18-447
Computer Architecture
Lecture 4: ISA Tradeotts (Continued)

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/22/2014

X86: Small Semantic Gap: String Operations

REP MOVS (DEST SRC) DEST « SRC;
IF (Byte move)
THEN IFDF=0
THEN
. (RIE)SI < (RIE)SI = 1;
IF AddressSize = 16 RIEIDI < (RIEDI = 1;
THEN ELSE
(RIEJS! « (RIE)SI - 1;
Use CX for CountReq; (RIE)DI « (RIE)DI - 1:
ELSE IF AddressSize = 64 and REX.W used ELSE It (Word move)
THEN Use RCX for CountReq; FI; THEN IF DF =0
(RIESS! « (RIE)SI + 2:
ELSE (RIEJDI < (RE)DI + 2;
. Fl;
Use ECX for CountReq; ELSE
FI: (RIE)SI < (RE)SI - 2;
WHILE CountReg = 0 g 0 RERE
ELSE IF (Doubleword move)
DO _ o . THEN IFDF =0
Service pending interrupts (if any); (RIEJS! < (RIEJSI + 4;
Execute associated string instruction; LT'EJDIHRIE]DH%

ELSE
(RIE)S! « (RIE)SI - 4;
{RIEID! < (RIE)DI - 4;

CountReg « (CountReg - 1);
IF CountReg=10
THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;

Fl:
ELSE IF (Quadword move)

THENIFDF =0
(RIE)SI « (RIE)SI + B:
(RIEIDI « (RIE)DI + 8;
Fl;

ELSE
(RIE)SI « (RIE)SI - B;
(RIEDI « (RIE)DI - 8;

Fl:

0D;

Fl;

How many instructions does this take in ARM and MIPS?

Small Semantic Gap Examples in VAX

FIND FIRST

o Find the first set bit in a bit field

o Helps OS resource allocation operations
SAVE CONTEXT, LOAD CONTEXT

o Special context switching instructions
INSQUEUE, REMQUEUE

o Operations on doubly linked list

INDEX

o Array access with bounds checking
STRING Operations

o Compare strings, find substrings, ...
Cyclic Redundancy Check Instruction
EDITPC

o Implements editing functions to display fixed format output

Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

Small versus Large Semantic Gap

CISC vs. RISC

o Complex instruction set computer = complex instructions
Initially motivated by “not good enough” code generation
o Reduced instruction set computer = simple instructions

John Cocke, mid 1970s, IBM 801
0 Goal: enable better compiler control and optimization

RISC motivated by

o Memory stalls (no work done in a complex instruction when
there is a memory sta/f?)

When is this correct?
o Simplifying the hardware = lower cost, higher frequency

o Enabling the compiler to optimize the code better
Find fine-grained parallelism to reduce stalls

How High or LLow Can You Go?

Very large semantic gap

o Each instruction specifies the complete set of control signals in
the machine

o Compiler generates control signals

o Open microcode (John Cocke, circa 1970s)
Gave way to optimizing compilers

Very small semantic gap
o ISA is (almost) the same as high-level language

o Java machines, LISP machines, object-oriented machines,
capability-based machines

A Note on ISA Evolution

ISAs have evolved to reflect/satisfy the concerns of the day

Examples:

o Limited on-chip and off-chip memory size

o Limited compiler optimization technology

o Limited memory bandwidth

o Need for specialization in important applications (e.g., MMX)

Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

o Concept of dynamic/static interface
o Contrast it with hardware/software interface

Effect of Translation

One can translate from one ISA to another /54 to change
the semantic gap tradeoffs

Examples

o Intel’'s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

o Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

Think about the tradeoffs

ISA-level Tradeoftfs: Instruction Length

Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently

-- Wasted bits in instructions (Why is this bad?)

-- Harder-to-extend ISA (how to add new instructions?)

Variable length: Length of instructions different
(determined by opcode and sub-opcode)
+ Compact encoding (Why is this good?)
Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?
-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

Tradeoffs

o Code size (memory space, bandwidth, latency) vs. hardware complexity
o ISA extensibility and expressiveness
o Performance? Smaller code vs. difficult decode

[SA-level Tradeoffs: Uniform Decode

Uniform decode: Same bits in each instruction correspond
to the same meaning

o Opcode is always in the same location

o Ditto operand specifiers, immediate values, ...

o Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

Non-uniform decode

o E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format
-- More complex decode logic

x86 vs. Alpha Instruction Formats

X86:

Inpsrter]Lchich}n Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,or4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 65 32 0 7 65 32 0
Mod Osfogéle R/M Scale | Index Base
Alpha:

31 26 25 2120 16 15 5 4 0

Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

10

MIPS Instruction Format

R-type, 3 register operands

0 rs rt rd shamt | funct R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

I-type, 2 register operands and 16-bit immediate operand

opcode |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit

J-type, 26-bit immediate operand

opcode [immediate J-type
6-bit 26-bit
Simple Decoding

o 4 bytes per instruction, regardless of format
o must be 4-byte aligned (2 Isb of PC must be 2b’00)
o format and fields easy to extract in hardware

11

ARM

33222222222211111111119876543210
1098765432109876543210
Cond |0(0|1| Opcode |5 Rn Rd Cperand 2 Data Processing /
PSR Transfer
Cond |Q|{O|0|0|O(O|A|S Rd RBn Rs 1(0(0]|1 Rm Multiply
Cond |O(0|0(0]1[U|A|S| RdHI RdLo Rn 1(0]0]|1 Rm Multiply Long
Cond (OQ|(0|{Q{1({0(B|0O|0O Rn Rd Q(o(O[d|1|0]0](1 Rm Single Data Swap
Cond (Q{Of{d{1{Of{a{1{a{1(1[T[1(1[1[T|1|1|1|1]|1]|0O 0|1 Rn Branch and Exchange
Cond |O(0)0(F|U[D[W|L Rn Rd O(o)o(o]1(S|H|1 Rm Halfword Data Transfer:
register offset
Cond Q0|0 (|F|U[1[W|L Rn Rd Offset [1|5(H|1| Offset | Halfword Data Transfer:
immediate affset
Cond |O[1]1|F|U[B[W|L Rn Rd Offset Single Data Transfer
Cond (211 1 Undefined
Cond |1({0|0|P|U[S|W|L Rn Register List Block Data Transfer
Cond |[1{0f1]L Offset Branch
Cond |1({1|0|F|U[M|W| L Rn CRd CP# Offset Coprocessor Data
Transfer
Cond |1(1|1]|0| CP Opc CRn CRd CP# CP |0| CRBm Coprocessor Data
Cperation
Cond |1(1|1|0/CPOpg/L| CRn Rd CP# CP |1| CRBm Coprocessor Registar
Transfer
Cond |1({1]1]1 lgnored by processor Software Inferrupt
33222222222211111111119876543210
1098765432109876543210

Figure 4-1: ARM instruction set formais

A Note on Length and Uniformity

Uniform decode usually goes with fixed length

In a variable length ISA, uniform decode can be a property

of instructions of the same length

o It is hard to think of it as a property of instructions of different
lengths

13

A Note on RISC vs

Usually, ...

RISC

a Simple instructions

o Fixed length

o Uniform decode

o Few addressing modes

CISC

o Complex instructions

o Variable length

o Non-uniform decode

o Many addressing modes

. CISC

14

ISA-level Tradeotts: Number ot Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler > fewer saves/restores

-- Larger instruction size
-- Larger register file size

15

ISA-level Tradeotts: Addressing Modes

Addressing mode specifies how to obtain an operand of an
Instruction

o Register
o Immediate

o Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, ...)

More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design
-- too many choices for the compiler?

Many ways to do the same thing complicates compiler design

Wulf, “Compilers and Computer Architecture, ” IEEF Computer 1981
16

x86 vs. Alpha Instruction Formats

X86:

Inpsrter]Lchich}n Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,or4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 65 32 0 7 65 32 0
Mod Osfogéle R/M Scale | Index Base
Alpha:

31 26 25 2120 16 15 5 4 0

Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

17

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

= r. AL CL oL BL AH CH OH g4
r1 :. A C¥ O BY SP g= sl ol
X 8 6 raz -'r EAX |ECX | EDK | EBX |ESP [EBP | ESI E0l
rnrnif-'ru MM MM1 MM2 MM3 M4 MMS MME MM7
:xr'rnl.'rl AEMMOO | EMMT) EMM2 | AMM3 | KMME | EMM5 | EMME | XMMT
i n decimal) / :ljsglt (Opcode) 0 1 z 3 4 5 6 7
.'|t:'|ary D00 001 010 011 100 1M 110 111
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
X 0180 |07 (88 |17 |18 |8 |:@ (31 |3
reg|3ter /EDK 010 |oz |oAa |12 [1a |2z |za |32 [3a
T EEtJ{ 011 o3 |oB [13 [1B |23 |28 |33 |[3B
indirect 100 Jo4 |oC |14 [1C |24 [2C |34 |3C
|5 3 2 101 Jos |oD |15 |10 |25 |20 |35 |3D
o N CAERAL RN
absolute
EAX]+disp8? 01 (o000 |40 |48 |s¢ |58 |60 |68 (70 |78
EC[+disp8 oo1 |41 |43 (21 |53 |81 |69 |71 |79
EDX+disp8 010 |42 |4a |25 |sAa ez |BA |72 |7a
ERY ladisnd 011 43 4B g4 5B B3 B 73 7B
—][--]+dispE> 100 |44 |4C [22 |5C |64 |[6C |74 |7C
EBP]-disp8 101 |45 |40 |22 |5D |65 |6BD |75 |7D
ESIJ+dispB 110 |46 |4E SE |66 |BE |76 | 7E
EDI)+disp8 111 |47 |4F 5F |67 |BF |77 | 7F
EAX]+disp32 10 |oo0 |80 (88 |90 |98 |AaD |(AB |BO |BB
ECK[+disp32 oo1 |81 |B3 |91 |99 |Aa1 |A9 |B1 |[B9
EDX+disp32 010 |8z |BA |92 |9a |Az |AA |B2 |BA
EBXJ+disp32 011 |83 |BB |93 |98 |A3 |AB |B3 |BB
_ %tlp +disp32 100 |84 |BC |94 |oc |a4 |AC |B4 |BC
EEPT+disp 52 101 |85 |80 |95 |90 |Aas |AD |BS |BD
) ESl dlSpEIE 110 |86 |BE |95 |9 |a6 |AE |B& |BE
reglster + /EDI +disp32 111 |87 |8F |97 |9F |A7 |AF |B7 |BF
i EAX/AX/AL/MMO/XMMO [11 |ooo |co |ce |po |(pe |en |es |FO [FB
displacement L ECK/CXICLIMMIXMM1 oo1 |ci [co |p1 |pe |e1 |e2 |[m |FS
EDX/DX/DL/MMZ/XMM2 010 |cz |cA |p2z |pa |E2 |EA |Fz2 |FA
register EEX/BX/BL/MM3/XMM3 011 |3 |cB (D3 |DB |E3 |EB |F3 |[FB
g ESP/SP/AH/MMA/XMMA 100 Jc4 |cc |D4 |DC |E4 |EC |F4 |FC
EBP/BP/CH/MMS/XMMS 101 Jcs |b |Ds |DD |es |eD |F5 | FD
ESI/SI/DH/MME/XMMB 110 |6 |CE |D6 |DE |Ee |EE |F6 |FE
EDI/DI/BH/MM7/XMM7 111 |c7 |cF |D7 |DF |E7 |EF |F7 |FF
NOTES:

1. The [-][--] nomenclzture means a SIE follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The dispB nomenclature denctes an B-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
Coanaral nirmoce raaietare ncad 2o 34 hzaca a3ra indicatrad 2ernce thea ton of the fabkla

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

32 EAX ECY EDX EQX ESP ‘] sl =]
X 8 6 {In declﬂqlbiase - a 1 2 3 4 5 G 7
Inzinary) Base = 000 0m mo on 100 m 110 111
Scaled Index 5SS | Index Value of SIB Byte (in Hexadecimal)
EAX 00 |ooo foo o1 Joz o3 |04 o5 |oe |07
ECX 001 Jos |03 |oa |[0B |oc |oD |oE |oF
€D o0 Jio |11 |12 [13 |14 |15 |16 |17
[EBX o11 |18 |19 |1a |18 |ic |1D |1E |iF
hone 100 20 |21 |22 |23 |22 |25 |26 |27
[EBP] 101 |28 |29 |2a |28 |2c |20 |2 |2F
- ES| 170 30 |31 (32 |33 |34 |35 |3 |37
indexed jEDﬂ 111]38 [39 |32 |38 |3C |30 |3E |3F
(base + [EAX?2 01 |ooo [40 [21 |42 |43 |44 |45 |46 |47
ECK 2 001 |48 |49 |28 |48 |4ac |40 |4 |4F
index) [EDX*2 010 |s0 |51 |52 (53 |54 |55 |36 |s7
[EBX*2 011 |58 |53 |5& |88 |5C |3D |3 |°F
hone 100 |60 |81 |62 |63 |84 |65 |66 |67
EBP*2] 101 |68 |e9 |6 |6B |sC |60 |6E |6F
[ESI2 1m0 [0 |71 |72 |73 |78 |15 |78 |77
[EDI*2 1m | |79 |7 |8 |7 |m |7 |7F
EAX"4 10 |ooo |so |81 |sz |83 |s4 |85 |86 |87
[ECX4 001 |ss |83 |sa |88 |sc |sD |ee |&F
[EDX+4 010 Jso |91 |s2 (93 |94 |95 |96 |97
[EBX*4 011 |8 |89 |sa |38 |oc |9 % |oF
none 100 [ao |a1 |Az |A3 [Ad |As |As |A7
EBP*4] 101 [#8 |As |aA |AB [AC |AD |AE |AF
[ESI4 170 |s0 |81 |82 |B3 |B4 |BS |BE |B7
scaled jEDhﬂ 111 |es |8 |ea |ee |BC |BD |BE |BF
[EAX*B 11 |ooo Jco |1 |2 |@3 |@¢ |5 |6 @
e | Sl 5 B R ERE
1 *
index*4) [EBX*8 011 |loe |ps |oa |pB |bc |[pD |pE |DF
hone 100 [0 |e1 |e2 |3 |e4 |es |es |&7
[EBP*8] 101 |8 |es |ea |eB8 |ec |eD |ee |€F
[ESI*B 170 [fFo |A |f2 |3 |4 |5 |8 |F7
[EDI*E 111 |8 |F@ | |B [c |0 |FE|FF
NOTES:

1. The [*] nomenclature means a disp3 2 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP). This provides the following address modes:

MOD bits Effective Address

0a [scaled index] + disp32

01 [scaled index] + dispB + [EEP]
10 [scaled index] + disp32 + [EBP]

X386 SIB-D Addressing Mode

Haze Index Scale Desplacement
EAX lex -
EBX | % | F1 Mane
EE:.[.. | :I 1
| B 2 B-bit
EDX | EDX |
esp | T | P .
L EBP Y 4 16-bit
EEP | e | - |
ESl | et -y 32-bat
=1 L
Offfset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

The following addressing modes suggest uses for common combinations of address components.

* Displacement — A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
address. It is commonly used to access a statically allocated scalar operand.

* Base — A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

* Base + Displacement — A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component
encodes the static offset to the beginning of the array. The base register holds the results of a calculation to
determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

21

X86 Manual: Suggested Uses of Addressing Modes

-

* [(Index * Scale) + Displacement — This address mode offers an efficient way
to index into a static array when the element size is 2, 4, or 8 bytes. The

displacement locates the beginning of the armmay, the index register holds the
subscript of the desired array element, and the processor automatically converts

the subscript into an index by applying the scaling factor,

* Base + Index + Displacement — Using two registers together supports either

a two-dimensional array (the displacement holds the address of the beginning of
the array) or one of several instances of an array of records (the displacement is

an offset to a field within the record).

* Base 4+ (Index * Scale) + Displacement — Using all the addressing
components together allows efficient indexing of a two-dimensional array when

the elements of the array are 2, 4, or 8 bytes in size.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

22

Other Example ISA-level Tradeofts

Condition codes vs. not

VLIW vs. single instruction

Precise vs. imprecise exceptions

Virtual memory vs. not

Unaligned access vs. not

Hardware interlocks vs. software-guaranteed interlocking
Software vs. hardware managed page fault handling
Cache coherence (hardware vs. software)

23

Back to Programmer vs. (Micro)architect

Many ISA features designed to aid programmers
But, complicate the hardware designer’ s job

Virtual memory
0 VS. overlay programming

o Should the programmer be concerned about the size of code
blocks fitting physical memory?

Addressing modes

Unaligned memory access
o Compile/programmer needs to align data

24

MIPS: Aligned Access

MSB | byte-3 byte-2 byte-1 byte-0 LSB
byte-7 byte-6 byte-5 byte-4

LW/SW alignment restriction: 4-byte word-alignment
o hot designed to fetch memory bytes not within a word boundary
o not designed to rotate unaligned bytes into registers

Provide separate opcodes for the “infrequent” case

A B C D

LWL rd 6(r0) > byte-6 byte-5 byte-4 D

LWR rd 3(r0) = | byte-6 byte-5 byte-4 byte-3

o LWL/LWR is slower
o Note LWL and LWR still fetch within word boundary

25

X86: Unaligned Access

= LD/ST instructions automatically align data that spans a
“word” boundary

= Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural
boundaries. The natural boundaries for words, double words, and quadwords are
even- nurnl::ered addresses, addresses evenly divisible by four, and addresses evenly
divisible . Tespectively. However, to improve the perform rams,
a structures [especially stacks) should be aligned on natural boundaries whe
ever possible. The reason for this is that the processor requires two memory
esses to make an unaligned memory access; aligned accesses reguire only o
memory ord or doubleword operand that crosses a 4- ndary or a
quadword operand that crosses an 8-byte boundary is considered unaligned and
requires two separate memory bus cycles for access.

26

X86: Unaligned Access

Word at Address BH
Contains FEDGH

Word at Address bH
Contains 2308H

Word at Address 2H
Contains 74{EH

Word at Addres=s 1H
Comtains (B31H

|

Byte at Address OH —
Comtains 1TFAH

T

4EH FH
12H ZH
TAH OH
=zH CH
DEH BH
26H AH
1FH oH
A4H 2H
23H TH
0B+ EH
45H 5H
&7H 4H
T4H IH
CBH 2H
31H 1H
12H OH

¥

Doubleword at Address AH
Contains 7AFEDGIEH

Quadword at Address 6H
Contains
TAFED&3IG1FA4230BH

Double quadword at Address OH
Contains

4E127ARDG361 FA4230B4567 7408311,

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in

Memory

27

Aligned vs. Unaligned Access

Pros of having no restrictions on alignment

Cons of having no restrictions on alignment

Filling in the above: an exercise for you...

28

Implementing the ISA:
Microarchitecture Basics

How Does a Machine Process Instructions?

What does processing an instruction mean?
Remember the von Neumann model

A = Architectural (programmer visible) state before an
instruction is processed

&

Process instruction

A" = Architectural (programmer visible) state after an
instruction is processed

Processing an instruction: Transforming A to A" according to

the ISA specification of the instruction
30

The “Process instruction” Step

ISA specifies abstractly what A’ should be, given an
instruction and A

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution
One state transition per instruction

Microarchitecture implements how A is transformed to A’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: A > A’ (transform A to A" in a single clock cycle)

Choice 2: A > A+MS1 > A+MS2 - A+MS3 - A’ (take multiple clock

cycles to transform A to A) 5

A Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to execute
= Only combinational logic is used to implement instruction

execution
o No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state
at the beginninﬁf a clock cycle

Process instruction in one clock cycle

A’ = Architectural (programmer visible) state
at the end of a clock cycle

32

A Very Basic Instruction Processing Engine

= Single-cycle machine

Sequential |
Logic
(State)

Combinational
Logic

= What is the clock cycle time determined by?

= What is the critical path of the combinational logic
determined by?

33

Remember: Programmer Visible (Architectural) State

MIO]
MI[1]
MI[2]
MI3] Registers
M[4] - given special names in the ISA
(as opposed to addresses)
- general vs. special purpose
M[N-1]
Memory Program Counter
array of storage locations memory address
indexed by an address of the current instruction

Instructions (and programs) specify how to transform

the values of programmer visible state
34

Single-cycle vs. Multi-cycle Machines

Single-cycle machines

Q

Q

Q

Each instruction takes a single clock cycle
All state updates made at the end of an instruction’s execution

Big disadvantage: The slowest instruction determines cycle time ->
long clock cycle time

Multi-cycle machines

Q

Q

Q

Instruction processing broken into multiple cycles/stages
State updates can be made during an instruction’s execution

Architectural state updates made only at the end of an instruction’s
execution

Advantage over single-cycle: The slowest “stage” determines cycle time

Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

35

Instruction Processing “Cycle”

Instructions are processed under the direction of a “control
unit” step by step.

Instruction cycle: Sequence of steps to process an instruction
Fundamentally, there are six phases:

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

Not all instructions require all six stages (see P&P Ch. 4)
36

Instruction Processing “Cycle” vs. Machine Clock Cycle

Single-cycle machine:

o All six phases of the instruction processing cycle take a single
machine clock cycle to complete

Multi-cycle machine:

o All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

a In fact, each phase can take multiple clock cycles to complete

37

Instruction Processing Viewed Another Way

Instructions transform Data (AS) to Data’ (AS’)

This transformation is done by functional units
o Units that “operate” on data

These units need to be told what to do to the data

An instruction processing engine consists of two components

o Datapath: Consists of hardware elements that deal with and
transform data signals
functional units that operate on data

hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

storage units that store data (e.q., registers)

o Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

38

Single-cycle vs. Multi-cycle: Control & Data

Single-cycle machine:

o Control signals are generated in the same clock cycle as data
signals are operated on

o Everything related to an instruction happens in one clock cycle

Multi-cycle machine:

o Control signals needed in the next cycle can be generated in
the previous cycle

o Latency of control processing can be overlapped with latency
of datapath operation

We will see the difference clearly in microprogrammed
multi-cycle microarchitecture

39

Many Ways of Datapath and Control Design

There are many ways of designing the data path and
control logic

Single-cycle, multi-cycle, pipelined datapath and control
Single-bus vs. multi-bus datapaths
o See your homework 2 question

Hardwired/combinational vs. microcoded/microprogrammed
control

o Control signals generated by combinational logic versus
o Control signals stored in @ memory structure

Control signals and structure depend on the datapath
design

40

Flash-Forward: Performance Analysis

Execution time of an instruction
o {CPI} x {clock cycle time}

Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
a {# of instructions} x {Average CPI} x {clock cycle time}

Single cycle microarchitecture performance
o CPI =1

o Clock cycle time = long

Multi-cycle microarchitecture performance

o CPI = different for each instruction Now. we have
Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
41

A Single-Cycle Microarchitecture
A Closer ook

Remember...

= Single-cycle machine

AS Next

Combinational
Logic

AS

Sequential |
Logic
(State)

43

[et’s Start with the State Elements

Data and control inputs

;5| Readl
register 1
Read
5 | Read data 1
~*| register 2
Registers
> PC— S | Write[
register Read|]
WriteO data 2
—
data
‘ RegWrite
‘ MemWrite
| Instructiond
address
»| Address Readll _
data
Instruction e
. WnteD DataD
Instructiond —p
memory data memory
MemRead

44

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

For Now, We Will Assume

“Magic” memory and register file

Combinational read

o output of the read data port is a combinational function of the
register file contents and the corresponding read select port

Synchronous write

o the selected register is updated on the positive edge clock
transition when write enable is asserted

Cannot affect read output in between clock edges
Can affect read output at clock edges (but who cares?)

Single-cycle, synchronous memory
o Contrast this with memory that tells when the data is ready

o i.e., Ready bit: indicating the read or write is done
45

Instruction Processing

= 5 generic steps (P&H)
o Instruction fetch (IF)
Instruction decode and register operand fetch (ID/RF)

a

o Execute/Evaluate memory address (EX/AG)
o Memory operand fetch (MEM)
a

Store/writeback result (WB)

PC =] Address Instruction

Instruction
memory

L Data

Register #
Registers
ister #

Register #

$ALU

| -

Address

Datall
memory

**Base!

d on original figure from [P&H CO&D, COPYRIGHT 2004 El

sevier.

ALL RIGHTS RESERVED.]

46

What Is To Come: The Full Datapath

N

Instruction [25-0] | éﬁ\

Jump address [31-0]

PCSrc,=Jump

\ \
26 Wzs

>Add

ReadO
address

Instructiond
[3

Instruction
memory

0 1
PC+4 [31-28] I\ljl I\JI
X X
ALU
>Add result Q/ 0
Al PCSrc,=Br Taken
Jump
Instruction [31-26]
> Control
Instruction [25—-21] Readl
register 1 Readlll
Instruction [20— 16] Read] data 1
| register 2 bcond
0 ~_Registers Read(>ALU ALU
M Writell data 2 0 result Address %ead
u register M ata
) u
Instruction [15— 11 X i
[R el X Datall
ata 1
) memory
Writel
data
Instruction [15-0] 1\6 Sign0J 3{2
N Tlextend | M

Instruction [5-0]

ALU operation

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALL RIGHTS RESERVED.]

JAL, IR, JALR omittéd

Single-Cycle Datapath tor
Avrithmetic and 1 ogical Instructions

R-Type ALU Instructions

Assembly (e.q., register-register signed addition)

ADD rd g I'Sieq e
Machine encoding
0 rs rt rd 0 ADD R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

Semantics

if MEM[PC] == ADD rd rs rt
GPR[rd] <— GPR[rs] + GPR[rt]
PC« PC+ 4

49

ALU Datapath

4 ——]
Read
address
Instruction
Instructiond
memory

if MEM[PC] == ADD rd rs rt

GPR[rd] <~ GPR[rs] + GPR[rt]

PC<« PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Read[
register 1 Read|
Read[] data 1
register 2
Registers >ALU
WriteU re/g\LIIIEtJ
register Readl
_| Write data 2
data
IF ID EX MEM| WB
Combinational

state update logic

50

[-Type ALU Instructions

Assembly (e.q., register-immediate signed additions)
ADDI rt, rs,, immediate,

Machine encoding

ADDI _ |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC] == ADDI rt rs immediate

GPR[rt] <~ GPR[rs] + sign-extend (immediate)
PC«—PC+4

51

Datapath for R and I-Type ALU Insts.

Read
address

Instructiond
memory

Instruction

>Add

Readl
register 1

ReadO

Readlll
data 1

isltype

\ | SignQd

| w—‘

register 2
__Registers >A|—U ALU
Write[] result
register Readl
| Write[data 2
"| data

if MEM[PC] == ADDI rt rs immediate
GPR][rt] «<— GPR][rs] + sign-extend (immediate)

PC« PC+4

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

|F ID

EX

MEM

WB

Combinational
state-updatelogic;

Single-Cycle Datapath tor

Data Mowvement Instructions

lL.oad Instructions

Assembly (e.g., load 4-byte word)
LW rt,, Offset;¢ (base,,)

Machine encoding

LW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==LW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
GPR[rt] « MEM] translate(EA)]
PC« PC+ 4

|-type

54

LW Datapath

4 —
| ReadO
PC > Eggr(égs register 1 theald]
ata
rReZ?siEr 2 —>| Address Readll
Instruction __Registers >ALU ALU data
Instruction ‘—Lljv \r/t\elgitgtgr result
memory L writer dgtzazd —_ \é\g[i;eD mzat?r?/
| data
isltype y
\
\
if MEM[PC]==LW rt offset,, (base) IF ID Ex WmMeMIwB
EA = sign-extend(offset) + GPR[base] . .
£ Combinational

GPR[rt] « MEM[translate(EA)]

PC <« PC +4 state update logic ss

Store Instructions

Assembly (e.g., store 4-byte word)
SW rt,, offset;¢ (base,,)

Machine encoding

SW base rt offset
6-bit 5-bit 5-bit 16-bit
Semantics

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
MEM[translate(EA)] < GPR[rt]
PC« PC+ 4

|-type

56

SW Datapath

Readl] .| ReadO

.| Rea i

PC > Cddress register 1 Readll
ReadD data 1
register 2

Instruction __Registers
) Write[d
Instruction register Read

memor
y _| Write data 2
| data

isltype

if MEM[PC]==SW rt offset,, (base)
EA = sign-extend(offset) + GPR[base]
MEM][translate(EA)] <~ GPR|[rt]
PC«~PC+4

Read[]__>
ALU ALu data
resul
t Datall
memory
MEM
Combinational

state update logic 7

Load-Store Datapath

—{PC

4] —
ReadO
address
Instruction
Instructiond
memory
isltype

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

ReadO
register 1 Readl
Read[] data 1
register 2
__Registers >A|-U ALU
Writel _ result Address I?jead B
register Read > ata
. data 2
\c/i\gtI;eD Datall
memor
Write y
| data
58

Datapath tor Non-Control-Flow Insts.

—PC

4
Readm ReadO
€a register 1
address J theald[]
ReadO ata
register 2
Instruction . _Registers
Writeld
Instruction(register Readl
memor
y WriteO data 2
data
isltype %
L\ _| Signd
N | extend

v

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

Readll
Address data
Datal]
) memory
_| Writed
| data
59

Single-Cycle Datapath tor

Control Flow Instructions

Unconditional Jump Instructions

Assembly
J immediate,

Machine encoding

J immediate J-type
6-bit 26-bit

Semantics

if MEM[PC]==1] immediate,
target = { PC[31:28], immediate,,, 2" b00 }
PC « target

601

Unconditional Jump Datapath

-
— PC
-

ReadO

| address

Instructiond
memory

Instruction

A

Readl
register 1

Readl
register 2

. _Regqgisters
Write[d

register

WriteO
data

Read[[l

3 ALU operation

data 1

Read[]
data 2

RegWrite

**Based on original figure from [P&H CO&D, COPYRIGHT
2004 Elsevier. ALL RIGHTS RESERVED.]

if MEM[PC]==J immediate26
PC = { PC[31:28], immediate26, 2" b0O }

Signd
extend

MemWrite
ReadllJ
Address data
Datall
. memory
Writell
data
MemRead

What about JR, JAL, JALR?

Conditional Branch Instructions

Assembly (e.g., branch if equal)
BEQ S It immediate;¢

Machine encoding

BEQ rs rt immediate

6-bit 5-bit 5-bit 16-bit

Semantics (assuming no branch delay slot)
if MEM[PC]==BEQ rs rt immediate,,
target = PC + 4 + sign-extend(immediate) x 4

if GPR[rs]==GPR[rt] then PC « target
else PC«~PC+4

I-type

03

Conditional Branch Datapath (For You to Fix)

LAA A
D

PC

A

ReadO
address

Instructiond
memory

Instruction J

_| Read

watch out

PC + 4 from instruction datapath ==

ReadO
register 1

register 2
Registers

WriteO

register

WriteO
data

Read
data 1

Read
data 2

>Add Sum H=> Branch target

ALU operation

To branch
control logic

RegWritel

**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier. ALL RIGHTS RESERVED.]

How to uphold the delayed branch semanti¢s$?

Putting It All Together

PCSrc,=Jump
Instruction [25-0] \ { shiftCiy Jump address [31-0]

\ \
26 Wzs L.

0 1
PC+4 [31- 28] M M
\ X X
e ALU
>Add result Q/ 0
Add
> Al PCSrc,=Br Taken
Jump
4 —
Instruction [31-26]
> Control
Instruction [25—-21] Read
.| ReadO register 1
—|PC address _ 9 Readl
Instruction [20— 16] Read] data 1
; register 2 bcond
Instr[gctlonlil l—> 0 ~_Registers Read(>ALU ALU
) M WriteD) data 2 0 result Address Read
Instruction u register M data
memory Instruction [15-11] | X WriteDl ;J
1 data Datal]
1
) memory
Writel
data
Instruction [15-0] 1\6 SignO 3{2

Y lextend [¥ ALU operation

Instruction [5-0] r
**Based on original figure from [P&H CO&D, COPYRIGHT 2004 Elsevier.

ALLRIGHTS RESERVED.] JAL, JR, JALR omittgé

