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X86: Small Semantic Gap: String Operations
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REP MOVS (DEST SRC)

How many instructions does this take in ARM and MIPS?



Small Semantic Gap Examples in VAX 

 FIND FIRST

 Find the first set bit in a bit field

 Helps OS resource allocation operations

 SAVE CONTEXT, LOAD CONTEXT

 Special context switching instructions

 INSQUEUE, REMQUEUE

 Operations on doubly linked list

 INDEX

 Array access with bounds checking

 STRING Operations

 Compare strings, find substrings, …

 Cyclic Redundancy Check Instruction

 EDITPC

 Implements editing functions to display fixed format output

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.
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Small versus Large Semantic Gap

 CISC vs. RISC

 Complex instruction set computer  complex instructions

 Initially motivated by “not good enough” code generation

 Reduced instruction set computer  simple instructions

 John Cocke, mid 1970s, IBM 801

 Goal: enable better compiler control and optimization

 RISC motivated by 

 Memory stalls (no work done in a complex instruction when 
there is a memory stall?)

 When is this correct?

 Simplifying the hardware  lower cost, higher frequency

 Enabling the compiler to optimize the code better

 Find fine-grained parallelism to reduce stalls
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How High or Low Can You Go?

 Very large semantic gap

 Each instruction specifies the complete set of control signals in 
the machine

 Compiler generates control signals

 Open microcode (John Cocke, circa 1970s)

 Gave way to optimizing compilers

 Very small semantic gap

 ISA is (almost) the same as high-level language

 Java machines, LISP machines, object-oriented machines, 
capability-based machines
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A Note on ISA Evolution

 ISAs have evolved to reflect/satisfy the concerns of the day

 Examples:

 Limited on-chip and off-chip memory size

 Limited compiler optimization technology

 Limited memory bandwidth

 Need for specialization in important applications (e.g., MMX)

 Use of translation (in HW and SW) enabled underlying 
implementations to be similar, regardless of the ISA

 Concept of dynamic/static interface

 Contrast it with hardware/software interface
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Effect of Translation

 One can translate from one ISA to another ISA to change 
the semantic gap tradeoffs

 Examples

 Intel’s and AMD’s x86 implementations translate x86 
instructions into programmer-invisible microoperations (simple 
instructions) in hardware

 Transmeta’s x86 implementations translated x86 instructions 
into “secret” VLIW instructions in software (code morphing 
software)

 Think about the tradeoffs
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ISA-level Tradeoffs: Instruction Length

 Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently

-- Wasted bits in instructions (Why is this bad?)

-- Harder-to-extend ISA (how to add new instructions?)

 Variable length: Length of instructions different 
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)

Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction

-- Harder to decode multiple instructions concurrently

 Tradeoffs
 Code size (memory space, bandwidth, latency) vs. hardware complexity

 ISA extensibility and expressiveness

 Performance? Smaller code vs. difficult decode
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ISA-level Tradeoffs: Uniform Decode

 Uniform decode: Same bits in each instruction correspond 
to the same meaning

 Opcode is always in the same location

 Ditto operand specifiers, immediate values, …

 Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the 
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

 Non-uniform decode

 E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format

-- More complex decode logic
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x86 vs. Alpha Instruction Formats

 x86:

 Alpha:
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MIPS Instruction Format

 R-type, 3 register operands

 I-type, 2 register operands and 16-bit immediate operand

 J-type, 26-bit immediate operand

 Simple Decoding

 4 bytes per instruction, regardless of format

 must be 4-byte aligned (2 lsb of PC must be 2b’00)

 format and fields easy to extract in hardware
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ARM
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A Note on Length and Uniformity

 Uniform decode usually goes with fixed length 

 In a variable length ISA, uniform decode can be a property 
of instructions of the same length 

 It is hard to think of it as a property of instructions of different 
lengths
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A Note on RISC vs. CISC

 Usually, …

 RISC

 Simple instructions

 Fixed length

 Uniform decode

 Few addressing modes

 CISC

 Complex instructions

 Variable length

 Non-uniform decode

 Many addressing modes

14



ISA-level Tradeoffs: Number of Registers

 Affects:

 Number of bits used for encoding register address

 Number of values kept in fast storage (register file)

 (uarch) Size, access time, power consumption of register file

 Large number of registers:

+ Enables better register allocation (and optimizations) by 
compiler  fewer saves/restores

-- Larger instruction size

-- Larger register file size
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ISA-level Tradeoffs: Addressing Modes

 Addressing mode specifies how to obtain an operand of an 
instruction

 Register

 Immediate

 Memory (displacement, register indirect, indexed, absolute, 
memory indirect, autoincrement, autodecrement, …)

 More modes: 

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design 

-- too many choices for the compiler? 

 Many ways to do the same thing complicates compiler design

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981
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x86 vs. Alpha Instruction Formats

 x86:

 Alpha:
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x86
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X86 SIB-D Addressing Mode
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x86 Manual Vol. 1, page 3-22  -- see course resources on website

Also, see Section 3.7.3 and 3.7.5



X86 Manual: Suggested Uses of Addressing Modes
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x86 Manual Vol. 1, page 3-22  -- see course resources on website

Also, see Section 3.7.3 and 3.7.5



X86 Manual: Suggested Uses of Addressing Modes
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x86 Manual Vol. 1, page 3-22  -- see course resources on website

Also, see Section 3.7.3 and 3.7.5



Other Example ISA-level Tradeoffs

 Condition codes vs. not

 VLIW vs. single instruction

 Precise vs. imprecise exceptions

 Virtual memory vs. not

 Unaligned access vs. not

 Hardware interlocks vs. software-guaranteed interlocking

 Software vs. hardware managed page fault handling

 Cache coherence (hardware vs. software)

 …

23



Back to Programmer vs. (Micro)architect

 Many ISA features designed to aid programmers

 But, complicate the hardware designer’s job

 Virtual memory

 vs. overlay programming 

 Should the programmer be concerned about the size of code 
blocks fitting physical memory?

 Addressing modes

 Unaligned memory access

 Compile/programmer needs to align data
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MIPS: Aligned Access

 LW/SW alignment restriction: 4-byte word-alignment

 not designed to fetch memory bytes not within a word boundary

 not designed to rotate unaligned bytes into registers

 Provide separate opcodes for the “infrequent” case

 LWL/LWR is slower 

 Note LWL and LWR still fetch within word boundary
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byte-3 byte-2 byte-1 byte-0

byte-7 byte-6 byte-5 byte-4
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X86: Unaligned Access

 LD/ST instructions automatically align data that spans a 
“word” boundary

 Programmer/compiler does not need to worry about where 
data is stored (whether or not in a word-aligned location)
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X86: Unaligned Access
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Aligned vs. Unaligned Access

 Pros of having no restrictions on alignment

 Cons of having no restrictions on alignment

 Filling in the above: an exercise for you…
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Implementing the ISA: 

Microarchitecture Basics
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How Does a Machine Process Instructions? 

 What does processing an instruction mean?

 Remember the von Neumann model

A = Architectural (programmer visible) state before an 
instruction is processed

Process instruction

A’ = Architectural (programmer visible) state after an 
instruction is processed

 Processing an instruction: Transforming A to A’ according to 
the ISA specification of the instruction
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The “Process instruction” Step
 ISA specifies abstractly what A’ should be, given an 

instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state 

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation 

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction

 Choice 1: A  A’ (transform A to A’ in a single clock cycle)

 Choice 2: A  A+MS1  A+MS2  A+MS3  A’ (take multiple clock 

cycles to transform A to A’)
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A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction 
execution 

 No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state 

at the beginning of a clock cycle

Process instruction in one clock cycle

A’ = Architectural (programmer visible) state 

at the end of a clock cycle
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A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic 
determined by?
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Remember: Programmer Visible (Architectural) State
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M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state



Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time 

long clock cycle time

 Multi-cycle machines 

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s 
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level
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Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control 
unit” step by step. 

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six phases:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six stages (see P&P Ch. 4)
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Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine: 

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete

 Multi-cycle machine: 

 All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete
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Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units 
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and 
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of 
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data
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Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as data 
signals are operated on

 Everything related to an instruction happens in one clock cycle

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in 
the previous cycle

 Latency of control processing can be overlapped with latency 
of datapath operation

 We will see the difference clearly in microprogrammed 
multi-cycle microarchitecture
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Many Ways of Datapath and Control Design

 There are many ways of designing the data path and 
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 See your homework 2 question

 Hardwired/combinational vs. microcoded/microprogrammed 
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath 
design
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Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI}  x  {clock cycle time} 

 Execution time of a program

 Sum over all instructions [{CPI}  x  {clock cycle time}]

 {# of instructions}  x  {Average CPI}  x  {clock cycle time}

 Single cycle microarchitecture performance 

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI  hopefully small

 Clock cycle time = short
41

Now, we have 

two degrees of freedom

to optimize independently



A Single-Cycle Microarchitecture

A Closer Look
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Remember…

 Single-cycle machine
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Let’s Start with the State Elements

 Data and control inputs
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**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



For Now, We Will Assume

 “Magic” memory and register file

 Combinational read

 output of the read data port is a combinational function of the 
register file contents and the corresponding read select port

 Synchronous write

 the selected register is updated on the positive edge clock 
transition when write enable is asserted

 Cannot affect read output in between clock edges

 Can affect read output at clock edges (but who cares?)

 Single-cycle, synchronous memory

 Contrast this with memory that tells when the data is ready

 i.e., Ready bit: indicating the read or write is done
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Instruction Processing

 5 generic steps (P&H)

 Instruction fetch (IF)

 Instruction decode and register operand fetch (ID/RF)

 Execute/Evaluate memory address (EX/AG)

 Memory operand fetch (MEM)

 Store/writeback result (WB) 
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What Is To Come: The Full Datapath
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Single-Cycle Datapath for

Arithmetic and Logical Instructions
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R-Type ALU Instructions

 Assembly (e.g., register-register signed addition)

ADD rdreg rsreg rtreg

 Machine encoding

 Semantics

if MEM[PC] == ADD rd rs rt

GPR[rd]  GPR[rs] + GPR[rt] 

PC  PC + 4
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ALU Datapath
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if MEM[PC] == ADD rd rs rt
GPR[rd]  GPR[rs] + GPR[rt] 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]



I-Type ALU Instructions

 Assembly (e.g., register-immediate signed additions)

ADDI rtreg rsreg immediate16

 Machine encoding

 Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt]  GPR[rs] + sign-extend (immediate)

PC  PC + 4
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Datapath for R and I-Type ALU Insts.
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if MEM[PC] == ADDI rt rs immediate
GPR[rt]  GPR[rs] + sign-extend (immediate) 
PC  PC + 4

Combinational
state update logic

IF ID EX MEM WB



Single-Cycle Datapath for

Data Movement Instructions
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Load Instructions

 Assembly (e.g., load 4-byte word)

LW rtreg offset16 (basereg)

 Machine encoding

 Semantics

if MEM[PC]==LW rt offset16 (base) 

EA = sign-extend(offset) + GPR[base]

GPR[rt]  MEM[ translate(EA) ] 

PC  PC + 4

54

LW
6-bit

base
5-bit

rt
5-bit

offset
16-bit

I-type



LW Datapath
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Store Instructions

 Assembly (e.g., store 4-byte word)

SW rtreg offset16 (basereg)

 Machine encoding

 Semantics

if MEM[PC]==SW rt offset16 (base) 

EA = sign-extend(offset) + GPR[base]

MEM[ translate(EA) ]  GPR[rt] 

PC  PC + 4
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SW Datapath
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Load-Store Datapath
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Datapath for Non-Control-Flow Insts.
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Single-Cycle Datapath for

Control Flow Instructions
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Unconditional Jump Instructions

 Assembly

J immediate26

 Machine encoding

 Semantics

if MEM[PC]==J immediate26

target = { PC[31:28], immediate26, 2’b00 }

PC  target
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Unconditional Jump Datapath
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**Based on original figure from [P&H CO&D, COPYRIGHT 
2004 Elsevier. ALL RIGHTS RESERVED.]
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PC = { PC[31:28], immediate26, 2’b00 }



Conditional Branch Instructions

 Assembly (e.g., branch if equal)

BEQ rsreg rtreg immediate16

 Machine encoding

 Semantics (assuming no branch delay slot)

if MEM[PC]==BEQ rs rt immediate16

target = PC + 4 + sign-extend(immediate) x 4 

if GPR[rs]==GPR[rt] then PC  target

else PC  PC + 4
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Conditional Branch Datapath (For You to Fix)
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watch out



Putting It All Together
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