
18-447

Computer Architecture

Lecture 31: Asymmetric Multi-Core

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/30/2014

Lab 7: Multi-Core Cache Coherence

 Due May 2; Last submission accepted on May 9, 11:59pm

 Cycle-level modeling of the MESI cache coherence protocol

 Since this is the last lab

 An automatic extension of 7 days granted for everyone

 No other late days accepted

2

Final Exam: May 6

 May 6, 8:30-11:30am, Hamerschlag Hall B103

 Comprehensive (over all topics in course)

 Three cheat sheets allowed

 We might have a review session

 Remember this is 25% of your grade

 I will take into account your improvement over the course

 Know all concepts, especially the previous midterm concepts

 Same advice as before for Midterms I and II

3

A Note on 742, Research, Jobs
 I am teaching Parallel Computer Architecture next semester

(Fall 2014)

 Deep dive into many topics we covered

 And, many topics we did not cover

 Research oriented with an open-ended research project

 Cutting edge research and topics in HW/SW interface

 If you are enjoying 447 and are doing well, you can take it

 no need to have taken 640/740

 talk with me

 If you are excited about Computer Architecture research or
looking for a job/internship in this area

 talk with me

4

Course Evaluations (due May 12)

 Due May 12

 Please do not forget to fill out the course evaluations

 http://www.cmu.edu/hub/fce/

 Your feedback is very important

 I read these very carefully, and take into account every
piece of feedback

 And, improve the course for the future

 Please take the time to write out feedback

 State the things you liked, topics you enjoyed, and what we
can improve on

 Don’t just say “the course is hard” because you knew that
form the very beginning!

5

http://www.cmu.edu/hub/fce/

Last Lecture

 Wrap up cache coherence

 VI MSI MESI MOESI ?

 Directory vs. snooping tradeoffs

 Scaling the directory based protocols

 Interconnects

 Why important?

 Topologies

 Routing algorithms

 Handling contention

 On-chip interconnects

6

Today

 Evolution of multi-core systems

 Handling serial and parallel bottlenecks better

 Heterogeneous multi-core systems

7

Multi-Core Design

8

Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

9

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

With Many Cores on Chip

 What we want:

 N times the performance with N times the cores when we
parallelize an application on N cores

 What we get:

 Amdahl’s Law (serial bottleneck)

 Bottlenecks in the parallel portion

10

Caveats of Parallelism

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
11

Speedup =
1

+1 - f
f

N

The Problem: Serialized Code Sections

 Many parallel programs cannot be parallelized completely

 Causes of serialized code sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

 Serialized code sections

 Reduce performance

 Limit scalability

 Waste energy

12

Example from MySQL

13

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32

0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p
e
e
d
u
p

Today

Asymmetric

Demands in Different Code Sections

 What we want:

 In a serialized code section one powerful “large” core

 In a parallel code section many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

14

“Large” vs. “Small” Cores

15

• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Large vs. Small Cores

 Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

16

Meet Large: IBM POWER4

 Tendler et al., “POWER4 system microarchitecture,” IBM J
R&D, 2002.

 Another symmetric multi-core chip…

 But, fewer and more powerful cores

17

IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

18

IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

19

Meet Small: Sun Niagara (UltraSPARC T1)

20

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.

Niagara Core

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

 Round robin thread selection (unless cache miss)

 Shared FP unit among cores

21

Remember the Demands

 What we want:

 In a serialized code section one powerful “large” core

 In a parallel code section many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

 Can we get the best of both worlds?

22

Performance vs. Parallelism

23

Assumptions:

1. Small cores takes an area budget of 1 and has

performance of 1

2. Large core takes an area budget of 4 and has

performance of 2

Tile-Large Approach

 Tile a few large cores

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem

+ High performance on single thread, serial code sections (2 units)

- Low throughput on parallel program portions (8 units)

24

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Tile-Small Approach

 Tile many small cores

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit)

25

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Can we get the best of both worlds?

 Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

 Tile Small

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

 Idea: Have both large and small on the same chip

Performance asymmetry

26

Asymmetric Multi-Core

27

Asymmetric Chip Multiprocessor (ACMP)

 Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

28

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Accelerating Serial Bottlenecks

29

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP Approach

Single thread Large core

Performance vs. Parallelism

30

Assumptions:

1. Small cores takes an area budget of 1 and has

performance of 1

2. Large core takes an area budget of 4 and has

performance of 2

ACMP Performance vs. Parallelism

3131

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Large

Cores

4 0 1

Small

Cores

0 16 12

Serial

Performance

2 1 2

Parallel

Throughput

2 x 4 = 8 1 x 16 = 16 1x2 + 1x12 = 14

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Area-budget = 16 small cores

Caveats of Parallelism, Revisited

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)
32

Speedup =
1

+1 - f
f

N

Accelerating Parallel Bottlenecks

 Serialized or imbalanced execution in the parallel portion
can also benefit from a large core

 Examples:

 Critical sections that are contended

 Parallel stages that take longer than others to execute

 Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

33

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

34

http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
http://www.cs.virginia.edu/asplos09/

Contention for Critical Sections

35

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

36

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical

Section

Accelerated

by 2x

Impact of Critical Sections on Scalability

 Contention for critical sections leads to serial execution
(serialization) of threads in the parallel program portion

 Contention for critical sections increases with the number of
threads and limits scalability

37

MySQL (oltp-1)

0

1

2

3

4

5

6

7

8

0 8 16 24 32

0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p
e
e
d
u
p

Today

Asymmetric

A Case for Asymmetry

 Execution time of sequential kernels, critical sections, and
limiter stages must be short

 It is difficult for the programmer to shorten these
serialized sections

 Insufficient domain-specific knowledge

 Variation in hardware platforms

 Limited resources

 Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

 Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

38

An Example: Accelerated Critical Sections

 Idea: HW/SW ships critical sections to a large, powerful core in an
asymmetric multi-core architecture

 Benefit:

 Reduces serialization due to contended locks

 Reduces the performance impact of hard-to-parallelize sections

 Programmer does not need to (heavily) optimize parallel code fewer

bugs, improved productivity

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA
2010, IEEE Micro Top Picks 2011.

39

40

Accelerated Critical Sections

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-

Interconnect

Critical Section

Request Buffer

(CSRB)

1. P2 encounters a critical section (CSCALL)

2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

Core executing

critical section

P4P3P2
P1

Accelerated Critical Sections (ACS)

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

41

A = compute()

LOCK X

result = CS(A)

UNLOCK X

print result

Small CoreSmall Core Large Core

A = compute()

CSDONE Response

CSCALL Request

Send

X, TPC, STACK_PTR, C

ORE_ID

PUSH A

CSCALL X, Target PC
…

…

…
Acquire X

POP A

result = CS(A)

PUSH result

Release X

CSRET X

TPC:

POP result

print result

…

…

…

…

…

…

…

Waiting in

Critical Section

Request Buffer

(CSRB)

False Serialization

 ACS can serialize independent critical sections

 Selective Acceleration of Critical Sections (SEL)

 Saturating counters to track false serialization

42

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section

Request Buffer

(CSRB)

4

4

A

B

32

5

To large core

From small cores

ACS Performance Tradeoffs

 Pluses

+ Faster critical section execution

+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

 Minuses

- Large core dedicated for critical sections: reduced parallel
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse
private data locality

43

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data

44

Cache Misses for Private Data

45

Private Data:

NewSubProblems

Shared Data:

The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data
 Cache misses reduce if shared data > private data

46

This problem can be solved

ACS Comparison Points

 Conventional
locking

47

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

 Conventional
locking

 Large core executes
Amdahl’s serial part

 Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

48

ACS Performance

49

0

20

40

60

80

100

120

140

160

pagem
in

e

puzz
le

qsort

sq
lit

e

ts
p

ip
lo

oku
p

oltp
-1

oltp
-2

sp
ec

jb
b

w
eb

cac
he

hm
ea

n

S
p

e
e
d

u
p

 o
v
e
r

S
C

M
P

Accelerating Sequential Kernels

Accelerating Critical Sections

Equal-area comparison

Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores

ACMP = 1 large and 28 small cores

269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

50

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32

0

1

2

3

4

5

0 8 16 24 32

0

1

2

3

4

5

6

7

0 8 16 24 32

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32

0

2

4

6

8

10

12

14

0 8 16 24 32

0

1

2

3

4

5

6

0 8 16 24 32

0

2

4

6

8

10

0 8 16 24 32

0

2

4

6

8

0 8 16 24 32

0

2

4

6

8

10

12

0 8 16 24 32

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32

0

2

4

6

8

10

12

0 8 16 24 32

S
p

e
e

d
u

p
 o

v
e

r
a

 s
m

a
ll

 c
o

re

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2(h) iplookup (k) specjbb (l) webcache(g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary

 Critical sections reduce performance and limit scalability

 Accelerate critical sections by executing them on a powerful
core

 ACS reduces average execution time by:

 34% compared to an equal-area SCMP

 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12 workloads

 Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

51

Bottleneck Identification and

Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"

Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), London, UK, March 2012.

52

http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/

BIS Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing synchronization bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and
scalability, outperforms previous work, and performance improves with
more cores

53

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists on the critical path

 Critical sections
 Ensure mutual exclusion likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing the latest thread arriving

is on the critical path

 Pipeline stages
 Different stages of a loop iteration may execute on different threads,

slowest stage makes other stages wait on the critical path

54

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

Lock A

Traverse list A

Remove X from A

Unlock A

Compute on X

Lock B

Traverse list B

Insert X into B

Unlock B

until A is empty

55

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

56

MySQL running Sysbench queries, 16 threads

Previous Work on Bottleneck Acceleration

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10]

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

No previous work

 can accelerate all types of bottlenecks or
 adapts to fine-grain changes in the importance of bottlenecks

Our goal:

general mechanism to identify and accelerate performance-limiting
bottlenecks of any type

57

58

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

BIS instructions

Compiler/Library/Programmer Hardware

59

Bottleneck Identification and Scheduling (BIS)

while cannot acquire lock

Wait loop for watch_addr

acquire lock

…

release lock

Critical Sections: Code Modifications

…

BottleneckCall bid, targetPC

…

targetPC: while cannot acquire lock

Wait loop for watch_addr

acquire lock

…

release lock

BottleneckReturn bid

60

BottleneckWait bid, watch_addr

…

…
Used to keep track of

waiting cycles

Used to enable
acceleration

61

Barriers: Code Modifications

…

BottleneckCall bid, targetPC

enter barrier

while not all threads in barrier

BottleneckWait bid, watch_addr

exit barrier

…

targetPC: code running for the barrier

…

BottleneckReturn bid

62

Pipeline Stages: Code Modifications

BottleneckCall bid, targetPC

…

targetPC: while not done

while empty queue

BottleneckWait prev_bid

dequeue work

do the work …

while full queue

BottleneckWait next_bid

enqueue next work

BottleneckReturn bid

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

BIS instructions

Compiler/Library/Programmer Hardware

63

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

64

Large core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core
Small

core

Small

core

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

BIS instructions

Compiler/Library/Programmer Hardware

65

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

66

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0bid=x4500, waiters=1, twc = 1bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5bid=x4500, waiters=2, twc = 7bid=x4500, waiters=2, twc = 9bid=x4500, waiters=1, twc = 9bid=x4500, waiters=1, twc = 10bid=x4500, waiters=1, twc = 11bid=x4500, waiters=0, twc = 11bid=x4500, waiters=1, twc = 3bid=x4500, waiters=1, twc = 4bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implement waiting
for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

BIS instructions

Compiler/Library/Programmer Hardware

67

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

68

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration

Index Table (AIT)

BottleneckCall x4600

Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locallyExecute remotely

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles

 Accelerating Bottlenecks

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

69

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

70

BIS Performance Trade-offs

 Faster bottleneck execution vs. fewer parallel threads
 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality
 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with Data
Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency
 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely not on critical path)

71

Evaluation Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

72

BIS Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

73

BIS Performance Improvement

74

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

barriers, which ACS

cannot accelerate
limiting bottlenecks change over time

ACS FDP

Why Does BIS Work?

75

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

76

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:
 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
with no programmer effort

77

We did not cover the remaining slides.

These are for your benefit.

78

Handling Private Data Locality:

Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"

Proceedings of the 37th International Symposium on Computer Architecture (ISCA),
pages 441-450, Saint-Malo, France, June 2010.

79

http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/

Staged Execution Model (I)

 Goal: speed up a program by dividing it up into pieces

 Idea
 Split program code into segments

 Run each segment on the core best-suited to run it

 Each core assigned a work-queue, storing segments to be run

 Benefits
 Accelerates segments/critical-paths using specialized/heterogeneous cores

 Exploits inter-segment parallelism

 Improves locality of within-segment data

 Examples
 Accelerated critical sections, Bottleneck identification and scheduling

 Producer-consumer pipeline parallelism

 Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)

 Special-purpose cores and functional units

80

81

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

82

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

83

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances

of S0

Instances

of S1

Instances

of S2

84

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

 Idea: Ship critical sections to a large core in an asymmetric CMP

 Segment 0: Non-critical section

 Segment 1: Critical section

 Benefit: Faster execution of critical section, reduced
serialization, improved lock and shared data locality

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages” where
one stage consumes data produced by the next stage each

stage runs on a different core

 Segment N: Stage N

 Benefit: Stage-level parallelism, better locality faster execution

85

86

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data

 Accelerated Critical Sections [Suleman et al., ASPLOS 2010]

 Idea: Ship critical sections to a large core in an ACMP

 Problem: Critical section incurs a cache miss when it touches data
produced in the non-critical section (i.e., thread private data)

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages” each
stage runs on a different core

 Problem: A stage incurs a cache miss when it touches data
produced by the previous stage

 Performance of Staged Execution limited by inter-segment
cache misses

87

88

What if We Eliminated All Inter-segment Misses?

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

89

90

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache

block written by one segment

and consumed by the next

segment

Generator instruction:

The last instruction to write to an

inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea

 Observation: Set of generator instructions is stable over
execution time and across input sets

 Idea:

 Identify the generator instructions

 Record cache blocks produced by generator instructions

 Proactively send such cache blocks to the next segment’s
core before initiating the next segment

 Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

91

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

produced addresses

2. Marshal recorded

blocks to next coreBinary containing

generator prefixes &

marshal Instructions

Compiler/Profiler Hardware

92

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

produced addresses

2. Marshal recorded

blocks to next coreBinary containing

generator prefixes &

marshal Instructions

Hardware

93

Compiler/Profiler

94

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Mark as Generator

Instruction

Inter-segment data

95

Marshal Instructions

LOAD X
STORE Y

G: STORE Y
MARSHAL C1

LOAD Y
….

G:STORE Z
MARSHAL C2

0x5: LOAD Z
….

When to send (Marshal)

Where to send (C1)

DM Support/Cost

 Profiler/Compiler: Generators, marshal instructions

 ISA: Generator prefix, marshal instructions

 Library/Hardware: Bind next segment ID to a physical core

 Hardware

 Marshal Buffer

 Stores physical addresses of cache blocks to be marshaled

 16 entries enough for almost all workloads 96 bytes per core

 Ability to execute generator prefixes and marshal instructions

 Ability to push data to another cache

96

DM: Advantages, Disadvantages

 Advantages

 Timely data transfer: Push data to core before needed

 Can marshal any arbitrary sequence of lines: Identifies
generators, not patterns

 Low hardware cost: Profiler marks generators, no need for
hardware to find them

 Disadvantages

 Requires profiler and ISA support

 Not always accurate (generator set is conservative): Pollution
at remote core, wasted bandwidth on interconnect

 Not a large problem as number of inter-segment blocks is small

97

98

Accelerated Critical Sections with DM

Small Core 0

Marshal

Buffer

Large Core

LOAD X
STORE Y

G: STORE Y
CSCALL

LOAD Y
….

G:STORE Z
CSRET

Cache Hit!

L2
Cache

L2
CacheData Y

Addr Y

Critical

Section

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Different training and simulation input sets

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

99

100

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

in
e

puzz
le

qso
rt

ts
p

m
az

e

nque
en

sq
lit

e

ip
lo

oku
p

m
ys

ql-1

m
ys

ql-2

w
eb

ca
ch

e

hm
ea

n

S
p

e
e

d
u

p
 o

v
e

r
A

C
S

DM

Ideal

168 170

8.7%

101

Pipeline Parallelism

Core 0

Marshal

Buffer

Core 1

LOAD X
STORE Y

G: STORE Y
MARSHAL C1

LOAD Y
….

G:STORE Z
MARSHAL C2

0x5: LOAD Z
….

Cache Hit!

L2
Cache

L2
CacheData Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

 Workloads: 9 applications with pipeline parallelism

 Financial, compression, multimedia, encoding/decoding

 Different training and simulation input sets

 Multi-core x86 simulator

 32-core CMP: 2GHz, in-order, 2-wide, 5-stage

 Aggressive stream prefetcher employed at each core

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

102

103

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

bla
ck

co
m

pre
ss

dedupD

dedupE

fe
rr

et

im
ag

e

m
tw

is
t

ra
nk

si
gn

hm
ea

n
 S

p
e
e
d

u
p

 o
v
e
r

B
a
s
e
li

n
e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

 High coverage of inter-segment misses in a timely manner

 Medium accuracy does not impact performance

 Only 5.0 and 6.8 cache blocks marshaled for average segment

104

0

10

20

30

40

50

60

70

80

90

100

ACS Pipeline

P
e

rc
e

n
ta

g
e

Coverage

Accuracy

Timeliness

Scaling Results

 DM performance improvement increases with

 More cores

 Higher interconnect latency

 Larger private L2 caches

 Why? Inter-segment data misses become a larger bottleneck

 More cores More communication

 Higher latency Longer stalls due to communication

 Larger L2 cache Communication misses remain

105

106

Other Applications of Data Marshaling

 Can be applied to other Staged Execution models

 Task parallelism models

 Cilk, Intel TBB, Apple Grand Central Dispatch

 Special-purpose remote functional units

 Computation spreading [Chakraborty et al., ASPLOS’06]

 Thread motion/migration [e.g., Rangan et al., ISCA’09]

 Can be an enabler for more aggressive SE models

 Lowers the cost of data migration

 an important overhead in remote execution of code segments

 Remote execution of finer-grained tasks can become more
feasible finer-grained parallelization in multi-cores

Data Marshaling Summary

 Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

 Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core

 Significantly reduces cache misses for inter-segment data

 Low cost, high-coverage, timely for arbitrary address sequences

 Achieves most of the potential of eliminating such misses

 Applicable to several existing Staged Execution models

 Accelerated Critical Sections: 9% performance benefit

 Pipeline Parallelism: 16% performance benefit

 Can enable new models very fine-grained remote execution

107

A Case for

Asymmetry Everywhere

Onur Mutlu,
"Asymmetry Everywhere (with Automatic Resource Management)"

CRA Workshop on Advancing Computer Architecture Research: Popular
Parallel Programming, San Diego, CA, February 2010.

Position paper

108

http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-talk.pdf
http://iacoma.cs.uiuc.edu/acar1/
http://iacoma.cs.uiuc.edu/acar1/
http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-position-paper.pdf

The Setting

 Hardware resources are shared among many threads/apps
in a many-core based system

 Cores, caches, interconnects, memory, disks, power, lifetime,
…

 Management of these resources is a very difficult task

 When optimizing parallel/multiprogrammed workloads

 Threads interact unpredictably/unfairly in shared resources

 Power/energy is arguably the most valuable shared resource

 Main limiter to efficiency and performance

109

Shield the Programmer from Shared Resources

 Writing even sequential software is hard enough

 Optimizing code for a complex shared-resource parallel system
will be a nightmare for most programmers

 Programmer should not worry about
(hardware) resource management

 What should be executed where with what resources

 Future cloud computer architectures should be designed to

 Minimize programmer effort to optimize (parallel) programs

 Maximize runtime system’s effectiveness in automatic
shared resource management

110

Shared Resource Management: Goals

 Future many-core systems should manage power and
performance automatically across threads/applications

 Minimize energy/power consumption

 While satisfying performance/SLA requirements

 Provide predictability and Quality of Service

 Minimize programmer effort

 In creating optimized parallel programs

 Asymmetry and configurability in system resources essential
to achieve these goals

111

Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different phase behaviors

 Asymmetric: Enables tradeoffs and customization

 Processing requirements vary across applications and phases

 Execute code on best-fit resources (minimal energy, adequate perf.)

112

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

 Different power/performance/reliability characteristics

 To fit different computation/access/communication patterns

113

Thought Experiment: Asymmetry Everywhere

 Design the runtime system (HW & SW) to automatically choose
the best-fit components for each workload/phase

 Satisfy performance/SLA with minimal energy

 Dynamically stitch together the “best-fit” chip for each phase

114

Thought Experiment: Asymmetry Everywhere

 Morph software components to match asymmetric HW
components

 Multiple versions for different resource characteristics

115

Many Research and Design Questions

 How to design asymmetric components?

 Fixed, partitionable, reconfigurable components?

 What types of asymmetry? Access patterns, technologies?

 What monitoring to perform cooperatively in HW/SW?

 Automatically discover phase/task requirements

 How to design feedback/control loop between components and
runtime system software?

 How to design the runtime to automatically manage resources?

 Track task behavior, pick “best-fit” components for the entire workload

116

Exploiting Asymmetry: Simple Examples

117

 Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12]

 Programmer can write less optimized, but more likely correct programs

Exploiting Asymmetry: Simple Examples

118

 Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies

 More efficient and higher performance than general purpose hierarchy

Exploiting Asymmetry: Simple Examples

119

 Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

 Higher performance and energy-efficiency than symmetric/free-for-all

Exploiting Asymmetry: Simple Examples

120

 Have multiple different memory scheduling policies; apply them
to different sets of threads based on thread behavior [Kim+ MICRO

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]

 Higher performance and fairness than a homogeneous policy

Exploiting Asymmetry: Simple Examples

121

 Build main memory with different technologies with different
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE CAL’12]

 Map pages/applications to the best-fit memory resource

 Higher performance and energy-efficiency than single-level memory

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

