
18-447

Computer Architecture

Lecture 4: ISA Tradeoffs (Continued)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/22/2014

X86: Small Semantic Gap: String Operations

2

REP MOVS (DEST SRC)

How many instructions does this take in ARM and MIPS?

Small Semantic Gap Examples in VAX

 FIND FIRST

 Find the first set bit in a bit field

 Helps OS resource allocation operations

 SAVE CONTEXT, LOAD CONTEXT

 Special context switching instructions

 INSQUEUE, REMQUEUE

 Operations on doubly linked list

 INDEX

 Array access with bounds checking

 STRING Operations

 Compare strings, find substrings, …

 Cyclic Redundancy Check Instruction

 EDITPC

 Implements editing functions to display fixed format output

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

3

Small versus Large Semantic Gap

 CISC vs. RISC

 Complex instruction set computer  complex instructions

 Initially motivated by “not good enough” code generation

 Reduced instruction set computer  simple instructions

 John Cocke, mid 1970s, IBM 801

 Goal: enable better compiler control and optimization

 RISC motivated by

 Memory stalls (no work done in a complex instruction when
there is a memory stall?)

 When is this correct?

 Simplifying the hardware  lower cost, higher frequency

 Enabling the compiler to optimize the code better

 Find fine-grained parallelism to reduce stalls

4

How High or Low Can You Go?

 Very large semantic gap

 Each instruction specifies the complete set of control signals in
the machine

 Compiler generates control signals

 Open microcode (John Cocke, circa 1970s)

 Gave way to optimizing compilers

 Very small semantic gap

 ISA is (almost) the same as high-level language

 Java machines, LISP machines, object-oriented machines,
capability-based machines

5

A Note on ISA Evolution

 ISAs have evolved to reflect/satisfy the concerns of the day

 Examples:

 Limited on-chip and off-chip memory size

 Limited compiler optimization technology

 Limited memory bandwidth

 Need for specialization in important applications (e.g., MMX)

 Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

 Concept of dynamic/static interface

 Contrast it with hardware/software interface

6

Effect of Translation

 One can translate from one ISA to another ISA to change
the semantic gap tradeoffs

 Examples

 Intel’s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

 Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

 Think about the tradeoffs

7

ISA-level Tradeoffs: Instruction Length

 Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently

-- Wasted bits in instructions (Why is this bad?)

-- Harder-to-extend ISA (how to add new instructions?)

 Variable length: Length of instructions different
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)

Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction

-- Harder to decode multiple instructions concurrently

 Tradeoffs
 Code size (memory space, bandwidth, latency) vs. hardware complexity

 ISA extensibility and expressiveness

 Performance? Smaller code vs. difficult decode
8

ISA-level Tradeoffs: Uniform Decode

 Uniform decode: Same bits in each instruction correspond
to the same meaning

 Opcode is always in the same location

 Ditto operand specifiers, immediate values, …

 Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

 Non-uniform decode

 E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format

-- More complex decode logic

9

x86 vs. Alpha Instruction Formats

 x86:

 Alpha:

10

MIPS Instruction Format

 R-type, 3 register operands

 I-type, 2 register operands and 16-bit immediate operand

 J-type, 26-bit immediate operand

 Simple Decoding

 4 bytes per instruction, regardless of format

 must be 4-byte aligned (2 lsb of PC must be 2b’00)

 format and fields easy to extract in hardware
11

R-type0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

opcode
6-bit

immediate
26-bit

J-type

ARM

12

A Note on Length and Uniformity

 Uniform decode usually goes with fixed length

 In a variable length ISA, uniform decode can be a property
of instructions of the same length

 It is hard to think of it as a property of instructions of different
lengths

13

A Note on RISC vs. CISC

 Usually, …

 RISC

 Simple instructions

 Fixed length

 Uniform decode

 Few addressing modes

 CISC

 Complex instructions

 Variable length

 Non-uniform decode

 Many addressing modes

14

ISA-level Tradeoffs: Number of Registers

 Affects:

 Number of bits used for encoding register address

 Number of values kept in fast storage (register file)

 (uarch) Size, access time, power consumption of register file

 Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler  fewer saves/restores

-- Larger instruction size

-- Larger register file size

15

ISA-level Tradeoffs: Addressing Modes

 Addressing mode specifies how to obtain an operand of an
instruction

 Register

 Immediate

 Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, …)

 More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design

-- too many choices for the compiler?

 Many ways to do the same thing complicates compiler design

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981
16

x86 vs. Alpha Instruction Formats

 x86:

 Alpha:

17

18

x86

register

absolute

register

indirect

register +

displacement

x86

19

indexed

(base +

index)

scaled

(base +

index*4)

X86 SIB-D Addressing Mode

20

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

21

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

22

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

Other Example ISA-level Tradeoffs

 Condition codes vs. not

 VLIW vs. single instruction

 Precise vs. imprecise exceptions

 Virtual memory vs. not

 Unaligned access vs. not

 Hardware interlocks vs. software-guaranteed interlocking

 Software vs. hardware managed page fault handling

 Cache coherence (hardware vs. software)

 …

23

Back to Programmer vs. (Micro)architect

 Many ISA features designed to aid programmers

 But, complicate the hardware designer’s job

 Virtual memory

 vs. overlay programming

 Should the programmer be concerned about the size of code
blocks fitting physical memory?

 Addressing modes

 Unaligned memory access

 Compile/programmer needs to align data

24

MIPS: Aligned Access

 LW/SW alignment restriction: 4-byte word-alignment

 not designed to fetch memory bytes not within a word boundary

 not designed to rotate unaligned bytes into registers

 Provide separate opcodes for the “infrequent” case

 LWL/LWR is slower

 Note LWL and LWR still fetch within word boundary
25

byte-3 byte-2 byte-1 byte-0

byte-7 byte-6 byte-5 byte-4

MSB LSB

A B C D

byte-6 byte-5 byte-4 D

byte-6 byte-5 byte-4 byte-3

LWL rd 6(r0) 

LWR rd 3(r0) 

X86: Unaligned Access

 LD/ST instructions automatically align data that spans a
“word” boundary

 Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

26

X86: Unaligned Access

27

Aligned vs. Unaligned Access

 Pros of having no restrictions on alignment

 Cons of having no restrictions on alignment

 Filling in the above: an exercise for you…

28

Implementing the ISA:

Microarchitecture Basics

29

How Does a Machine Process Instructions?

 What does processing an instruction mean?

 Remember the von Neumann model

A = Architectural (programmer visible) state before an
instruction is processed

Process instruction

A’ = Architectural (programmer visible) state after an
instruction is processed

 Processing an instruction: Transforming A to A’ according to
the ISA specification of the instruction

30

The “Process instruction” Step
 ISA specifies abstractly what A’ should be, given an

instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: A  A’ (transform A to A’ in a single clock cycle)

 Choice 2: A  A+MS1  A+MS2  A+MS3  A’ (take multiple clock

cycles to transform A to A’)
31

A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction
execution

 No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state

at the beginning of a clock cycle

Process instruction in one clock cycle

A’ = Architectural (programmer visible) state

at the end of a clock cycle

32

A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic
determined by?

33

ANext ASequential
Logic
(State)

Combinational
Logic

Remember: Programmer Visible (Architectural) State

34

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time 

long clock cycle time

 Multi-cycle machines

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

35

Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control
unit” step by step.

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six phases:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six stages (see P&P Ch. 4)
36

Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine:

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Multi-cycle machine:

 All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete

37

Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

38

Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as data
signals are operated on

 Everything related to an instruction happens in one clock cycle

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in
the previous cycle

 Latency of control processing can be overlapped with latency
of datapath operation

 We will see the difference clearly in microprogrammed
multi-cycle microarchitecture

39

Many Ways of Datapath and Control Design

 There are many ways of designing the data path and
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 See your homework 2 question

 Hardwired/combinational vs. microcoded/microprogrammed
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath
design

40

Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI  hopefully small

 Clock cycle time = short
41

Now, we have

two degrees of freedom

to optimize independently

A Single-Cycle Microarchitecture

A Closer Look

42

Remember…

 Single-cycle machine

43

ASNext ASSequential
Logic
(State)

Combinational
Logic

Let’s Start with the State Elements

 Data and control inputs

44

PC

Instruction

memory

Instruction

address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

PC

Instruction

memory

Instruction

address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write

data

Read

data

a. Data memory unit

Address

ALU control

RegWrite

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

ALU

result

ALU

Data

Data

Register

numbers

a. Registers b. ALU

Zero
5

5

5 3

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Can affect read output at clock edges (but who cares?)

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done
45

Instruction Processing

 5 generic steps (P&H)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB)

46

Registers

Register #

Data

Register #

Data

memory

Address

Data

Register #

PC Instruction ALU

Instruction

memory

Address

IF

ID/RF
EX/AG

MEM

WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

What Is To Come: The Full Datapath

47

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M

u

x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15– 0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

Single-Cycle Datapath for

Arithmetic and Logical Instructions

48

R-Type ALU Instructions

 Assembly (e.g., register-register signed addition)

ADD rdreg rsreg rtreg

 Machine encoding

 Semantics

if MEM[PC] == ADD rd rs rt

GPR[rd]  GPR[rs] + GPR[rt]

PC  PC + 4

49

0
6-bit

rs
5-bit

rt
5-bit

R-typerd
5-bit

0
5-bit

ADD
6-bit

ALU Datapath

50

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction
Registers

Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

ALU

result

ALU

Zero

RegWrite

ALU operation
3

1

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADD rd rs rt
GPR[rd]  GPR[rs] + GPR[rt]
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

I-Type ALU Instructions

 Assembly (e.g., register-immediate signed additions)

ADDI rtreg rsreg immediate16

 Machine encoding

 Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt]  GPR[rs] + sign-extend (immediate)

PC  PC + 4

51

ADDI
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Datapath for R and I-Type ALU Insts.

52

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

1
ALUSrc

isItype

RegDest

isItype

15:11

20:16

25:21

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC] == ADDI rt rs immediate
GPR[rt]  GPR[rs] + sign-extend (immediate)
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

Single-Cycle Datapath for

Data Movement Instructions

53

Load Instructions

 Assembly (e.g., load 4-byte word)

LW rtreg offset16 (basereg)

 Machine encoding

 Semantics

if MEM[PC]==LW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

GPR[rt]  MEM[translate(EA)]

PC  PC + 4

54

LW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

LW Datapath

55

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

if MEM[PC]==LW rt offset16 (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt]  MEM[translate(EA)]
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write

data

Read

data

a. Data memory unit

Address

1

add

isItype

RegDest
isItype

Store Instructions

 Assembly (e.g., store 4-byte word)

SW rtreg offset16 (basereg)

 Machine encoding

 Semantics

if MEM[PC]==SW rt offset16 (base)

EA = sign-extend(offset) + GPR[base]

MEM[translate(EA)]  GPR[rt]

PC  PC + 4

56

SW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type

SW Datapath

57

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

if MEM[PC]==SW rt offset16 (base)
EA = sign-extend(offset) + GPR[base]
MEM[translate(EA)]  GPR[rt]
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data

memory
Write

data

Read

data

a. Data memory unit

Address

0

add

ALUSrc

isItype

RegDest
isItype

Load-Store Datapath

58

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

add
isStore

isLoad

ALUSrc

isItype

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

Datapath for Non-Control-Flow Insts.

59

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

!isStore

isStore

isLoad

ALUSrc

isItype

MemtoReg

isLoad

RegDest

isItype

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Single-Cycle Datapath for

Control Flow Instructions

60

Unconditional Jump Instructions

 Assembly

J immediate26

 Machine encoding

 Semantics

if MEM[PC]==J immediate26

target = { PC[31:28], immediate26, 2’b00 }

PC  target

61

J
6-bit

immediate
26-bit

J-type

Unconditional Jump Datapath

62

PC

Instruction

memory

Read

address

Instruction

4

Add

Instruction

16 32

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Data

memory
Write

data

Read

data

Write

data

Sign

extend

ALU

result

Zero

ALU

Address

MemRead

MemWrite

RegWrite

ALU operation3

ALUSrc

concat

PCSrc

isJ

What about JR, JAL, JALR?

?

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

0

X
0

0

X

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2’b00 }

Conditional Branch Instructions

 Assembly (e.g., branch if equal)

BEQ rsreg rtreg immediate16

 Machine encoding

 Semantics (assuming no branch delay slot)

if MEM[PC]==BEQ rs rt immediate16

target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC  target

else PC  PC + 4

63

BEQ
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

Conditional Branch Datapath (For You to Fix)

64

16 32
Sign

extend

ZeroALU

Sum

Shift

left 2

To branch

control logic

Branch target

PC + 4 from instruction datapath

Instruction

Add

Registers
Write

register

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Write

data

RegWrite

ALU operation
3

PC

Instruction

memory

Read

address

Instruction

4

Add

PCSrc

concat

0

sub

How to uphold the delayed branch semantics?

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

watch out

Putting It All Together

65

Shift

left 2

PC

Instruction

memory

Read

address

Instruction

[31– 0]

Data

memory

Read

data

Write

data

Registers
Write

register

Write

data

Read

data 1

Read

data 2

Read

register 1

Read

register 2

Instruction [15– 11]

Instruction [20– 16]

Instruction [25– 21]

Add

ALU

result

Zero

Instruction [5– 0]

MemtoReg

ALUOp

MemWrite

RegWrite

MemRead

Branch

Jump
RegDst

ALUSrc

Instruction [31– 26]

4

M

u

x

Instruction [25–0] Jump address [31– 0]

PC+4 [31–28]

Sign

extend

16 32
Instruction [15– 0]

1

M

u

x

1

0

M

u

x

0

1

M

u

x

0

1

ALU

control

Control

Add
ALU

result

M

u

x

0

1 0

ALU

Shift

left 2

26 28

Address

PCSrc2=Br Taken

PCSrc1=Jump

ALU operation

bcond

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.
ALL RIGHTS RESERVED.] JAL, JR, JALR omitted

