
18-447

Computer Architecture

Lecture 5: Single-Cycle Microarchitectures

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/24/2014

Assignments

 Lab 1 due today

 Lab 2 out (start early)

 HW1 due next week

 HW0 issues

 Make sure your forms are correctly filled in and readable

 Extended deadline to resubmit: Sunday night (January 26)

2

A Single-Cycle Microarchitecture

A Closer Look

3

Remember…

 Single-cycle machine

4

ASNext AS Sequential
Logic
(State)

Combinational
Logic

Let’s Start with the State Elements

 Data and control inputs

5

PC

Instruction

memory

Instruction

address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction

memory

Instruction

address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write

data

Read

data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

ALU

result

ALU

Data

Data

Register

numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done

 6

Instruction Processing

 5 generic steps (P&H)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB)

7

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

IF

ID/RF
EX/AG

MEM

WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What Is To Come: The Full MIPS Datapath

8

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Datapath for

Arithmetic and Logical Instructions

9

R-Type ALU Instructions

 Assembly (e.g., register-register signed addition)

 ADD rdreg rsreg rtreg

 Machine encoding

 Semantics

 if MEM[PC] == ADD rd rs rt

 GPR[rd]  GPR[rs] + GPR[rt]

 PC  PC + 4

10

0
6-bit

rs
5-bit

rt
5-bit

R-type rd
5-bit

0
5-bit

ADD
6-bit

ALU Datapath

11

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction
Registers

Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

ALU

result

ALU

Zero

RegWrite

ALU operation
3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
 GPR[rd]  GPR[rs] + GPR[rt]
 PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

I-Type ALU Instructions

 Assembly (e.g., register-immediate signed additions)

 ADDI rtreg rsreg immediate16

 Machine encoding

 Semantics

 if MEM[PC] == ADDI rt rs immediate

 GPR[rt]  GPR[rs] + sign-extend (immediate)

 PC  PC + 4

12

ADDI
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Datapath for R and I-Type ALU Insts.

13

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

1
ALUSrc

isItype

RegDest

isItype

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt]  GPR[rs] + sign-extend (immediate)
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

Single-Cycle Datapath for

Data Movement Instructions

14

Load Instructions

 Assembly (e.g., load 4-byte word)

 LW rtreg offset16 (basereg)

 Machine encoding

 Semantics

 if MEM[PC]==LW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

GPR[rt]  MEM[translate(EA)]

PC  PC + 4

15

LW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

LW Datapath

16

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

if MEM[PC]==LW rt offset16 (base)
 EA = sign-extend(offset) + GPR[base]
 GPR[rt]  MEM[translate(EA)]
 PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write

data

Read

data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

Store Instructions

 Assembly (e.g., store 4-byte word)

 SW rtreg offset16 (basereg)

 Machine encoding

 Semantics

 if MEM[PC]==SW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

MEM[translate(EA)]  GPR[rt]

PC  PC + 4

17

SW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

SW Datapath

18

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

if MEM[PC]==SW rt offset16 (base)
 EA = sign-extend(offset) + GPR[base]
 MEM[translate(EA)]  GPR[rt]
 PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write

data

Read

data

a. Data memory unit

Address

0

add

ALUSrc

isItype

RegDest
isItype

Load-Store Datapath

19

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

add
isStore

isLoad

ALUSrc

isItype

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Datapath for Non-Control-Flow Insts.

20

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

isStore

isLoad

ALUSrc

isItype

MemtoReg

isLoad

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for

Control Flow Instructions

21

Unconditional Jump Instructions

 Assembly

 J immediate26

 Machine encoding

 Semantics

 if MEM[PC]==J immediate26

 target = { PC[31:28], immediate26, 2’b00 }

 PC  target

22

J
6-bit

immediate
26-bit

J-type

Unconditional Jump Datapath

23

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

concat

PCSrc

isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
 PC = { PC[31:28], immediate26, 2’b00 }

Conditional Branch Instructions

 Assembly (e.g., branch if equal)

 BEQ rsreg rtreg immediate16

 Machine encoding

 Semantics (assuming no branch delay slot)

 if MEM[PC]==BEQ rs rt immediate16

target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC  target

 else PC  PC + 4

24

BEQ
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Conditional Branch Datapath (For You to Fix)

25

16 32
Sign

extend

ZeroALU

Sum

Shift

left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

RegWrite

ALU operation
3

PC

Instruction

memory

Read

address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out

Putting It All Together

26

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Control Logic

27

Single-Cycle Hardwired Control

 As combinational function of Inst=MEM[PC]

 Consider

 All R-type and I-type ALU instructions

 LW and SW

 BEQ, BNE, BLEZ, BGTZ

 J, JR, JAL, JALR

 28

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

R-type 0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

immediate
26-bit

J-type

0 6 11 16 21 26 31

0 16 21 26 31

0 26 31

Single-Bit Control Signals

29

When De-asserted When asserted Equation

RegDest
GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

ALUSrc

2nd ALU input from 2nd
GPR read port

2nd ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&

(opcode!=BEQ) &&

(opcode!=BNE)

MemtoReg
Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

RegWrite

GPR write disabled GPR write enabled (opcode!=SW) &&

(opcode!=Bxx) &&

(opcode!=J) &&

(opcode!=JR))

JAL and JALR require additional RegDest and MemtoReg options

Single-Bit Control Signals

30

When De-asserted When asserted Equation

MemRead
Memory read disabled Memory read port

return load value
opcode==LW

MemWrite
Memory write disabled Memory write enabled opcode==SW

PCSrc1

According to PCSrc2 next PC is based on 26-
bit immediate jump
target

(opcode==J) ||

(opcode==JAL)

PCSrc2
next PC = PC + 4 next PC is based on 16-

bit immediate branch
target

(opcode==Bxx) &&

“bcond is satisfied”

JR and JALR require additional PCSrc options

ALU Control

 case opcode

‘0’  select operation according to funct

‘ALUi’  selection operation according to opcode

‘LW’  select addition

‘SW’  select addition

‘Bxx’  select bcond generation function

 __  don’t care

 Example ALU operations

 ADD, SUB, AND, OR, XOR, NOR, etc.

 bcond on equal, not equal, LE zero, GT zero, etc.

31

R-Type ALU

32

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

1
0

0 funct

I-Type ALU

33

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

0

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

opcode

LW

34

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

1
0

1

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

SW

35

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
1

0

* *
bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

Add

Branch Not Taken

36

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

* *

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data

Branch Taken

37

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

* *

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

bcond

Some control signals are dependent

on the processing of data

Jump

38

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

0
0

0

* *

*

*

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

*

What is in That Control Box?

 Combinational Logic  Hardwired Control

 Idea: Control signals generated combinationally based on
instruction

 Necessary in a single-cycle microarchitecture…

 Sequential Logic  Sequential/Microprogrammed Control

 Idea: A memory structure contains the control signals
associated with an instruction

 Control Store

39

Evaluating the Single-Cycle

Microarchitecture

40

A Single-Cycle Microarchitecture

 Is this a good idea/design?

 When is this a good design?

 When is this a bad design?

 How can we design a better microarchitecture?

41

A Single-Cycle Microarchitecture: Analysis

 Every instruction takes 1 cycle to execute

 CPI (Cycles per instruction) is strictly 1

 How long each instruction takes is determined by how long
the slowest instruction takes to execute

 Even though many instructions do not need that long to
execute

 Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

 Critical path of the design is determined by the processing
time of the slowest instruction

42

What is the Slowest Instruction to Process?

 Let’s go back to the basics

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Do each of the above phases take the same time (latency)
for all instructions?

43

1. Instruction fetch (IF)
2. Instruction decode and
 register operand fetch (ID/RF)
3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)
5. Store/writeback result (WB)

Single-Cycle Datapath Analysis

 Assume

 memory units (read or write): 200 ps

 ALU and adders: 100 ps

 register file (read or write): 50 ps

 other combinational logic: 0 ps

44

steps IF ID EX MEM WB

Delay
resources mem RF ALU mem RF

R-type 200 50 100 50 400

I-type 200 50 100 50 400

LW 200 50 100 200 50 600

SW 200 50 100 200 550

Branch 200 50 100 350

Jump 200 200

Let’s Find the Critical Path

45

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT 2004
Elsevier. ALL RIGHTS RESERVED.]

R-Type and I-Type ALU

46

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps 400ps

100ps

100ps

LW

47

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps 600ps

100ps

100ps

550ps

SW

48

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

100ps

550ps

Branch Taken

49

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps 250ps

350ps

100ps

350ps

200ps

Jump

50

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15–11]

Instruction [20–16]

Instruction [25–21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31–26]

4

M

u

x

Instruction [25– 0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15–0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

200ps

100ps

200ps

What About Control Logic?

 How does that affect the critical path?

 Food for thought for you:

 Can control logic be on the critical path?

 A note on CDC 5600: control store access too long…

51

What is the Slowest Instruction to Process?

 Memory is not magic

 What if memory sometimes takes 100ms to access?

 Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

 And, what if you need to access memory more than once to
process an instruction?

 Which instructions need this?

 Do you provide multiple ports to memory?

52

Single Cycle uArch: Complexity
 Contrived

 All instructions run as slow as the slowest instruction

 Inefficient

 All instructions run as slow as the slowest instruction

 Must provide worst-case combinational resources in parallel as required
by any instruction

 Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

 Not necessarily the simplest way to implement an ISA

 Single-cycle implementation of REP MOVS, INDEX, POLY?

 Not easy to optimize/improve performance

 Optimizing the common case does not work (e.g. common instructions)

 Need to optimize the worst case all the time
53

Microarchitecture Design Principles

 Critical path design

 Find the maximum combinational logic delay and decrease it

 Bread and butter (common case) design

 Spend time and resources on where it matters

 i.e., improve what the machine is really designed to do

 Common case vs. uncommon case

 Balanced design

 Balance instruction/data flow through hardware components

 Balance the hardware needed to accomplish the work

 How does a single-cycle microarchitecture fare in light of
these principles?

54

Multi-Cycle Microarchitectures

55

Multi-Cycle Microarchitectures

 Goal: Let each instruction take (close to) only as much time
it really needs

 Idea

 Determine clock cycle time independently of instruction
processing time

 Each instruction takes as many clock cycles as it needs to take

 Multiple state transitions per instruction

 The states followed by each instruction is different

56

Remember: The “Process instruction” Step

  ISA specifies abstractly what A’ should be, given an
instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: AS  AS’ (transform A to A’ in a single clock cycle)

 Choice 2: AS  AS+MS1  AS+MS2  AS+MS3  AS’ (take multiple

clock cycles to transform AS to AS’)

57

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state

at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

…

AS’ = Architectural (programmer visible) state

at the end of a clock cycle

 58

Benefits of Multi-Cycle Design

 Critical path design

 Can keep reducing the critical path independently of the worst-
case processing time of any instruction

 Bread and butter (common case) design

 Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

 Balanced design

 No need to provide more capability or resources than really
needed

 An instruction that needs resource X multiple times does not require
multiple X’s to be implemented

 Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

59

Remember: Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI  hopefully small

 Clock cycle time = short
60

Now, we have

two degrees of freedom

to optimize independently

