
18-447

Computer Architecture

Lecture 31: Asymmetric Multi-Core

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/30/2014

Lab 7: Multi-Core Cache Coherence

 Due May 2; Last submission accepted on May 9, 11:59pm

 Cycle-level modeling of the MESI cache coherence protocol

 Since this is the last lab

 An automatic extension of 7 days granted for everyone

 No other late days accepted

2

A Note on Testing Your Own Code

 We provide the reference simulator to aid you

 Do not expect it to be given, and do not rely on it much

 In real life, there are no reference simulators

 The architect designs the reference simulator

 The architect verifies it

 The architect tests it

 The architect fixes it

 The architect makes sure there are no bugs

 The architect ensures the simulator matches the specification

3

Lab 7 Grading

 Lab 7 is worth 5% of your entire course grade

 3% of this is my gift to each of you 

 2% of this you can earn by getting a grade between 0/100
and 40/100 (if you submit)

 An additional 3% will be extra credit you can earn by getting
a grade between 40/100 and 100/100 (if you submit)

 Lab 7 grade is calculated as

 Effect on total course grade = 3% + [5% * grade/100]

 Everyone gets 3% on the lab without even submitting it

 Those who submit the lab can get the remaining 2% and up to
3% more extra credit.

4

Final Exam: May 6

 May 6, 8:30-11:30am, Hamerschlag Hall B103

 Comprehensive (over all topics in course)

 Three cheat sheets allowed

 We might have a review session

 Remember this is 25% of your grade

 I will take into account your improvement over the course

 Know all concepts, especially the previous midterm concepts

 Same advice as before for Midterms I and II

5

A Note on 742, Research, Jobs
 I am teaching Parallel Computer Architecture next semester

(Fall 2014)

 Deep dive into many topics we covered

 And, many topics we did not cover

 Research oriented with an open-ended research project

 Cutting edge research and topics in HW/SW interface

 If you are enjoying 447 and are doing well, you can take it

  no need to have taken 640/740

  talk with me

 If you are excited about Computer Architecture research or
looking for a job/internship in this area

  talk with me

6

Course Evaluations (due May 12)

 Due May 12

 Please do not forget to fill out the course evaluations

 http://www.cmu.edu/hub/fce/

 Your feedback is very important

 I read these very carefully, and take into account every
piece of feedback

 And, improve the course for the future

 Please take the time to write out feedback

 State the things you liked, topics you enjoyed, and what we
can improve on

 Don’t just say “the course is hard” because you knew that
form the very beginning!

7

http://www.cmu.edu/hub/fce/

Last Lecture

 Wrap up cache coherence

 VI  MSI  MESI  MOESI  ?

 Directory vs. snooping tradeoffs

 Scaling the directory based protocols

 Interconnects

 Why important?

 Topologies

 Routing algorithms

 Handling contention

 On-chip interconnects

 8

Today

 Evolution of multi-core systems

 Handling serial and parallel bottlenecks better

 Heterogeneous multi-core systems

9

Multi-Core Design

10

Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

11

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

With Many Cores on Chip

 What we want:

 N times the performance with N times the cores when we
parallelize an application on N cores

 What we get:

 Amdahl’s Law (serial bottleneck)

 Bottlenecks in the parallel portion

12

Caveats of Parallelism

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

13

Speedup =
1

+ 1 - f
f

N

The Problem: Serialized Code Sections

 Many parallel programs cannot be parallelized completely

 Causes of serialized code sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

 Serialized code sections

 Reduce performance

 Limit scalability

 Waste energy

 14

Example from MySQL

15

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

Today

Asymmetric

Demands in Different Code Sections

 What we want:

 In a serialized code section  one powerful “large” core

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

16

“Large” vs. “Small” Cores

17

• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Large vs. Small Cores

 Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

18

Meet Large: IBM POWER4

 Tendler et al., “POWER4 system microarchitecture,” IBM J
R&D, 2002.

 Another symmetric multi-core chip…

 But, fewer and more powerful cores

19

IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

20

IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

21

Meet Small: Sun Niagara (UltraSPARC T1)

22

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.

Niagara Core

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

 Round robin thread selection (unless cache miss)

 Shared FP unit among cores

23

Remember the Demands

 What we want:

 In a serialized code section  one powerful “large” core

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

 Can we get the best of both worlds?

24

Performance vs. Parallelism

25

Assumptions:

 1. Small cores takes an area budget of 1 and has

 performance of 1

 2. Large core takes an area budget of 4 and has

 performance of 2

Tile-Large Approach

 Tile a few large cores

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem

+ High performance on single thread, serial code sections (2 units)

- Low throughput on parallel program portions (8 units)

26

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Tile-Small Approach

 Tile many small cores

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit)

27

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Can we get the best of both worlds?

 Tile Large

 + High performance on single thread, serial code sections (2
units)

 - Low throughput on parallel program portions (8 units)

 Tile Small

 + High throughput on the parallel part (16 units)

 - Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

 Idea: Have both large and small on the same chip 

Performance asymmetry

 28

Asymmetric Multi-Core

29

Asymmetric Chip Multiprocessor (ACMP)

 Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

30

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Accelerating Serial Bottlenecks

31

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP Approach

Single thread  Large core

Performance vs. Parallelism

32

Assumptions:

 1. Small cores takes an area budget of 1 and has

 performance of 1

 2. Large core takes an area budget of 4 and has

 performance of 2

ACMP Performance vs. Parallelism

33 33

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Large

Cores

4 0 1

Small

Cores

0 16 12

Serial

Performance

2 1 2

Parallel

Throughput

2 x 4 = 8 1 x 16 = 16 1x2 + 1x12 = 14

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Area-budget = 16 small cores

Caveats of Parallelism, Revisited

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

34

Speedup =
1

+ 1 - f
f

N

Accelerating Parallel Bottlenecks

 Serialized or imbalanced execution in the parallel portion
can also benefit from a large core

 Examples:

 Critical sections that are contended

 Parallel stages that take longer than others to execute

 Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

35

Accelerated Critical Sections

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"

Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2009

36

http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
http://www.cs.virginia.edu/asplos09/

Contention for Critical Sections

37

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

38

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical

Section

Accelerated

by 2x

Impact of Critical Sections on Scalability

 Contention for critical sections leads to serial execution
(serialization) of threads in the parallel program portion

 Contention for critical sections increases with the number of
threads and limits scalability

39

MySQL (oltp-1)

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p

e
e

d
u

p

Today

Asymmetric

A Case for Asymmetry

 Execution time of sequential kernels, critical sections, and
limiter stages must be short

 It is difficult for the programmer to shorten these
serialized sections

 Insufficient domain-specific knowledge

 Variation in hardware platforms

 Limited resources

 Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

 Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

40

An Example: Accelerated Critical Sections

 Idea: HW/SW ships critical sections to a large, powerful core in an
asymmetric multi-core architecture

 Benefit:

 Reduces serialization due to contended locks

 Reduces the performance impact of hard-to-parallelize sections

 Programmer does not need to (heavily) optimize parallel code  fewer

bugs, improved productivity

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA
2010, IEEE Micro Top Picks 2011.

41

42

Accelerated Critical Sections

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-

Interconnect

Critical Section

Request Buffer

(CSRB)

1. P2 encounters a critical section (CSCALL)

2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

Core executing

critical section

P4 P3 P2
P1

Accelerated Critical Sections (ACS)

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

43

A = compute()

LOCK X

 result = CS(A)

UNLOCK X

print result

Small Core Small Core Large Core

A = compute()

CSDONE Response

CSCALL Request

Send X, TPC,

STACK_PTR, CORE_ID

PUSH A

CSCALL X, Target PC
…

…

…
Acquire X

POP A

result = CS(A)

PUSH result

Release X

CSRET X

TPC:

POP result

print result

…

…

…

…

…

…

…

Waiting in

Critical Section

Request Buffer

(CSRB)

False Serialization

 ACS can serialize independent critical sections

 Selective Acceleration of Critical Sections (SEL)

 Saturating counters to track false serialization

44

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section

Request Buffer

(CSRB)

4

4

A

B

3 2

5

To large core

From small cores

ACS Performance Tradeoffs

 Pluses

+ Faster critical section execution

+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

 Minuses

- Large core dedicated for critical sections: reduced parallel
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse
private data locality

45

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data

46

Cache Misses for Private Data

47

Private Data:

NewSubProblems

Shared Data:

The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:
 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data
 Cache misses reduce if shared data > private data

48

This problem can be solved

ACS Comparison Points

 Conventional
locking

49

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

 Conventional
locking

 Large core executes
Amdahl’s serial part

 Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

50

ACS Performance

51

0

20

40

60

80

100

120

140

160

pagem
in

e

puzz
le

qsort

sq
lit

e

ts
p

ip
lo

oku
p

oltp
-1

oltp
-2

sp
ec

jb
b

w
eb

cac
he

hm
ea

n

S
p

e
e
d

u
p

 o
v
e
r

S
C

M
P

Accelerating Sequential Kernels

Accelerating Critical Sections

Equal-area comparison

Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores

ACMP = 1 large and 28 small cores

 269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

52

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

1

2

3

4

5

0 8 16 24 32
0

1

2

3

4

5

6

7

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32
0

2

4

6

8

10

12

14

0 8 16 24 32

0

1

2

3

4

5

6

0 8 16 24 32
0

2

4

6

8

10

0 8 16 24 32
0

2

4

6

8

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32

S
p

e
e

d
u

p
 o

v
e

r
a

 s
m

a
ll

 c
o

re

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2 (h) iplookup (k) specjbb (l) webcache (g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary

 Critical sections reduce performance and limit scalability

 Accelerate critical sections by executing them on a powerful
core

 ACS reduces average execution time by:

 34% compared to an equal-area SCMP

 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12 workloads

 Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

 53

Bottleneck Identification and

Scheduling

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"

Proceedings of the 17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), London, UK, March 2012.

54

http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/

BIS Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing synchronization bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 55

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait  on the critical path

56

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

 Lock A

 Traverse list A

 Remove X from A

 Unlock A

 Compute on X

 Lock B

 Traverse list B

 Insert X into B

 Unlock B

until A is empty

57

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

58

MySQL running Sysbench queries, 16 threads

Previous Work on Bottleneck Acceleration

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10]

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

No previous work

  can accelerate all types of bottlenecks or
 adapts to fine-grain changes in the importance of bottlenecks

Our goal:

 general mechanism to identify and accelerate performance-limiting
bottlenecks of any type

59

60

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

61

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

 BottleneckReturn bid

62

 BottleneckWait bid, watch_addr

 …

 …
Used to keep track of

waiting cycles

Used to enable
acceleration

63

Barriers: Code Modifications

 …

 BottleneckCall bid, targetPC

 enter barrier

 while not all threads in barrier

 BottleneckWait bid, watch_addr

 exit barrier

 …

targetPC: code running for the barrier

 …

 BottleneckReturn bid

64

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC

 …

targetPC: while not done

 while empty queue

 BottleneckWait prev_bid

 dequeue work

 do the work …

 while full queue

 BottleneckWait next_bid

 enqueue next work

 BottleneckReturn bid

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

65

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

66

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

67

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

68

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

69

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

70

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration

Index Table (AIT)

BottleneckCall x4600

Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locally Execute remotely

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles 

 Accelerating Bottlenecks 

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

71

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

72

BIS Performance Trade-offs

 Faster bottleneck execution vs. fewer parallel threads
 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality
 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with Data
Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency
 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely not on critical path)

73

Evaluation Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

74

BIS Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

75

BIS Performance Improvement

76

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

barriers, which ACS

cannot accelerate
limiting bottlenecks change over time

ACS FDP

Why Does BIS Work?

77

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

78

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:
 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
with no programmer effort

79

We did not cover the remaining slides.

These are for your benefit.

80

Handling Private Data Locality:

Data Marshaling

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"

Proceedings of the 37th International Symposium on Computer Architecture (ISCA),
pages 441-450, Saint-Malo, France, June 2010.

81

http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/

Staged Execution Model (I)

 Goal: speed up a program by dividing it up into pieces

 Idea

 Split program code into segments

 Run each segment on the core best-suited to run it

 Each core assigned a work-queue, storing segments to be run

 Benefits

 Accelerates segments/critical-paths using specialized/heterogeneous cores

 Exploits inter-segment parallelism

 Improves locality of within-segment data

 Examples

 Accelerated critical sections, Bottleneck identification and scheduling

 Producer-consumer pipeline parallelism

 Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)

 Special-purpose cores and functional units

82

83

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y

….
STORE Z

LOAD Z

….

84

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

85

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances

 of S0

Instances

 of S1

Instances

 of S2

86

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

 Idea: Ship critical sections to a large core in an asymmetric CMP

 Segment 0: Non-critical section

 Segment 1: Critical section

 Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages” where
one stage consumes data produced by the next stage  each

stage runs on a different core

 Segment N: Stage N

 Benefit: Stage-level parallelism, better locality  faster execution

87

88

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data

 Accelerated Critical Sections [Suleman et al., ASPLOS 2010]

 Idea: Ship critical sections to a large core in an ACMP

 Problem: Critical section incurs a cache miss when it touches data
produced in the non-critical section (i.e., thread private data)

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages”  each
stage runs on a different core

 Problem: A stage incurs a cache miss when it touches data
produced by the previous stage

 Performance of Staged Execution limited by inter-segment
cache misses

89

90

What if We Eliminated All Inter-segment Misses?

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

91

92

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache

block written by one segment

and consumed by the next

segment

Generator instruction:

The last instruction to write to an

inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea

 Observation: Set of generator instructions is stable over
execution time and across input sets

 Idea:

 Identify the generator instructions

 Record cache blocks produced by generator instructions

 Proactively send such cache blocks to the next segment’s
core before initiating the next segment

 Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

93

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

 produced addresses

2. Marshal recorded

 blocks to next core Binary containing

generator prefixes &

marshal Instructions

Compiler/Profiler Hardware

94

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

 produced addresses

2. Marshal recorded

 blocks to next core Binary containing

generator prefixes &

marshal Instructions

Hardware

95

Compiler/Profiler

96

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
 ….

STORE Z

LOAD Z
 ….

Mark as Generator

Instruction

Inter-segment data

97

Marshal Instructions

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

When to send (Marshal)

Where to send (C1)

DM Support/Cost

 Profiler/Compiler: Generators, marshal instructions

 ISA: Generator prefix, marshal instructions

 Library/Hardware: Bind next segment ID to a physical core

 Hardware

 Marshal Buffer

 Stores physical addresses of cache blocks to be marshaled

 16 entries enough for almost all workloads  96 bytes per core

 Ability to execute generator prefixes and marshal instructions

 Ability to push data to another cache

98

DM: Advantages, Disadvantages

 Advantages

 Timely data transfer: Push data to core before needed

 Can marshal any arbitrary sequence of lines: Identifies
generators, not patterns

 Low hardware cost: Profiler marks generators, no need for
hardware to find them

 Disadvantages

 Requires profiler and ISA support

 Not always accurate (generator set is conservative): Pollution
at remote core, wasted bandwidth on interconnect

 Not a large problem as number of inter-segment blocks is small

99

100

Accelerated Critical Sections with DM

Small Core 0

Marshal

Buffer

Large Core

 LOAD X
 STORE Y
G: STORE Y
 CSCALL

 LOAD Y
 ….
G:STORE Z
 CSRET

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

Critical

Section

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Different training and simulation input sets

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

101

102

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

in
e

puzz
le

qso
rt

ts
p

m
az

e

nque
en

sq
lit

e

ip
lo

oku
p

m
ys

ql-1

m
ys

ql-2

w
eb

ca
ch

e

hm
ea

n

S
p

e
e

d
u

p
 o

v
e

r
A

C
S

DM

Ideal

 168 170

8.7%

103

Pipeline Parallelism

Core 0

Marshal

Buffer

Core 1

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

 Workloads: 9 applications with pipeline parallelism

 Financial, compression, multimedia, encoding/decoding

 Different training and simulation input sets

 Multi-core x86 simulator

 32-core CMP: 2GHz, in-order, 2-wide, 5-stage

 Aggressive stream prefetcher employed at each core

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

104

105

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

bla
ck

co
m

pre
ss

dedupD

dedupE

fe
rr

et

im
ag

e

m
tw

is
t

ra
nk

si
gn

hm
ea

n
 S

p
e
e
d

u
p

 o
v
e
r

B
a
s
e
li

n
e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

 High coverage of inter-segment misses in a timely manner

 Medium accuracy does not impact performance

 Only 5.0 and 6.8 cache blocks marshaled for average segment

106

0

10

20

30

40

50

60

70

80

90

100

ACS Pipeline

P
e

rc
e

n
ta

g
e

Coverage

Accuracy

Timeliness

Scaling Results

 DM performance improvement increases with

 More cores

 Higher interconnect latency

 Larger private L2 caches

 Why? Inter-segment data misses become a larger bottleneck

 More cores  More communication

 Higher latency  Longer stalls due to communication

 Larger L2 cache  Communication misses remain

107

108

Other Applications of Data Marshaling

 Can be applied to other Staged Execution models

 Task parallelism models

 Cilk, Intel TBB, Apple Grand Central Dispatch

 Special-purpose remote functional units

 Computation spreading [Chakraborty et al., ASPLOS’06]

 Thread motion/migration [e.g., Rangan et al., ISCA’09]

 Can be an enabler for more aggressive SE models

 Lowers the cost of data migration

 an important overhead in remote execution of code segments

 Remote execution of finer-grained tasks can become more
feasible  finer-grained parallelization in multi-cores

Data Marshaling Summary

 Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

 Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core

 Significantly reduces cache misses for inter-segment data

 Low cost, high-coverage, timely for arbitrary address sequences

 Achieves most of the potential of eliminating such misses

 Applicable to several existing Staged Execution models

 Accelerated Critical Sections: 9% performance benefit

 Pipeline Parallelism: 16% performance benefit

 Can enable new models very fine-grained remote execution

109

A Case for

 Asymmetry Everywhere

Onur Mutlu,
"Asymmetry Everywhere (with Automatic Resource Management)"

CRA Workshop on Advancing Computer Architecture Research: Popular
Parallel Programming, San Diego, CA, February 2010.

Position paper

110

http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-talk.pdf
http://iacoma.cs.uiuc.edu/acar1/
http://iacoma.cs.uiuc.edu/acar1/
http://users.ece.cmu.edu/~omutlu/pub/onur-Asymmetry-Everywhere-position-paper.pdf

The Setting

 Hardware resources are shared among many threads/apps
in a many-core based system

 Cores, caches, interconnects, memory, disks, power, lifetime,
…

 Management of these resources is a very difficult task

 When optimizing parallel/multiprogrammed workloads

 Threads interact unpredictably/unfairly in shared resources

 Power/energy is arguably the most valuable shared resource

 Main limiter to efficiency and performance

111

Shield the Programmer from Shared Resources

 Writing even sequential software is hard enough

 Optimizing code for a complex shared-resource parallel system
will be a nightmare for most programmers

 Programmer should not worry about
(hardware) resource management

 What should be executed where with what resources

 Future cloud computer architectures should be designed to

 Minimize programmer effort to optimize (parallel) programs

 Maximize runtime system’s effectiveness in automatic
shared resource management

112

Shared Resource Management: Goals

 Future many-core systems should manage power and
performance automatically across threads/applications

 Minimize energy/power consumption

 While satisfying performance/SLA requirements

 Provide predictability and Quality of Service

 Minimize programmer effort

 In creating optimized parallel programs

 Asymmetry and configurability in system resources essential
to achieve these goals

113

Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different phase behaviors

 Asymmetric: Enables tradeoffs and customization

 Processing requirements vary across applications and phases

 Execute code on best-fit resources (minimal energy, adequate perf.)

114

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

 Different power/performance/reliability characteristics

 To fit different computation/access/communication patterns

115

Thought Experiment: Asymmetry Everywhere

 Design the runtime system (HW & SW) to automatically choose
the best-fit components for each workload/phase

 Satisfy performance/SLA with minimal energy

 Dynamically stitch together the “best-fit” chip for each phase

116

Thought Experiment: Asymmetry Everywhere

 Morph software components to match asymmetric HW
components

 Multiple versions for different resource characteristics

117

Many Research and Design Questions

 How to design asymmetric components?

 Fixed, partitionable, reconfigurable components?

 What types of asymmetry? Access patterns, technologies?

 What monitoring to perform cooperatively in HW/SW?

 Automatically discover phase/task requirements

 How to design feedback/control loop between components and
runtime system software?

 How to design the runtime to automatically manage resources?

 Track task behavior, pick “best-fit” components for the entire workload

118

Exploiting Asymmetry: Simple Examples

119

 Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12]

 Programmer can write less optimized, but more likely correct programs

Exploiting Asymmetry: Simple Examples

120

 Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies

 More efficient and higher performance than general purpose hierarchy

Exploiting Asymmetry: Simple Examples

121

 Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

 Higher performance and energy-efficiency than symmetric/free-for-all

Exploiting Asymmetry: Simple Examples

122

 Have multiple different memory scheduling policies; apply them
to different sets of threads based on thread behavior [Kim+ MICRO

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]

 Higher performance and fairness than a homogeneous policy

Exploiting Asymmetry: Simple Examples

123

 Build main memory with different technologies with different
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE

CAL’12]

 Map pages/applications to the best-fit memory resource

 Higher performance and energy-efficiency than single-level memory

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

