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X86: Small Semantic Gap: String Operations
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REP MOVS (DEST SRC)

How many instructions does this take in ARM and MIPS?



Small Semantic Gap Examples in VAX 

 FIND FIRST

 Find the first set bit in a bit field

 Helps OS resource allocation operations

 SAVE CONTEXT, LOAD CONTEXT

 Special context switching instructions

 INSQUEUE, REMQUEUE

 Operations on doubly linked list

 INDEX

 Array access with bounds checking

 STRING Operations

 Compare strings, find substrings, …

 Cyclic Redundancy Check Instruction

 EDITPC

 Implements editing functions to display fixed format output

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.
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Small versus Large Semantic Gap

 CISC vs. RISC

 Complex instruction set computer  complex instructions

 Initially motivated by “not good enough” code generation

 Reduced instruction set computer  simple instructions

 John Cocke, mid 1970s, IBM 801

 Goal: enable better compiler control and optimization

 RISC motivated by 

 Memory stalls (no work done in a complex instruction when 
there is a memory stall?)

 When is this correct?

 Simplifying the hardware  lower cost, higher frequency

 Enabling the compiler to optimize the code better

 Find fine-grained parallelism to reduce stalls
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How High or Low Can You Go?

 Very large semantic gap

 Each instruction specifies the complete set of control signals in 
the machine

 Compiler generates control signals

 Open microcode (John Cocke, circa 1970s)

 Gave way to optimizing compilers

 Very small semantic gap

 ISA is (almost) the same as high-level language

 Java machines, LISP machines, object-oriented machines, 
capability-based machines
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A Note on ISA Evolution

 ISAs have evolved to reflect/satisfy the concerns of the day

 Examples:

 Limited on-chip and off-chip memory size

 Limited compiler optimization technology

 Limited memory bandwidth

 Need for specialization in important applications (e.g., MMX)

 Use of translation (in HW and SW) enabled underlying 
implementations to be similar, regardless of the ISA

 Concept of dynamic/static interface

 Contrast it with hardware/software interface
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Effect of Translation

 One can translate from one ISA to another ISA to change 
the semantic gap tradeoffs

 Examples

 Intel’s and AMD’s x86 implementations translate x86 
instructions into programmer-invisible microoperations (simple 
instructions) in hardware

 Transmeta’s x86 implementations translated x86 instructions 
into “secret” VLIW instructions in software (code morphing 
software)

 Think about the tradeoffs
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ISA-level Tradeoffs: Instruction Length

 Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently

-- Wasted bits in instructions (Why is this bad?)

-- Harder-to-extend ISA (how to add new instructions?)

 Variable length: Length of instructions different 
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)

Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction

-- Harder to decode multiple instructions concurrently

 Tradeoffs
 Code size (memory space, bandwidth, latency) vs. hardware complexity

 ISA extensibility and expressiveness

 Performance? Smaller code vs. difficult decode
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ISA-level Tradeoffs: Uniform Decode

 Uniform decode: Same bits in each instruction correspond 
to the same meaning

 Opcode is always in the same location

 Ditto operand specifiers, immediate values, …

 Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the 
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

 Non-uniform decode

 E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format

-- More complex decode logic
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x86 vs. Alpha Instruction Formats

 x86:

 Alpha:
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MIPS Instruction Format

 R-type, 3 register operands

 I-type, 2 register operands and 16-bit immediate operand

 J-type, 26-bit immediate operand

 Simple Decoding

 4 bytes per instruction, regardless of format

 must be 4-byte aligned (2 lsb of PC must be 2b’00)

 format and fields easy to extract in hardware
11
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ARM
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A Note on Length and Uniformity

 Uniform decode usually goes with fixed length 

 In a variable length ISA, uniform decode can be a property 
of instructions of the same length 

 It is hard to think of it as a property of instructions of different 
lengths
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A Note on RISC vs. CISC

 Usually, …

 RISC

 Simple instructions

 Fixed length

 Uniform decode

 Few addressing modes

 CISC

 Complex instructions

 Variable length

 Non-uniform decode

 Many addressing modes
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ISA-level Tradeoffs: Number of Registers

 Affects:

 Number of bits used for encoding register address

 Number of values kept in fast storage (register file)

 (uarch) Size, access time, power consumption of register file

 Large number of registers:

+ Enables better register allocation (and optimizations) by 
compiler  fewer saves/restores

-- Larger instruction size

-- Larger register file size
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ISA-level Tradeoffs: Addressing Modes

 Addressing mode specifies how to obtain an operand of an 
instruction

 Register

 Immediate

 Memory (displacement, register indirect, indexed, absolute, 
memory indirect, autoincrement, autodecrement, …)

 More modes: 

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design 

-- too many choices for the compiler? 

 Many ways to do the same thing complicates compiler design

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981
16



x86 vs. Alpha Instruction Formats

 x86:

 Alpha:
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x86

19

indexed

(base + 

index)

scaled

(base +

index*4)



X86 SIB-D Addressing Mode
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x86 Manual Vol. 1, page 3-22  -- see course resources on website

Also, see Section 3.7.3 and 3.7.5



X86 Manual: Suggested Uses of Addressing Modes
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x86 Manual Vol. 1, page 3-22  -- see course resources on website

Also, see Section 3.7.3 and 3.7.5



X86 Manual: Suggested Uses of Addressing Modes
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x86 Manual Vol. 1, page 3-22  -- see course resources on website

Also, see Section 3.7.3 and 3.7.5



Other Example ISA-level Tradeoffs

 Condition codes vs. not

 VLIW vs. single instruction

 Precise vs. imprecise exceptions

 Virtual memory vs. not

 Unaligned access vs. not

 Hardware interlocks vs. software-guaranteed interlocking

 Software vs. hardware managed page fault handling

 Cache coherence (hardware vs. software)

 …

23



Back to Programmer vs. (Micro)architect

 Many ISA features designed to aid programmers

 But, complicate the hardware designer’s job

 Virtual memory

 vs. overlay programming 

 Should the programmer be concerned about the size of code 
blocks fitting physical memory?

 Addressing modes

 Unaligned memory access

 Compile/programmer needs to align data
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MIPS: Aligned Access

 LW/SW alignment restriction: 4-byte word-alignment

 not designed to fetch memory bytes not within a word boundary

 not designed to rotate unaligned bytes into registers

 Provide separate opcodes for the “infrequent” case

 LWL/LWR is slower 

 Note LWL and LWR still fetch within word boundary
25

byte-3 byte-2 byte-1 byte-0

byte-7 byte-6 byte-5 byte-4

MSB LSB

A B C D

byte-6 byte-5 byte-4 D

byte-6 byte-5 byte-4 byte-3

LWL  rd 6(r0) 

LWR  rd 3(r0) 



X86: Unaligned Access

 LD/ST instructions automatically align data that spans a 
“word” boundary

 Programmer/compiler does not need to worry about where 
data is stored (whether or not in a word-aligned location)
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X86: Unaligned Access
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Aligned vs. Unaligned Access

 Pros of having no restrictions on alignment

 Cons of having no restrictions on alignment

 Filling in the above: an exercise for you…
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Implementing the ISA: 

Microarchitecture Basics
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How Does a Machine Process Instructions? 

 What does processing an instruction mean?

 Remember the von Neumann model

A = Architectural (programmer visible) state before an 
instruction is processed

Process instruction

A’ = Architectural (programmer visible) state after an 
instruction is processed

 Processing an instruction: Transforming A to A’ according to 
the ISA specification of the instruction
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The “Process instruction” Step
 ISA specifies abstractly what A’ should be, given an 

instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state 

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation 

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction

 Choice 1: A  A’ (transform A to A’ in a single clock cycle)

 Choice 2: A  A+MS1  A+MS2  A+MS3  A’ (take multiple clock 

cycles to transform A to A’)
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A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction 
execution 

 No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state 

at the beginning of a clock cycle

Process instruction in one clock cycle

A’ = Architectural (programmer visible) state 

at the end of a clock cycle
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A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic 
determined by?
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Remember: Programmer Visible (Architectural) State
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M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state



Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time 

long clock cycle time

 Multi-cycle machines 

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s 
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level
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Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control 
unit” step by step. 

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six phases:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six stages (see P&P Ch. 4)
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Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine: 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete

 Multi-cycle machine: 

 All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete
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Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units 
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and 
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of 
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data
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Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as data 
signals are operated on

 Everything related to an instruction happens in one clock cycle

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in 
the previous cycle

 Latency of control processing can be overlapped with latency 
of datapath operation

 We will see the difference clearly in microprogrammed 
multi-cycle microarchitecture
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Many Ways of Datapath and Control Design

 There are many ways of designing the data path and 
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 See your homework 2 question

 Hardwired/combinational vs. microcoded/microprogrammed 
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath 
design
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Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI}  x  {clock cycle time} 

 Execution time of a program

 Sum over all instructions [{CPI}  x  {clock cycle time}]

 {# of instructions}  x  {Average CPI}  x  {clock cycle time}

 Single cycle microarchitecture performance 

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI  hopefully small

 Clock cycle time = short
41

Now, we have 

two degrees of freedom

to optimize independently



A Single-Cycle Microarchitecture

A Closer Look

42



Remember…

 Single-cycle machine
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Let’s Start with the State Elements

 Data and control inputs
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock 
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Can affect read output at clock edges (but who cares?)

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done
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Instruction Processing

 5 generic steps (P&H)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB) 
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What Is To Come: The Full Datapath
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Single-Cycle Datapath for

Arithmetic and Logical Instructions
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R-Type ALU Instructions

 Assembly (e.g., register-register signed addition)

ADD rdreg rsreg rtreg

 Machine encoding

 Semantics

if MEM[PC] == ADD rd rs rt

GPR[rd]  GPR[rs] + GPR[rt] 

PC  PC + 4
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ALU Datapath
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if MEM[PC] == ADD rd rs rt
GPR[rd]  GPR[rs] + GPR[rt] 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



I-Type ALU Instructions

 Assembly (e.g., register-immediate signed additions)

ADDI rtreg rsreg immediate16

 Machine encoding

 Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt]  GPR[rs] + sign-extend (immediate)

PC  PC + 4
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Datapath for R and I-Type ALU Insts.
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if MEM[PC] == ADDI rt rs immediate
GPR[rt]  GPR[rs] + sign-extend (immediate) 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB



Single-Cycle Datapath for

Data Movement Instructions
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Load Instructions

 Assembly (e.g., load 4-byte word)

LW rtreg offset16 (basereg)

 Machine encoding

 Semantics

if MEM[PC]==LW rt offset16 (base) 

EA = sign-extend(offset) + GPR[base]

GPR[rt]  MEM[ translate(EA) ] 

PC  PC + 4
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LW Datapath
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Store Instructions

 Assembly (e.g., store 4-byte word)

SW rtreg offset16 (basereg)

 Machine encoding

 Semantics

if MEM[PC]==SW rt offset16 (base) 

EA = sign-extend(offset) + GPR[base]

MEM[ translate(EA) ]  GPR[rt] 

PC  PC + 4
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SW Datapath
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Load-Store Datapath
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Datapath for Non-Control-Flow Insts.
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Single-Cycle Datapath for

Control Flow Instructions
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Unconditional Jump Instructions

 Assembly

J immediate26

 Machine encoding

 Semantics

if MEM[PC]==J immediate26

target = { PC[31:28], immediate26, 2’b00 }

PC  target
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Unconditional Jump Datapath
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2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }



Conditional Branch Instructions

 Assembly (e.g., branch if equal)

BEQ rsreg rtreg immediate16

 Machine encoding

 Semantics (assuming no branch delay slot)

if MEM[PC]==BEQ rs rt immediate16

target = PC + 4 + sign-extend(immediate) x 4 

if GPR[rs]==GPR[rt] then PC  target

else PC  PC + 4
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BEQ
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type



Conditional Branch Datapath (For You to Fix)
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How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out



Putting It All Together
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. 
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted


