock cycle time}

Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
a {# of instructions} x {Average CPI} x {clock cycle time}

Single cycle microarchitecture performance
a CPI=1

o Clock cycle time = long

Multi-cycle microarchitecture performance

o CPI = different for each instruction Now. we have
Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
60



