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Assignments 

 Lab 1 due today 

 

 Lab 2 out (start early) 

 

 HW1 due next week 

 

 HW0 issues 

 Make sure your forms are correctly filled in and readable 

 Extended deadline to resubmit: Sunday night (January 26) 
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A Single-Cycle Microarchitecture 

A Closer Look 
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Remember… 

 Single-cycle machine 
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Let’s Start with the State Elements 

 Data and control inputs 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



For Now, We Will Assume 

 “Magic” memory and register file 
 

 Combinational read 

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port 

 

 Synchronous write 

 the selected register is updated on the positive edge clock 
transition when write enable is asserted 

 Cannot affect read output in between clock edges 
 

 

 Single-cycle, synchronous memory 

 Contrast this with memory that tells when the data is ready 

 i.e., Ready bit: indicating the read or write is done 
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Instruction Processing 

 5 generic steps (P&H) 

 Instruction fetch (IF) 

 Instruction decode and register operand fetch (ID/RF) 

 Execute/Evaluate memory address (EX/AG) 

 Memory operand fetch (MEM) 

 Store/writeback result (WB)  
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What Is To Come: The Full MIPS Datapath 
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ALL RIGHTS RESERVED.] JAL, JR, JALR omitted 



Single-Cycle Datapath for 

Arithmetic and Logical Instructions 
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R-Type ALU Instructions 

 Assembly (e.g., register-register signed addition) 

  ADD rdreg rsreg rtreg 

 

 Machine encoding 

 

 

 

 

 Semantics 

 

  if MEM[PC] == ADD rd rs rt 

   GPR[rd]  GPR[rs] + GPR[rt]   

   PC  PC + 4 
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ALU Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

if MEM[PC] == ADD rd rs rt 
 GPR[rd]  GPR[rs] + GPR[rt]   
 PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



I-Type ALU Instructions 

 Assembly (e.g., register-immediate signed additions) 

  ADDI rtreg rsreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics 

  if MEM[PC] == ADDI rt rs immediate 

           GPR[rt]  GPR[rs] + sign-extend (immediate) 

           PC  PC + 4 
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Datapath for R and I-Type ALU Insts. 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 

if MEM[PC] == ADDI rt rs immediate 
GPR[rt]  GPR[rs] + sign-extend (immediate)  
PC  PC + 4 

Combinational 
state update logic 

IF ID EX MEM WB 



Single-Cycle Datapath for 

Data Movement Instructions 
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Load Instructions 

 Assembly (e.g., load 4-byte word) 

  LW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==LW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

GPR[rt]  MEM[ translate(EA) ]  

PC  PC + 4 
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LW Datapath 
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Store Instructions 

 Assembly (e.g., store 4-byte word) 

  SW rtreg offset16 (basereg) 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==SW rt offset16 (base)  

EA = sign-extend(offset) + GPR[base] 

MEM[ translate(EA) ]  GPR[rt]  

PC  PC + 4 
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SW Datapath 
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Load-Store Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 



Datapath for Non-Control-Flow Insts. 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.] 



Single-Cycle Datapath for 

Control Flow Instructions 
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Unconditional Jump Instructions 

 Assembly 

  J immediate26 

 

 Machine encoding 

 

 

 

 Semantics 

 if MEM[PC]==J immediate26 

   target = { PC[31:28], immediate26, 2’b00 }  

   PC  target 
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Unconditional Jump Datapath 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 
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X 

if MEM[PC]==J immediate26 
    PC = { PC[31:28], immediate26, 2’b00 } 



Conditional Branch Instructions 

 Assembly (e.g., branch if equal) 

  BEQ rsreg rtreg immediate16 

 

 Machine encoding 

 

 

 

 Semantics (assuming no branch delay slot) 

 if MEM[PC]==BEQ rs rt immediate16 

target = PC + 4 + sign-extend(immediate) x 4  

if GPR[rs]==GPR[rt] then  PC  target 

    else  PC  PC + 4 
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Conditional Branch Datapath (For You to Fix) 
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watch out 



Putting It All Together 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted 



Single-Cycle Control Logic 
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Single-Cycle Hardwired Control 

 As combinational function of Inst=MEM[PC] 

 

 

 

 

 

 

 Consider 

 All R-type and I-type ALU instructions 

 LW and SW 

 BEQ, BNE, BLEZ, BGTZ 

 J, JR, JAL, JALR 
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Single-Bit Control Signals 
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Single-Bit Control Signals 
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ALU Control 

 case opcode 

‘0’  select operation according to funct 

‘ALUi’  selection operation according to opcode  

‘LW’  select addition 

‘SW’  select addition 

‘Bxx’  select bcond generation function 

 __  don’t care 

 

 Example ALU operations 

 ADD, SUB, AND, OR, XOR, NOR, etc. 

 bcond on equal, not equal, LE zero, GT zero, etc. 
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R-Type ALU 
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2004 Elsevier. ALL RIGHTS RESERVED.] 

1 
0 

0 funct 



I-Type ALU 
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opcode 



LW 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
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Add 



SW 
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Add 



Branch Not Taken 
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 
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bcond 

Some control signals are dependent 

on the processing of data 



Branch Taken 
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.] 

bcond 

Some control signals are dependent 

on the processing of data 
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What is in That Control Box? 

 Combinational Logic  Hardwired Control 

 Idea: Control signals generated combinationally based on 
instruction 

 Necessary in a single-cycle microarchitecture… 

 

 Sequential Logic  Sequential/Microprogrammed Control 

 Idea: A memory structure contains the control signals 
associated with an instruction 

 Control Store 
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Evaluating the Single-Cycle 

Microarchitecture 
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A Single-Cycle Microarchitecture 

 Is this a good idea/design? 

 

 When is this a good design? 

 

 When is this a bad design? 

 

 How can we design a better microarchitecture? 
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A Single-Cycle Microarchitecture: Analysis 

 Every instruction takes 1 cycle to execute 

 CPI (Cycles per instruction) is strictly 1 

 

 How long each instruction takes is determined by how long 
the slowest instruction takes to execute 

 Even though many instructions do not need that long to 
execute 

 

 Clock cycle time of the microarchitecture is determined by 
how long it takes to complete the slowest instruction 

 Critical path of the design is determined by the processing 
time of the slowest instruction 
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What is the Slowest Instruction to Process? 

 Let’s go back to the basics 

 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Do each of the above phases take the same time (latency) 
for all instructions? 
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1. Instruction fetch (IF) 
2. Instruction decode and  
    register operand fetch (ID/RF) 
3. Execute/Evaluate memory address (EX/AG) 
4. Memory operand fetch (MEM) 
5. Store/writeback result (WB)  

 



Single-Cycle Datapath Analysis 

 Assume 

 memory units (read or write): 200 ps 

 ALU and adders: 100 ps 

 register file (read or write): 50 ps 

 other combinational logic: 0 ps 
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steps IF ID EX MEM WB 

Delay 
resources mem RF ALU mem RF 

R-type 200 50 100 50 400 

I-type 200 50 100 50 400 

LW 200 50 100 200 50 600 

SW 200 50 100 200 550 

Branch 200 50 100 350 

Jump 200 200 



Let’s Find the Critical Path 
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R-Type and I-Type ALU 
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What About Control Logic?  

 How does that affect the critical path? 

 

 Food for thought for you: 

 Can control logic be on the critical path? 

 A note on CDC 5600: control store access too long… 
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What is the Slowest Instruction to Process? 

 Memory is not magic 

 

 What if memory sometimes takes 100ms to access? 

 

 Does it make sense to have a simple register to register 
add or jump to take {100ms+all else to do a memory 
operation}? 

 

 And, what if you need to access memory more than once to 
process an instruction? 

 Which instructions need this? 

 Do you provide multiple ports to memory? 
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Single Cycle uArch: Complexity 
 Contrived  

 All instructions run as slow as the slowest instruction 
 

 Inefficient 

 All instructions run as slow as the slowest instruction 

 Must provide worst-case combinational resources in parallel as required 
by any instruction 

 Need to replicate a resource if it is needed more than once by an 
instruction during different parts of the instruction processing cycle 

 

 Not necessarily the simplest way to implement an ISA 

 Single-cycle implementation of REP MOVS, INDEX, POLY? 
 

 Not easy to optimize/improve performance 

 Optimizing the common case does not work (e.g. common instructions) 

 Need to optimize the worst case all the time 
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Microarchitecture Design Principles 

 Critical path design 

 Find the maximum combinational logic delay and decrease it 

 

 Bread and butter (common case) design 

 Spend time and resources on where it matters  

 i.e., improve what the machine is really designed to do 

 Common case vs. uncommon case 

 

 Balanced design 

 Balance instruction/data flow through hardware components 

 Balance the hardware needed to accomplish the work 

 

 How does a single-cycle microarchitecture fare in light of 
these principles? 
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Multi-Cycle Microarchitectures 
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Multi-Cycle Microarchitectures 

 Goal: Let each instruction take (close to) only as much time 
it really needs 

 

 Idea 

 Determine clock cycle time independently of instruction 
processing time 

 Each instruction takes as many clock cycles as it needs to take 

 Multiple state transitions per instruction 

 The states followed by each instruction is different 
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Remember: The “Process instruction” Step 

  ISA specifies abstractly what A’ should be, given an 
instruction and A 

 It defines an abstract finite state machine where 

 State = programmer-visible state  

 Next-state logic = instruction execution specification 

 From ISA point of view, there are no “intermediate states” 
between A and A’ during instruction execution 

 One state transition per instruction 
 

 Microarchitecture implements how A is transformed to A’ 

 There are many choices in implementation  

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction 

 Choice 1: AS  AS’ (transform A to A’ in a single clock cycle) 

 Choice 2: AS  AS+MS1  AS+MS2  AS+MS3  AS’ (take multiple 

clock cycles to transform AS to AS’) 
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Multi-Cycle Microarchitecture 

AS = Architectural (programmer visible) state  

at the beginning of an instruction 
 

 

Step 1: Process part of instruction in one clock cycle 

 
 

Step 2: Process part of instruction in the next clock cycle 

 
 

… 

 

AS’ = Architectural (programmer visible) state  

at the end of a clock cycle 
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Benefits of Multi-Cycle Design 

 Critical path design 

 Can keep reducing the critical path independently of the worst-
case processing time of any instruction 

 

 Bread and butter (common case) design 

 Can optimize the number of states it takes to execute “important” 
instructions that make up much of the execution time 
 

 Balanced design 

 No need to provide more capability or resources than really 
needed  

 An instruction that needs resource X multiple times does not require 
multiple X’s to be implemented 

 Leads to more efficient hardware: Can reuse hardware components 
needed multiple times for an instruction 
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Remember: Performance Analysis 

 Execution time of an instruction 

 {CPI}  x  {clock cycle time}  
 

 Execution time of a program 

 Sum over all instructions [{CPI}  x  {clock cycle time}] 

 {# of instructions}  x  {Average CPI}  x  {clock cycle time} 

 

 Single cycle microarchitecture performance  

 CPI = 1 

 Clock cycle time = long 

 Multi-cycle microarchitecture performance 

 CPI = different for each instruction 

 Average CPI  hopefully small 

 Clock cycle time = short 
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Now, we have  

two degrees of freedom 

to optimize independently 


