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A Single-Cycle Microarchitecture
A Closer L.ook




Remember...

= Single-cycle machine

AS Next

Combinational
Logic

AS

Sequential |
Logic
(State)




Iet’s Start with the State Elements

Data and control inputs

=5| Readl
register 1
Read
2| ReadO data 1
register 2
Registers
> PC— S | Write[
register Read|]
WriteOd data 2
—
data
‘ RegWrite
‘ MemWrite
| Instructiond
address
»| Address Readlll _
data
Instruction je—
- Write [ Datall
Instructiond —p
memory data memory
MemRead

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write

o the selected register is updated on the positive edge clock
transition when write enable is asserted

Cannot affect read output in between clock edges

Single-cycle, synchronous memory
o Contrast this with memory that tells when the data is ready
o i.e., Ready bit: indicating the read or write is done



Instruction Processing

= 5 generic steps (P&H)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)

Q

o Execute/Evaluate memory address (EX/AG)
o Memory operand fetch (MEM)
Q

Store/writeback result (WB)

PC =] Address Instruction

Instructiond
memory

L Data

Register #
Registers
ister #

Register #

$ALU

| -

Address

Datall
memory

**Base!

d on original figure from [P&H CO&D, COPYRIGHT 2004 El

sevier.

ALL RIGHTS RESERVED.]



What Is To Come: The Full MIPS Datapath

PCSrc,=Jump
Instruction [25-0]  [shiftty,  Jump address [31-0]
~\left2 [} I_.
26 UZS 0 1
M M
PC+4 [31-28] u u
\ X X
> ALU
>Add result S 0
Add \
> | PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
Control
Instruction [25—-21] Readl
I Readl register 1 Read
address . data 1
Instruction [20— 16] Read] ata beond
) register 2 con
|nstr[l?1’ctlonD l_. 0 ~Registers Readl A >ALU ALU Readll
. M Write[] data 2 result Address dea {1
Instruction u register M o Mo
memaory Instruction [15—11] % Write[d ;J v
1 J Datal] X
ata 1
] memory 0
Writel
"| data
Instruction [15-0] 1\6 Sign0J %2

Y lextend [ ¥ ALU operation

Instruction [5—- 0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittea



Single-Cycle Datapath tor
Avrithmetic and 1 ogical Instructions




R-Type ALU Instructions

Assembly (e.q., register-register signed addition)

ADD rd g I'Sieq e
Machine encoding
0 rs rt rd 0 ADD R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

Semantics

if MEM[PC] == ADD rd rs rt
GPR[rd] <- GPR[rs] + GPR[rt]
PC« PC+ 4



ALU Datapath

[ —
ReadD 25:21] Read
ea '
| pcld4— Readl] register 1 Readl
20:16| Read data 1
register 2 ‘
Instruction Registers ALU  ALU
15:11] WriteO result
Instructiond register Readl
memory | writeo data 2
data
|F ID EX MEM| WB
if MEM[PC] == ADD rd rs rt Combinational

GPR[rd] «— GPR[rs] + GPR]rt]

PC <« PC+4 state update logic

10

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU Instructions

Assembly (e.q., register-immediate signed additions)
ADDI rt, rs,, immediate,

Machine encoding

ADDI__ |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt] «<- GPR[rs] + sign-extend (immediate)
PC« PC+ 4
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Datapath for R and I-Type ALU Insts.

ReadO
address

Instructiond
memory

Instruction

>Add

Read
register 1

Read

Read[[l
data 1

isltype

\ .| SignO

| @_‘

register 2
. __Registers >ALU ALU
register Readl
| Write[D data 2
| data

if MEM[PC] == ADDI rt rs immediate
GPR[rt] <~ GPR]rs] + sign-extend (immediate)

PC<«-PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

|F ID

EX

MEM

WB

Combinational
state-updatelogic;




Single-Cycle Datapath tor

Data Movement Instructions




lL.oad Instructions

Assembly (e.g., load 4-byte word)
LW rt,, Offset;¢ (base,,)

Machine encoding

LW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] « MEM] translate(EA) ]
PC« PC+ 4

|-type

14



LW Datapath

Readl

| address

Instructiond
memory

Instruction

isltype

_| Readl

register 1

ReadO
Writed
registe

Write[d
data

"| register 2

Registers

r

Read
data 1

Read
data 2

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] <~ MEM[ translate(EA) ]

PC < PC+4

—>| Address Readll _
ALU ALU data
result
—| WriteD Datall
data memory
|F ID EX MEM| WB
Combinational

state update logic 15




Store Instructions

Assembly (e.g., store 4-byte word)
SW rt,, Offset;¢ (base,,)

Machine encoding

SW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
MEM[ translate(EA) ] < GPR[rt]
PC« PC+ 4

|-type
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SW Datapath

Readl

| address

Instructiond
memory

Instruction

isltype

_| Readl

register 1

ReadO
Writed
registe

Write[d
data

"| register 2

Registers

r

Read
data 1

Read
data 2

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]

MEM][ translate(EA) ] <~ GPR|[rt]
PC«~PC+4

—>| Address Readll _
ALU ALU data
result
—| WriteD Datall
data memory
|F ID EX MEM| WB
Combinational

state update logic 17




LLoad-Store Datapath

4 —
ReadO
—|PC address
Instruction
Instructiond
memory
isltype

**Based on original figure from [P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]

ReadO
register 1 Readll
ReadO data 1
register 2
__Registers >A|—U ALU
Writel] _ result Address I?jead I
register ReadD T ata
. data 2
\é\;rtl;eﬂ Datall
memor
Writed y
data
Sign0d
extend
18




Datapath tor Non-Control-Flow Insts.

v

—{pPC

ReadO
address

Instructiond
memory

Instruction

isltype

Read[
register 1 Readl
Read[] data 1
register 2

. _Registers
Writed R
register Readl »
Writed data 2
data

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Readl
Address data
Datal]
memo
_| WriteO Y
| data
19




Single-Cycle Datapath tor

Control Flow Instructions




Unconditional Jump Instructions

Assembly
J immediate,

Machine encoding

J immediate J-type
6-bit 26-bit

Semantics

if MEM[PC]==1J immediate,
target = { PC[31:28], immediate,,, 2" b00 }
PC « target

21



Unconditional Jump Datapath

>
—> PC
-

v

ReadO
address

Instructiond
memory

Instruction

v

Read
register 1

Read
register 2

. _Registers
Write[d

register

Writed
data

Read[

3 ALU operation

data 1

Read[
data 2

~J

Pa

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC]==J immediate26

MemWrite
Read
Address data
Datall
memo
WriteD i
data
MemRead

PC = { PC[31:28], immediate26, 2" b0O0 }

What about JR, JAL, JAIR?




Conditional Branch Instructions

Assembly (e.g., branch if equal)
BEQ S It,, immediate;¢

Machine encoding

BEQ rs rt immediate

6-bit 5-bit 5-bit 16-bit

Semantics (assuming no branch delay slot)
if MEM[PC]==BEQ rs rt immediate
target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC « target
else PC«~ PC+ 4

I-type

23



Conditional Branch Datapath (For You to Fix)

LAA A
T

PC |=p—b]

ReadO
address

Instructiond
memory

Instruction J

_| ReadO

watch

PC + 4 from instruction datapath ===

ReadO

register 1 Readll

out

>Add Sum = Branch target

ALU operation

data 1

register 2
Registers

Write

register

Read(l

To branchO
control logic

Writed data 2

data

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to uphold the delayed branch semantié$?



Putting It All Together

PCSrc,=Jump
Instruction [25-0] | ®\ Jump address [31- 0]

\
26 @28 L.

PC+4 [31-28]

./

|—\><C§o

1
M
u
X

0

N

ALU
>Add result
Add \
> | PCSrc,=Br Taken
Jump
4 —
Instruction [31— 26]
Control
Instruction [25—-21] Read[]
Read register 1
—(PC address ) ’ Read
Instruction [20— 16] Read] data 1
: register 2 bcond
|n5tf[l?J’Ctl°nD l—» 0 ~ Registers Read[s >A|—U ALU
. M WritelJ data 2 0 result Address Féead (1
Instructiond u register M aa M
memory Instruction [15-11] | X Writel ;J 0
1 3 Datal] X
ata 1
) memory 0
Writel
"| data
Instruction [15-0] 1\6 Sign0J %2

Y lextend [ ¥ ALU operation

Instruction [5—- 0] r

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.] JAL, JR, JALR omittga



Single-Cycle Control Logic




Single-Cycle Hardwired Control

As combinational function of Inst=MEM[PC]

31

26

21

16

11

6

0

0 rs rt rd shamt | funct
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

31 26 21 16 0
opcode |rs rt immediate
6-bit 5-bit 5-bit 16-bit

31 26 0
opcode |[immediate
6-bit 26-bit

Consider

Q

Q
Q
Q

All R-type and I-type ALU instructions

LW and SW
BEQ, BNE, BLEZ, BGTZ

J, JR, JAL, JALR

R-type

I-type

J-type

27



Single-Bit Control Signals

When De-asserted

When asserted

Equation

GPR write select
according to rt, i.e.,
inst[20:16]

GPR write select
according to rd, i.e.,
inst[15:11]

opcode==0

2"d ALU input from 2nd
GPR read port

2" ALU input from sign-
extended 16-bit
immediate

(opcode!=0) &&
(opcode!=BEQ) &&
(opcode!=BNE)

Steer ALU result to GPR
write port

steer memory load to
GPR wr. port

opcode==LW

GPR write disabled

GPR write enabled

(opcode!l=SW) &&
(opcode!=Bxx) &&
(opcodel=)) &&
(opcode!=JR))




Single-Bit Control Signals

When De-asserted When asserted Equation
Memory read disabled | Memory read port opcode==LW
return load value
Memory write disabled | Memory write enabled | opcode==SW
According to next PCis based on 26- | (opcode==J) ||

bit immediate jump
target

(opcode==JAL)

next PC=PC+4

next PC is based on 16-
bit immediate branch
target

(opcode==Bxx) &&

“bcond is satisfied”

29




ALU Control

case opcode

‘0’ = select operation according to funct

"‘ALUi" = selection operation according to opcode
‘LW’ = select addition

‘SW’ = select addition

‘Bxx’ = select bcond generation function
__=don’t care

Example ALU operations
o ADD, SUB, AND, OR, XOR, NOR, etc.

o bcond on equal, not equal, LE zero, GT zero, etc.

30



R-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] -
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
'”S”[‘é‘itlog]m L. o RE9ISErs Readh >ALU ALU read
) 4 re data 2 result Address ‘
Instructiond y register data
memory Instruction [15—11] ‘ Write[ Datar
ata
data ) . memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
V" |extend unCt ALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 1

2004 Elsevier. ALL RIGHTS RESERVED.]



[-Type ALU

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Read register 1 O
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStrlé(itloon[l Registers Readll >ALU ALU
—0] Write[ >0 Read||
) ! data 2 result Address
Instructiond u register M data
memory Instruction [15—11] lx WriteD y Datar
ata
data ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2

N lextend [ M

?pcodé
Instruction [5-0]

LU operation O

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 ), 2
Elsevier. ALL RIGHTS RESERVED.]



LW

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump

4 ey

Instruction [31-26]

> Control

Instruction [25—21] Read] o

Readl register 1 O
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
'”S”‘é‘itlog]m " Registers Read(l . >ALU ALU rond
) WritelJ data 2 g result Address ea
Instructiond u register M data
memory Instruction [15-11] [ X WriteD y
1 data Datall
) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2
N lextend [V Add ALU operation 1
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 . 3

Elsevier. ALL RIGHTS RESERVED.]



SW

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—21] Read] o
Readl register 1 1
—|PC address , 9 Readll]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll 5 >ALU ALU Read
) rite data 2 " result Address ‘
Instructiond register M data
memory Instruction [15—11] lx WriteD y Datar
atal
data ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0O 3;2
N lextend [V Add ALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 o, 4

Elsevier. ALL RIGHTS RESERVED.]



Branch Not Taken

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

./

>Add ALU

result
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] o
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; | register 2 bcond
InStr[lé(itlo(?]D 0 Wit DRegisters Readll >ALU ALU Read
) M rite data 2 result Address ‘
Instruction] register data
memory Instruction [15—-11] Writell
1 data Datal]
— ) memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
N lextend [V CondALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 . 5

Elsevier. ALL RIGHTS RESERVED.]



Branch Taken

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28

PC+4 [31-28]

7
./

>Add ALU

result
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] o
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll >ALU ALU Read
. M rite data 2 result Address ‘
Instruction(d ) register data
memory Instruction [15—-11] | Writel
1 data J Datal]
— ) memaory
Write[
data
Instruction [15-0] 1\6 SignOd 3;2
N lextend [V CondALU operation O
Instruction [5-0]
**Based on original figure from [P&H CO&D, COPYRIGHT . 6

2004 Elsevier. ALL RIGHTS RESERVED.]



Jump

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 ) L

PC+4 [31-28]

./

M
u
X

0

/

ALU
>Add result \l/
Add \
> : PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Read] o
Readl register 1 O
—|PC address , g Read(]
Instruction [20—-16] Read] data 1
; register 2 bcond
InStr[lé(itlo(?]D l—» 0 Wit DRegisters Readll 5 >ALU ALU Read
. M rite data 2 " It Address ‘
Instruction] register M rest data
memory Instruction [15—-11] Writell
1 data Datal]
) . memory
Write[d
data
Instruction [15-0] 1\6 SignOd 3;2
N lextend [V * ALU operation O
Instruction [5-0] r
**Based on original figure from [P&H CO&D, COPYRIGHT . 7

2004 Elsevier. ALL RIGHTS RESERVED.]



What is in That Control Box?

Combinational Logic - Hardwired Control

o Idea: Control signals generated combinationally based on
Instruction

o Necessary in a single-cycle microarchitecture...

Sequential Logic = Sequential/Microprogrammed Control

o Idea: A memory structure contains the control signals
associated with an instruction

o Control Store

38



Evaluating the Single-Cycle
Microarchitecture




A Single-Cycle Microarchitecture

Is this a good idea/design?
When is this a good design?
When is this a bad design?

How can we design a better microarchitecture?

40



A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
o CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Ciritical path of the design is determined by the processing
time of the slowest instruction

41



What is the Slowest Instruction to Process?

= Let’s go back to the basics

= All six phases of the instruction processing cycle take a single
machine clock cycle to complete

o Fetch 1. Instruction fetch (IF)

o Decode 2. Instruction decode and

o Evaluate Address register operand fetch (ID/RF)

o Fetch Operands 3. Execute/Evaluate memory address (EX/AG)
4. Memory operand fetch (MEM)

2 Execute 5. Store/writeback result (WB)

o Store Result

= Do each of the above phases take the same time (latency)
for all instructions?

42



Single-Cycle Datapath Analysis

Assume

o memory units (read or write): 200 ps
o ALU and adders: 100 ps

o register file (read or write): 50 ps

o other combinational logic: 0 ps

steps IF ID EX MEM WB
Delay

resources mem RF ALU mem RF
R-type 400
I-type 400
LW 600
SW 550
Branch 350
Jump 200




Let’s Find the Critical Path

PCSrc,=Jump
Instruction [25-0] \ [ shiftCy Jump address [31-0]

\ \
26 @28 L.

0 1
PC+4 [31-28] v M
\ X X
ALU
>Add result \l/ 0
Add \
> A PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] ReadO
ReadO register 1
—>|PC address , 9 Readl]
Instruction [20—16] Read(] data 1
; | register 2 bcond
Instr[uctlonEI 0  Registers Readl] >ALU ALU
) M Write[J data 2 >0 result Address Read|
Instructiond u register M data
memory Instruction [15—11] | X Writer :(J
1 data Datal]
1 ) memory
Write[d
data
Instruction [15-0] 1\6 Sign0J 3;2
N lextend [V ALU operation
Instruction [5-0] r
[Based on original figure from P&H CO&D, COPYRIGHT 2004 4

Elsevier. ALL RIGHTS RESERVED.]



R-Type and I-Type ALU

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] IL/I l\ljl
X X
ALU
>Add result 1
Add \
i PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl
ReadU register 1 Readl
2() 3 lgstruction [20—16 data 1 |
| ion[] S bcond
n [ o 0 ~ Registers ALU ALu
i M Write data 2 . Address Readll /7
Instructiond u data
memory Instruction [15—11 X : 400 p
[ ] 1 \é\értl;eD s X 3 5 c Datal] X
1 p D memory 0
Write(
data
Instruction [15-0] 1\6 SignQ 3;2
N Tlextend [ M ALU operati

Instruction [5-0] r

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



LW

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] IL/I l\ljl
X X
ALU
>Add result 1
Add \
i PCSrc,=Br Taken
Jump
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl
ReadU register 1 Readh
2( 3 lgstruction [20—16 data 1
I G S bcond
n [ o 0 ~ Registers ALU ALu
i M Write data 2 It Addres:
InstructionC] u
memory Instruction [15-11] [ X i u
1 3 5 p ‘5 Datal] X
memo
TWriteD v 0
data
Instruction [15-0] 1\6 SignOd 3;2

N lextend [ M

Instruction [5-0] r

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]



SW

100ps

Add
4 ey
Read
In ion[J
[
Instruction]
memory

Jump
Instruction [31-26]
> Control
Instruction [25-21] Readl
register 1 Readl

lgstruction [20—16 data 1

0 Registers

M Writel) data 2

u register
Instruction [15-11] | X Write[

1 data

Instruction [15-0]

16 ) 32
\ SignO| \

S

PCSrc,=Jum
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 1
PC+4 [31-28] M M
u u
X X
ALU
>Add result 1

PCSrc,=Br Taken

bcond
ALU ALy

Addr

350ps, 550ps

N lextend

Instruction [5-0]

\

-

data

S

Read]
data

atal]

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT

2004 Elsevier. ALL RIGHTS RESERVED.]




Branch Taken

PCSrc,=Ju
Instruction [25-0] \ [ shiftCy Jump address [31-0]
\ \
26 @28 5 1
PC+4 [31-28] 2 u '\S
100ps > .
p A AL
Add .
Shift PCSrc,=Br Taken
Jump left 2
4 ey
Instruction [31-26]
> Control
Instruction [25—-21] Readl 3 p S
Readl register 1 Readh
2 () 3 lgstruction [20—16 data 1 |
| - S bcond
n [ o 0 ~ Registers ALU ALu
_ M Write[ data 2 Address Read|
Instructiont u register data
memory Instruction [15-11] [ X Writeld X
1 data Datal]
1 ) memory
Write[
data
Instruction [15-0] 1\6 SignOd 3;2
N Tlextend [ M ALU operation

Instruction [5-0] r

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]




Instructio

PC+4 [31-28]

200ps

|

In

Instruction]
memory

4

Instruction [25—-21]

[20-16]

\ I@truction
-

L.

Instruction [15—-11]

i—‘><C§O

Instruction [15-0]

Readl
register 1 Read
Readl data 1
register 2

Registers Read
Write[d data 2
register
Writel
data

./

ALU
>Add result

b

bcond
ALU ALy

N

16 ) 32
\ SignO| \

0
M
u
X
L/

0

PCSrc,=Br Taken

esult

I—'XczO

N lextend

Instruction [5-0]

\

Address

Write[d
data

Read]
data

Datall
memory

ALU operation

[Based on original figure from P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]




What About Control Logic?

How does that affect the critical path?

Food for thought for you:
o Can control logic be on the critical path?
o A note on CDC 5600: control store access too long...
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What is the Slowest Instruction to Process?

Memory is not magic
What if memory sometimes takes 100ms to access?

Does it make sense to have a simple register to register
add or jump to take {100ms+all else to do a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions need this?
o Do you provide multiple ports to memory?
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Single Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient
o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required
by any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Single-cycle implementation of REP MOVS, INDEX, POLY?

Not easy to optimize/improve performance
o Optimizing the common case does not work (e.g. common instructions)

o Need to optimize the worst case all the time
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Microarchitecture Design Principles

Critical path design
o Find the maximum combinational logic delay and decrease it

Bread and butter (common case) design

o Spend time and resources on where it matters
i.e., improve what the machine is really designed to do

o Common case vs. uncommon case

Balanced design
o Balance instruction/data flow through hardware components
o Balance the hardware needed to accomplish the work

How does a single-cycle microarchitecture fare in light of
these principles?
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Multi-Cycle Microarchitectures
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Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

a Determine clock cycle time independently of instruction
processing time

o Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different
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Remember: The “Process instruction™ Step

ISA specifies abstractly what A’ should be, given an
instruction and A

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution
One state transition per instruction

Microarchitecture implements how A is transformed to A’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS > AS’ (transform A to A’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to ASY) ”



Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

¢

Step 1: Process part of instruction in one clock cycle

¢

Step 2: Process part of instruction in the next clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle
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Beneftits of Multi-Cycle Design

Critical path design

a Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Bread and butter (common case) design

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Balanced design

o No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X’s to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction
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Performance Analysis

Execution time of an instruction
o {CPI} x {clock cycle time}

Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
a {# of instructions} x {Average CPI} x {clock cycle time}

Single cycle microarchitecture performance
a CPI=1

o Clock cycle time = long

Multi-cycle microarchitecture performance

o CPI = different for each instruction Now. we have
Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
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An Aside: CPI vs. Frequency

CPI vs. Clock cycle time

At odds with each other
o Reducing one increases the other for a single instruction
o Why?

Average CPI can be amortized/reduced via concurrent
processing of multiple instructions

o The same cycle is devoted to processing multiple instructions
o Example: Pipelining, superscalar execution
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A Multi-Cycle Microarchitecture
A Closer ook




How Do We Implement This?

Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

The concept of microcoded/microprogrammed machines

Realization

o One can implement the “process instruction” step as a finite
state machine that sequences between states and eventually
returns back to the “fetch instruction” state

o A state is defined by the control signals asserted in it
o Control signals for the next state determined in current state
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The Instruction Processing Cycle

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

o 0o 0O 0O O o
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A Basic Multi-Cycle Microarchitecture

= Instruction processing cycle divided into "states”
= A stage in the instruction processing cycle can take multiple states

= A multi-cycle microarchitecture sequences from state to
state to process an instruction

= The behavior of the machine in a state is completely determined by
control signals in that state

= The behavior of the entire processor is specified fully by a
finite state machine

= In a state (clock cycle), control signals control
= How the datapath should process the data
= How to generate the control signals for the next clock cycle
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Microprogrammed Control Terminology

Control signals associated with the current state
o Microinstruction

Act of transitioning from one state to another

o Determining the next state and the microinstruction for the
next state

o Microsequencing

Control store stores control signals for every possible state
a Store for microinstructions for the entire FSM

Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)
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What Happens In A Clock Cycle?

The control signals (microinstruction) for the current state
control

o Processing in the data path

o Generation of control signals (microinstruction) for the next
cycle

o See Supplemental Figure 1 (next slide)

Datapath and microsequencer operate concurrently

Question: why not generate control signals for the current
cycle in the current cycle?

o This will lengthen the clock cycle
o Why would it lengthen the clock cycle?

o See Supplemental Figure 2
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A Bad Clock Cycle!
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A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
% 35
Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



What Determines Next-State Control Signals?

What is happening in the current clock cycle

o See the 9 control signals coming from “Control” block
What are these for?

The instruction that is being executed
o IR[15:11] coming from the Data Path

Whether the condition of a branch is met, if the instruction
being processed is a branch

o BEN bit coming from the datapath

Whether the memory operation is completing in the current
cycle, if one is in progress
a R bit coming from memory
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A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
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Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



The State Machine tor Multi-Cycle Processing

The behavior of the LC-3b uarch is completely determined by
a the 35 control signals and
o additional 7 bits that go into the control logic from the datapath

35 control signals completely describe the state of the control
structure

We can completely describe the behavior of the LC-3b as a
state machine, i.e. a directed graph of

o Nodes (one corresponding to each state)
o Arcs (showing flow from each state to the next state(s))
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An LLC-3b State Machine

Patt and Patel, App C, Figure C.2

Each state must be uniquely specified
o Done by means of state variables

31 distinct states in this LC-3b state machine
o Encoded with 6 state variables

Examples

o State 18,19 correspond to the beginning of the instruction
processing cycle

o Fetch phase: state 18, 19 - state 33 > state 35
o Decode phase: state 32
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PC <! PC+2

32

1011
BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

BR
DR<! SR1+OP2* IJMP
set CC JSR
LDB LDw STB -
To 18
DR<! SR1&0OP2*
1
set CC €C<. PC+LSHF(0ff9,1)
To 18 9
DR<! SR1 XOR OP2* To 18
set CC
To 18 - 15

6AR<! LSH F(ZEXT[IR[7:0]],9 To18

1010

MDR<! M[MAR]
R7<! PC

R7<! PC
PC<! BaseR

R7<! PC
To'18 \ PC<! PC+LSHF(off11,1)

13
R<! SH F(SR,A,D,amt4D

To ISCD

set CC To 18
/ 14 2 6 7 3
To 18 DR<! PC+LSHF(off9, 1)
set CC CMAR<! B+off6) G/IAR<! B+LSHF(off6,1D G/IAR<! B+LSHF(off6,1) CMAR<! B+off6)
To 18
29 A 4 25 \ 4 y 23 4
NOTES CG/IDFK! M[MAR[]S:I]’OD G/IDR<! MI[MAR] MDR<! SR
B+off6 : Base + SEXT[offset6] —_—
PC+0ff9 : PC + SEXT[offset9] R Ry >7 v R R 16 .
*OP2 may be SR2 or SEXT[imm5] 31 : DR<! MDR
** [15:8] or [7:0] depending on GR<- SEXT[BYTEDATA} ( : ) (M[MAR]<! MDR h P@[MAR]Q MDR*ﬁ
set CC set CC
MAR[O]
R R $ R R

To 18 To 18 To 18 To 19



L.C-3b State Machine: Some Questions

How many cycles does the fastest instruction take?
How many cycles does the slowest instruction take?
Why does the BR take as long as it takes in the FSM?
What determines the clock cycle?

Is this a Mealy machine or a Moore machine?

75



[LC-3b Datapath

Patt and Patel, App C, Figure C.3

Single-bus datapath design

o At any point only one value can be “gated” on the bus (i.e.,
can be driving the bus)

o Advantage: Low hardware cost: one bus

o Disadvantage: Reduced concurrency — if instruction needs the
bus twice for two different things, these need to happen in
different states

Control signals (26 of them) determine what happens in the
datapath in one clock cycle

o Patt and Patel, App C, Table C.1
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Signal Name  Signal Values
LDMAFRS: NO,LOAD
LDMDES: NO,LOAD
LDIR/A: KO,LOAD
LDEBEN/l: NKO,LOAD
LDEREG/: KO, LOAD
LDCC/l: NO,LOAD
LDPCAl: KO, LOAD
GatePC/l: NO,YES
GateMDE/: N0, YES
Gate AT/l  NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO,YES
PCML/2: PCH2 select po+-2
BUS ;select value from bus
ADDER ;select output of address adder
DEMUXM: 119 sdestination TR[11:9]
R7 ;destination B7
SEIMUXE: 11.9 source TR[11:9]
B6 source IR[3:6]
ADDRIMUX/:  PC, BaseR
ADDRIMUXZ: ZERO :select the value zero
offsets select SEXTIR[5:0]]
PCoffsetd select SEXTIR[E:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX: 70 select LSHF(ZEXTIR[T:07].1)
ADDER ;select oufput of address adder
ALUEK/Z: ADD, AND, XOR, PASSA
MIOEN/: NO.YES
EW/l: ED WE
DATA SIZE1: BYTE, WOED
L5SHF1/1: NO,YES

Table C.1: Data path control signals



[LC-3b Datapath: Some Questions

How does instruction fetch happen in this datapath
according to the state machine?

What is the difference between gating and loading?

Is this the smallest hardware you can design?
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L.C-3b Microprogrammed Control Structure

Patt and Patel, App C, Figure C.4

Three components:
o Microinstruction, control store, microsequencer

Microinstruction: control signals that control the datapath
(26 of them) and determine the next state (9 of them)

Each microinstruction is stored in a unique location in the
control store (a special memory structure)

Unique location: address of the state corresponding to the
microinstruction
o Remember each state corresponds to one microinstruction

Microsequencer determines the address of the next

microinstruction (i.e., next state)
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IR[15:11]
BEN

!

Microsequencer
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Control Store

2% x 35

//35

Microinstruction

A9 %26
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0,0,IR[15:12]

RE

BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[O]
<] IRD

ia

Address of Next State



000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)



LLC-3b Microsequencer

Patt and Patel, App C, Figure C.5

The purpose of the microsequencer is to determine the
address of the next microinstruction (i.e., next state)

Next address depends on 9 control signals

Signal Name  Signal Values

1/6:
COND/2: CONDqp ‘Unconditional
COND :Memory Ready
CONDg :Branch
COND3 :Addressing Mode

IRD/1: NO,YES

Table C.2: Microsequencer control signals
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0,0,IR[15:12]

RE

BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[O]
<] IRD

ia

Address of Next State



The Microsequencer: Some Questions

When is the IRD signal asserted?

What happens if an illegal instruction is decoded?
What are condition (COND) bits for?

How is variable latency memory handled?

How do you do the state encoding?

o Minimize number of state variables

o Start with the 16-way branch

o Then determine constraint tables and states dependent on COND
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An Exercise 1n
Microprogramming
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Handouts

= 7/ pages of Microprogrammed LC-3b design

http://www.ece.cmu.edu/~eced447//s13/doku.php?id=manu
als

= http://www.ece.cmu.edu/~eced44//s13/lib/exe/fetch.php?m
edia=Ic3b-figures.pdf
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A Simple LLC-3b Control and Datapath

Memory, /O =] 3
A'16
Data, i Data
Inst. 16
R . 16 Addr
IR[15:11]
BEN
. 7
=
Data Path 23
Control
% 35
Control Signals
A9 26

(J, COND, IRD)

Figure C.1: Microarchitecture of the LC-3b. major components



PC <! PC+2

32

1011
BEN<! IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

BR
DR<! SR1+OP2* IJMP
set CC JSR
LDB LDw STB -
To 18
DR<! SR1&0OP2*
1
set CC €C<. PC+LSHF(0ff9,1)
To 18 9
DR<! SR1 XOR OP2* To 18
set CC
To 18 - 15

6AR<! LSH F(ZEXT[IR[7:0]],9 To18

1010

MDR<! M[MAR]
R7<! PC

R7<! PC
PC<! BaseR

R7<! PC
To'18 \ PC<! PC+LSHF(off11,1)

13
R<! SH F(SR,A,D,amt4D

To ISCD

set CC To 18
/ 14 2 6 7 3
To 18 DR<! PC+LSHF(off9, 1)
set CC CMAR<! B+off6) G/IAR<! B+LSHF(off6,1D G/IAR<! B+LSHF(off6,1) CMAR<! B+off6)
To 18
29 A 4 25 \ 4 y 23 4
NOTES CG/IDFK! M[MAR[]S:I]’OD G/IDR<! MI[MAR] MDR<! SR
B+off6 : Base + SEXT[offset6] —_—
PC+0ff9 : PC + SEXT[offset9] R Ry >7 v R R 16 .
*OP2 may be SR2 or SEXT[imm5] 31 : DR<! MDR
** [15:8] or [7:0] depending on GR<- SEXT[BYTEDATA} ( : ) (M[MAR]<! MDR h P@[MAR]Q MDR*ﬁ
set CC set CC
MAR[O]
R R $ R R

To 18 To 18 To 18 To 19
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Signal Name  Signal Values
LDMAFRS: NO,LOAD
LDMDES: NO,LOAD
LDIR/A: KO,LOAD
LDEBEN/l: NKO,LOAD
LDEREG/: KO, LOAD
LDCC/l: NO,LOAD
LDPCAl: KO, LOAD
GatePC/l: NO,YES
GateMDE/: N0, YES
Gate AT/l  NO,YES
GateMARMUX/1: NO,YES
GateSHF/1: NO,YES
PCML/2: PCH2 select po+-2
BUS ;select value from bus
ADDER ;select output of address adder
DEMUXM: 119 sdestination TR[11:9]
R7 ;destination B7
SEIMUXE: 11.9 source TR[11:9]
B6 source IR[3:6]
ADDRIMUX/:  PC, BaseR
ADDRIMUXZ: ZERO :select the value zero
offsets select SEXTIR[5:0]]
PCoffsetd select SEXTIR[E:0]]
PCoffsetll  select SEXT[IR[10:0]]
MARMUX: 70 select LSHF(ZEXTIR[T:07].1)
ADDER ;select oufput of address adder
ALUEK/Z: ADD, AND, XOR, PASSA
MIOEN/: NO.YES
EW/l: ED WE
DATA SIZE1: BYTE, WOED
L5SHF1/1: NO,YES

Table C.1: Data path control signals
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0,0,IR[15:12]
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000000 (State 0)

000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)



0,0,IR[15:12]

RE

BEN R IR[11]
Branch Ready Addr.
Mode
J[5] J[4] J[3] J[2] J[1] J[O]
<] IRD

ia

Address of Next State



End of the Exercise in
Microprogramming
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Homework 2

You will write the microcode for the entire LC-3b as
specified in Appendix C
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