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Lab 7: Multi-Core Cache Coherence 

 Due May 2; Last submission accepted on May 9, 11:59pm 

 Cycle-level modeling of the MESI cache coherence protocol 

 

 Since this is the last lab 

 An automatic extension of 7 days granted for everyone 

 No other late days accepted 
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A Note on Testing Your Own Code 

 We provide the reference simulator to aid you 

 Do not expect it to be given, and do not rely on it much 

 

 In real life, there are no reference simulators 

 

 The architect designs the reference simulator 

 The architect verifies it 

 The architect tests it 

 The architect fixes it 

 The architect makes sure there are no bugs 

 The architect ensures the simulator matches the specification 
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Lab 7 Grading 

 Lab 7 is worth 5% of your entire course grade 

 3% of this is my gift to each of you  

 2% of this you can earn by getting a grade between 0/100 
and 40/100 (if you submit) 

 An additional 3% will be extra credit you can earn by getting 
a grade between 40/100 and 100/100 (if you submit) 

 

 Lab 7 grade is calculated as  

 Effect on total course grade = 3% + [5% * grade/100] 

 Everyone gets 3% on the lab without even submitting it 

 Those who submit the lab can get the remaining 2% and up to 
3% more extra credit. 
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Final Exam: May 6 

 May 6, 8:30-11:30am, Hamerschlag Hall B103 

 

 Comprehensive (over all topics in course) 

 

 Three cheat sheets allowed 

 

 We might have a review session  

 

 Remember this is 25% of your grade 

 I will take into account your improvement over the course 

 Know all concepts, especially the previous midterm concepts 

 Same advice as before for Midterms I and II 
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A Note on 742, Research, Jobs 
 I am teaching Parallel Computer Architecture next semester 

(Fall 2014) 

 Deep dive into many topics we covered 

 And, many topics we did not cover 

 Research oriented with an open-ended research project 

 Cutting edge research and topics in HW/SW interface 
 

 If you are enjoying 447 and are doing well, you can take it 

    no need to have taken 640/740  

    talk with me 
 

 If you are excited about Computer Architecture research or 
looking for a job/internship in this area  

    talk with me 
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Course Evaluations (due May 12) 

 Due May 12 

 Please do not forget to fill out the course evaluations 

 http://www.cmu.edu/hub/fce/ 

 Your feedback is very important 

 

 I read these very carefully, and take into account every 
piece of feedback 

 And, improve the course for the future 

 Please take the time to write out feedback 

 State the things you liked, topics you enjoyed, and what we 
can improve on  

 Don’t just say “the course is hard” because you knew that 
form the very beginning! 
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Last Lecture  

 Wrap up cache coherence 

 VI  MSI  MESI  MOESI  ? 

 Directory vs. snooping tradeoffs 

 Scaling the directory based protocols 

 

 Interconnects 

 Why important? 

 Topologies 

 Routing algorithms 

 Handling contention 

 On-chip interconnects 
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Today 

 Evolution of multi-core systems 

 

 Handling serial and parallel bottlenecks better 

 

 Heterogeneous multi-core systems 

9 



Multi-Core Design 
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Many Cores on Chip 

 Simpler and lower power than a single large core 

 Large scale parallelism on chip 
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IBM Cell BE 
8+1 cores 

Intel Core i7 
8 cores 

Tilera TILE Gx 
100 cores, networked 

IBM POWER7 
8 cores 

Intel SCC 
48 cores, networked 

Nvidia Fermi 
448 “cores” 

AMD Barcelona 
4 cores 

Sun Niagara II 
8 cores 



With Many Cores on Chip 

 What we want: 

 N times the performance with N times the cores when we 
parallelize an application on N cores 

 

 What we get: 

 Amdahl’s Law (serial bottleneck) 

 Bottlenecks in the parallel portion 
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Caveats of Parallelism 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 

 
13 

Speedup = 
1 

+ 1 - f 
f 

N 



The Problem: Serialized Code Sections 

 Many parallel programs cannot be parallelized completely 

 

 Causes of serialized code sections 

 Sequential portions (Amdahl’s “serial part”) 

 Critical sections 

 Barriers 

 Limiter stages in pipelined programs 

 

 Serialized code sections 

 Reduce performance 

 Limit scalability 

 Waste energy 
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Example from MySQL 
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Open database tables 

Perform the operations 
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Demands in Different Code Sections 

 What we want: 

 

 In a serialized code section  one powerful “large” core  

 

 In a parallel code section  many wimpy “small” cores 

 

 These two conflict with each other: 

 If you have a single powerful core, you cannot have many 
cores 

 A small core is much more energy and area efficient than a 
large core 
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“Large” vs. “Small” Cores 
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• Out-of-order 
• Wide fetch e.g. 4-wide 
• Deeper pipeline 
• Aggressive branch 

predictor (e.g. hybrid) 
• Multiple functional units 
• Trace cache 
• Memory dependence 

speculation 

• In-order 

• Narrow Fetch e.g. 2-wide 

• Shallow pipeline 

• Simple branch predictor 

(e.g. Gshare) 

• Few functional units 

Large 

Core 
Small 

Core 

Large Cores are power inefficient: 
e.g., 2x performance for 4x area (power) 



Large vs. Small Cores 

 Grochowski et al., “Best of both Latency and Throughput,” 
ICCD 2004. 
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Meet Large: IBM POWER4 

 Tendler et al., “POWER4 system microarchitecture,” IBM J 
R&D, 2002. 

 

 Another symmetric multi-core chip… 

 But, fewer and more powerful cores 

 

 

19 



IBM POWER4 

 2 cores, out-of-order execution 

 100-entry instruction window in each core 

 8-wide instruction fetch, issue, execute 

 Large, local+global hybrid branch predictor 

 1.5MB, 8-way L2 cache 

 Aggressive stream based prefetching 
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IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 
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Meet Small: Sun Niagara (UltraSPARC T1) 
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 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC 
Processor,” IEEE Micro 2005. 

 



Niagara Core 

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order 

 Round robin thread selection (unless cache miss) 

 Shared FP unit among cores 
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Remember the Demands 

 What we want: 

 

 In a serialized code section  one powerful “large” core  

 

 In a parallel code section  many wimpy “small” cores 

 

 These two conflict with each other: 

 If you have a single powerful core, you cannot have many 
cores 

 A small core is much more energy and area efficient than a 
large core 

 

 Can we get the best of both worlds? 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  

 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 

 performance of 2 

  

  



Tile-Large Approach 

 

 

 

 

 

 

 

 

 Tile a few large cores 

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem 

+ High performance on single thread, serial code sections (2 units) 

- Low throughput on parallel program portions (8 units) 
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Tile-Small Approach 

 

 

 

 

 

 

 

 

 Tile many small cores 

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small) 

+ High throughput on the parallel part (16 units) 

- Low performance on the serial part, single thread (1 unit) 
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Can we get the best of both worlds? 

 Tile Large 

 + High performance on single thread, serial code sections (2 
units) 

 - Low throughput on parallel program portions (8 units) 

 

 Tile Small 

 + High throughput on the parallel part (16 units) 

 - Low performance on the serial part, single thread (1 unit), 
reduced single-thread performance compared to existing single 
thread processors 

 

 Idea: Have both large and small on the same chip  

Performance asymmetry 
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Asymmetric Multi-Core 

29 



Asymmetric Chip Multiprocessor (ACMP) 

 

 

 

 

 

 

 

 

 Provide one large core and many small cores 

+ Accelerate serial part using the large core (2 units) 

+ Execute parallel part on small cores and large core for high 
throughput (12+2 units) 
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Accelerating Serial Bottlenecks 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  

 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 

 performance of 2 

  

  



ACMP Performance vs. Parallelism 
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Caveats of Parallelism, Revisited 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Accelerating Parallel Bottlenecks 

 Serialized or imbalanced execution in the parallel portion 
can also benefit from a large core 

 

 Examples: 

 Critical sections that are contended 

 Parallel stages that take longer than others to execute 

 

 Idea: Dynamically identify these code portions that cause 
serialization and execute them on a large core 
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Accelerated Critical Sections 

M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt, 
"Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures"  

Proceedings of the 14th International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), 2009 
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http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
http://www.cs.virginia.edu/asplos09/


Contention for Critical Sections 
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Contention for Critical Sections 
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Impact of Critical Sections on Scalability 

 Contention for critical sections leads to serial execution 
(serialization) of threads in the parallel program portion 

 Contention for critical sections increases with the number of 
threads and limits scalability 
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A Case for Asymmetry 

 Execution time of sequential kernels, critical sections, and 
limiter stages must be short 
 

 It is difficult for the programmer to shorten these 
serialized sections 

 Insufficient domain-specific knowledge 

 Variation in hardware platforms  

 Limited resources 
 

 Goal: A mechanism to shorten serial bottlenecks without 
requiring programmer effort 
 

 Idea: Accelerate serialized code sections by shipping them 
to powerful cores in an asymmetric multi-core (ACMP) 
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An Example: Accelerated Critical Sections 

 Idea: HW/SW ships critical sections to a large, powerful core in an 
asymmetric multi-core architecture 
 

 Benefit:  

 Reduces serialization due to contended locks 

 Reduces the performance impact of hard-to-parallelize sections 

 Programmer does not need to (heavily) optimize parallel code  fewer 

bugs, improved productivity 
 
 

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010. 

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 
2010, IEEE Micro Top Picks 2011. 
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Accelerated Critical Sections 

EnterCS() 

PriorityQ.insert(…) 

LeaveCS() 

Onchip-

Interconnect 

Critical Section 

Request Buffer 

(CSRB) 

1. P2 encounters a critical section (CSCALL) 

2. P2 sends CSCALL Request to CSRB 

3. P1 executes Critical Section 

4. P1 sends CSDONE signal 

Core executing 

critical section 

P4 P3 P2 
P1 



Accelerated Critical Sections (ACS) 

 

 

 

 

 

 

 

 

 

 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 
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A = compute() 

 

LOCK X 

      result = CS(A) 

UNLOCK X 

 

print result 

Small Core Small Core Large Core 

A = compute() 

CSDONE Response 

CSCALL Request 

Send X, TPC, 

STACK_PTR, CORE_ID 

PUSH A 

CSCALL X, Target PC 
… 

… 

… 
Acquire X 

POP A 

result  = CS(A) 

PUSH result 

Release X 

CSRET X 

TPC:  

POP result 

print result 

… 

… 

… 

… 

… 

… 

… 

Waiting in 

Critical Section 

Request Buffer 

(CSRB) 



False Serialization 

 ACS can serialize independent critical sections 
 

 Selective Acceleration of Critical Sections (SEL) 

 Saturating counters to track false serialization 
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ACS Performance Tradeoffs 

 Pluses 

+ Faster critical section execution 

+ Shared locks stay in one place: better lock locality 

+ Shared data stays in large core’s (large) caches: better shared 
data locality, less ping-ponging 

 

 Minuses 

- Large core dedicated for critical sections: reduced parallel 
throughput 

- CSCALL and CSDONE control transfer overhead 

- Thread-private data needs to be transferred to large core: worse 
private data locality 
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ACS Performance Tradeoffs 

 Fewer parallel threads vs. accelerated critical sections 
 Accelerating critical sections offsets loss in throughput 

 As the number of cores (threads) on chip increase: 
 Fractional loss in parallel performance decreases 

 Increased contention for critical sections  
makes acceleration more beneficial 

 

 Overhead of CSCALL/CSDONE vs. better lock locality 
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

 

 More cache misses for private data vs. fewer misses 
for shared data 
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Cache Misses for Private Data 
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Private Data: 

NewSubProblems 

Shared Data:   

The priority heap 

 
PriorityHeap.insert(NewSubProblems) 

 

Puzzle Benchmark 



ACS Performance Tradeoffs 

 Fewer parallel threads vs. accelerated critical sections 
 Accelerating critical sections offsets loss in throughput 

 As the number of cores (threads) on chip increase: 
 Fractional loss in parallel performance decreases 

 Increased contention for critical sections  
makes acceleration more beneficial 

 

 Overhead of CSCALL/CSDONE vs. better lock locality 
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

 

 More cache misses for private data vs. fewer misses 
for shared data 
 Cache misses reduce if shared data > private data 
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This problem can be solved 



ACS Comparison Points 

 Conventional 
locking 
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Accelerated Critical Sections: Methodology 

 Workloads: 12 critical section intensive applications 

 Data mining kernels, sorting, database, web, networking 
 

 Multi-core x86 simulator 

 1 large and 28 small cores  

 Aggressive stream prefetcher employed at each core 
 

 Details: 

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 2GHz, in-order, 2-wide, 5-stage 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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ACS Performance 
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Equal-Area Comparisons 
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ACS Summary 

 Critical sections reduce performance and limit scalability 

 

 Accelerate critical sections by executing them on a powerful 
core 

 

 ACS reduces average execution time by: 

 34% compared to an equal-area SCMP 

 23% compared to an equal-area ACMP 

 

 ACS improves scalability of 7 of the 12 workloads 

 

 Generalizing the idea: Accelerate all bottlenecks (“critical 
paths”) by executing them on a powerful core 
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Bottleneck Identification and 

Scheduling 

Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt, 
"Bottleneck Identification and Scheduling in Multithreaded Applications"  

Proceedings of the 17th International Conference on Architectural Support for 
Programming Languages and Operating Systems (ASPLOS), London, UK, March 2012. 
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http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/


BIS Summary 
 Problem: Performance and scalability of multithreaded applications  

are limited by serializing synchronization bottlenecks 

 different types: critical sections, barriers, slow pipeline stages 

 importance (criticality) of a bottleneck can change over time 
 

 Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 

 How to identify the most critical bottlenecks 

 How to efficiently accelerate them 
 

 Solution: Bottleneck Identification and Scheduling (BIS) 

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 
implement waiting for bottlenecks with a special instruction (BottleneckWait) 

 Hardware: identify bottlenecks that cause the most thread waiting and 
accelerate those bottlenecks on large cores of an asymmetric multi-core system 
 

 Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 

Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 

 Different stages of a loop iteration may execute on different threads,  
slowest stage makes other stages wait  on the critical path 
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Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 

repeat 

 Lock A 

  Traverse list A 

  Remove X from A 

 Unlock A 

 Compute on X 

 Lock B 

  Traverse list B 

  Insert X into B 

 Unlock B 

until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 
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MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 
 

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09, Top Picks’10] 
 

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

 

 

No previous work  

  can accelerate all types of bottlenecks or  
 adapts to fine-grain changes in the importance of bottlenecks 

 

 

 

 

Our goal:  

 general mechanism to identify and accelerate performance-limiting 
bottlenecks of any type  
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Bottleneck Identification and Scheduling (BIS) 

 Key insight: 

 Thread waiting reduces parallelism and  
is likely to reduce performance 

 Code causing the most thread waiting                             
 likely critical path 
 

 

 

 Key idea: 

 Dynamically identify bottlenecks that cause  
the most thread waiting 

 Accelerate them (using powerful cores in an ACMP) 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

 

Critical Sections: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   … 

targetPC:  while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 

 

 

 

 

 

   … 
Used to keep track of 

waiting cycles 

Used to enable 
acceleration 
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Barriers: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   enter barrier 

   while not all threads in barrier 

    BottleneckWait bid, watch_addr 

   exit barrier 

   … 

targetPC:  code running for the barrier 

   … 

   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 

   … 

targetPC: while not done 

    while empty queue 

     BottleneckWait prev_bid 

    dequeue work 

    do the work … 

    while full queue 

     BottleneckWait next_bid 

    enqueue next work 

   BottleneckReturn bid 

 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

 Performance-limiting bottleneck identification and 
acceleration are independent tasks 

 Acceleration can be accomplished in multiple ways 

 Increasing core frequency/voltage 

 Prioritization in shared resources [Ebrahimi+, MICRO’11] 

 Migration to faster cores in an Asymmetric CMP 
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Large core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 

Small 

 core 
Small 

 core 

Small 

 core 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

Scheduling Buffer (SB) 

bid=x4700, pc, sp, core1 

Acceleration 

Index Table (AIT) 

BottleneckCall x4600 

Execute locally 

BottleneckCall x4700 

bid=x4700 , large core 0 

Execute remotely 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

BottleneckReturn x4700 

bid=x4700 , large core 0 

bid=x4700, pc, sp, core1 

  twc < Threshold 

  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 

 Basic mechanisms for BIS: 

 Determining Thread Waiting Cycles   

 Accelerating Bottlenecks   

 

 Mechanisms to improve performance and generality of BIS: 

 Dealing with false serialization 

 Preemptive acceleration 

 Support for multiple large cores 
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Hardware Cost 

 Main structures: 
 

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

 

 Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 
 

 Acceleration Index Tables (AIT): one 32-entry table 
per small core 
 

 

 

 

 Off the critical path 

 

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 

 Faster bottleneck execution vs. fewer parallel threads 
 Acceleration offsets loss of parallel throughput with large core counts 
 

 

 

 Better shared data locality vs. worse private data locality 
 Shared data stays on large core (good) 

 Private data migrates to large core (bad, but latency hidden with Data 
Marshaling [Suleman+, ISCA’10]) 
 

 

 

 Benefit of acceleration vs. migration latency 
 Migration latency usually hidden by waiting (good) 

 Unless bottleneck not contended (bad, but likely not on critical path) 
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Evaluation Methodology 

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 

 Data mining kernels, scientific, database, web, networking, specjbb 
 

 Cycle-level multi-core x86 simulator 

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 

 1 large core is area-equivalent to 4 small cores 
 

 Details: 

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 4GHz, in-order, 2-wide, 5-stage 

 Private 32KB L1, private 256KB L2, shared 8MB L3 

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 

 SCMP (Symmetric CMP) 

 All small cores 
 

 

 ACMP (Asymmetric CMP) 

 Accelerates only Amdahl’s serial portions 

 Our baseline 
 

 ACS (Accelerated Critical Sections) 

 Accelerates only critical sections and Amdahl’s serial portions 

 Applicable to multithreaded workloads  
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 
 

 FDP (Feedback-Directed Pipelining) 

 Accelerates only slowest pipeline stages 

 Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 
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Optimal number of threads, 28 small cores, 1 large core 

 BIS outperforms ACS/FDP by 15% and ACMP by 32% 

 BIS improves scalability on 4 of the benchmarks 

 

barriers, which ACS  

cannot accelerate 
limiting bottlenecks change over time 

ACS FDP 



Why Does BIS Work? 
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 Coverage: fraction of program critical path that is actually identified as bottlenecks 

 39% (ACS/FDP) to 59% (BIS) 

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 

 72% (ACS/FDP) to 73.5% (BIS) 

 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 

 

1) More small cores 

 Contention due to bottlenecks 
increases 

 Loss of parallel throughput due 
to large core reduces 

 

 

2) More large cores 

 Can accelerate  
independent bottlenecks 

 Without reducing parallel 
throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 

 Serializing bottlenecks of different types limit performance of 
multithreaded applications: Importance changes over time 
 

 BIS is a hardware/software cooperative solution:  

 Dynamically identifies bottlenecks that cause the most thread waiting 
and accelerates them on large cores of an ACMP 

 Applicable to critical sections, barriers, pipeline stages 
 

 BIS improves application performance and scalability: 
 Performance benefits increase with more cores 
 

 Provides comprehensive fine-grained bottleneck acceleration 
with no programmer effort 
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We did not cover the remaining slides. 

These are for your benefit. 
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Handling Private Data Locality: 

Data Marshaling 

M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt, 
"Data Marshaling for Multi-core Architectures" 

Proceedings of the 37th International Symposium on Computer Architecture (ISCA), 
pages 441-450, Saint-Malo, France, June 2010. 
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Staged Execution Model (I) 

 Goal: speed up a program by dividing it up into pieces 

 Idea 

 Split program code into segments 

 Run each segment on the core best-suited to run it 

 Each core assigned a work-queue, storing segments to be run 
 

 Benefits 

 Accelerates segments/critical-paths using specialized/heterogeneous cores 

 Exploits inter-segment parallelism 

 Improves locality of within-segment data 
 

 Examples 

 Accelerated critical sections, Bottleneck identification and scheduling 

 Producer-consumer pipeline parallelism 

 Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch) 

 Special-purpose cores and functional units 
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Staged Execution Model (II) 

LOAD X 
STORE Y 
STORE Y 

 
LOAD Y 

…. 
STORE Z 

 
LOAD Z 

…. 
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Staged Execution Model (III) 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Segment S0 

Segment S1 

Segment S2 

Split code into segments 
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Staged Execution Model (IV) 

Core 0 Core 1 Core 2 

Work-queues 

Instances 

 of S0 

Instances 

 of S1 

Instances 

 of S2 
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LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Core 0 Core 1 Core 2 

S0 

S1 

S2 

Staged Execution Model: Segment Spawning 



Staged Execution Model: Two Examples 

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009] 

 Idea: Ship critical sections to a large core in an asymmetric CMP 

 Segment 0: Non-critical section 

 Segment 1: Critical section 

 Benefit: Faster execution of critical section, reduced serialization, 
improved lock and shared data locality 

 

 Producer-Consumer Pipeline Parallelism 

 Idea: Split a loop iteration into multiple “pipeline stages” where 
one stage consumes data produced by the next stage  each 

stage runs on a different core 

 Segment N: Stage N 

 Benefit: Stage-level parallelism, better locality  faster execution 
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Problem: Locality of Inter-segment Data 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Core 0 Core 1 Core 2 

Cache Miss 

Cache Miss 



Problem: Locality of Inter-segment Data 

 Accelerated Critical Sections [Suleman et al., ASPLOS 2010] 

 Idea: Ship critical sections to a large core in an ACMP 

 Problem: Critical section incurs a cache miss when it touches data 
produced in the non-critical section (i.e., thread private data) 
 

 Producer-Consumer Pipeline Parallelism 

 Idea: Split a loop iteration into multiple “pipeline stages”  each 
stage runs on a different core 

 Problem: A stage incurs a cache miss when it touches data 
produced by the previous stage 
 

 Performance of Staged Execution limited by inter-segment 
cache misses 
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What if We Eliminated All Inter-segment Misses? 



Talk Outline 

 Problem and Motivation 

 How Do We Get There: Examples 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 Thread Cluster Memory Scheduling (if time permits) 

 Ongoing/Future Work 

 Conclusions 
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Terminology 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Inter-segment data: Cache 

block written by one segment 

and consumed by the next 

segment 

Generator instruction: 

The last instruction to write to an       

inter-segment cache block in a segment 

Core 0 Core 1 Core 2 



Key Observation and Idea 

 Observation: Set of generator instructions is stable over 
execution time and across input sets 

 

 Idea:  

 Identify the generator instructions  

 Record cache blocks produced by generator instructions 

 Proactively send such cache blocks to the next segment’s 
core before initiating the next segment 

 

 

 Suleman et al., “Data Marshaling for Multi-Core 
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011. 
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Data Marshaling 

1. Identify generator 

instructions 

2. Insert marshal 

instructions 

1. Record generator-                    

     produced addresses 

2.  Marshal recorded  

     blocks to next core Binary containing  

generator prefixes & 

marshal Instructions 

Compiler/Profiler Hardware 
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Data Marshaling 

1. Identify generator 

instructions 

2. Insert marshal 

instructions 

1. Record generator-                    

     produced addresses 

2.  Marshal recorded  

     blocks to next core Binary containing  

generator prefixes & 

marshal Instructions 

Hardware 
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Compiler/Profiler 
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Profiling Algorithm 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
             …. 

STORE Z 

LOAD Z 
            …. 

Mark as Generator 

Instruction 

Inter-segment data 
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Marshal Instructions 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

When to send (Marshal) 

Where to send (C1) 



DM Support/Cost 

 Profiler/Compiler: Generators, marshal instructions 

 ISA: Generator prefix, marshal instructions 

 Library/Hardware: Bind next segment ID to a physical core 

 

 Hardware 

 Marshal Buffer 

 Stores physical addresses of cache blocks to be marshaled 

 16 entries enough for almost all workloads  96 bytes per core 

 Ability to execute generator prefixes and marshal instructions 

 Ability to push data to another cache 
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DM: Advantages, Disadvantages 

 Advantages 

 Timely data transfer: Push data to core before needed 

 Can marshal any arbitrary sequence of lines: Identifies 
generators, not patterns 

 Low hardware cost: Profiler marks generators, no need for 
hardware to find them 

 

 Disadvantages 

 Requires profiler and ISA support 

 Not always accurate (generator set is conservative): Pollution 
at remote core, wasted bandwidth on interconnect 

 Not a large problem as number of inter-segment blocks is small  
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Accelerated Critical Sections with DM 

Small Core 0 

Marshal 

Buffer 

Large Core 

     LOAD X 
     STORE Y 
G: STORE Y 
     CSCALL 

    LOAD Y 
         …. 
G:STORE Z 
    CSRET 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

Critical 

Section 



Accelerated Critical Sections: Methodology 

 Workloads: 12 critical section intensive applications 

 Data mining kernels, sorting, database, web, networking 

 Different training and simulation input sets 
 

 Multi-core x86 simulator 

 1 large and 28 small cores  

 Aggressive stream prefetcher employed at each core 
 

 Details: 

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 2GHz, in-order, 2-wide, 5-stage 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Accelerated Critical Sections: Results 
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Pipeline Parallelism 

Core 0 

Marshal 

Buffer 

Core 1 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

S0 

S1 

S2 



Pipeline Parallelism: Methodology 

 Workloads: 9 applications with pipeline parallelism  

 Financial, compression, multimedia, encoding/decoding 

 Different training and simulation input sets 
 

 

 Multi-core x86 simulator 

 32-core CMP: 2GHz, in-order, 2-wide, 5-stage 

 Aggressive stream prefetcher employed at each core 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Pipeline Parallelism: Results 
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DM Coverage, Accuracy, Timeliness 

 High coverage of inter-segment misses in a timely manner 

 Medium accuracy does not impact performance 

 Only 5.0 and 6.8 cache blocks marshaled for average segment 
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Scaling Results 

 DM performance improvement increases with 

 More cores 

 Higher interconnect latency 

 Larger private L2 caches 

 

 Why? Inter-segment data misses become a larger bottleneck 

 More cores  More communication 

 Higher latency  Longer stalls due to communication 

 Larger L2 cache  Communication misses remain  

 

107 



108 

Other Applications of Data Marshaling 

 Can be applied to other Staged Execution models 

 Task parallelism models 

 Cilk, Intel TBB, Apple Grand Central Dispatch 

 Special-purpose remote functional units 

 Computation spreading [Chakraborty et al., ASPLOS’06] 

 Thread motion/migration [e.g., Rangan et al., ISCA’09] 

 

 Can be an enabler for more aggressive SE models 

 Lowers the cost of data migration 

 an important overhead in remote execution of code segments 

 Remote execution of finer-grained tasks can become more 
feasible  finer-grained parallelization in multi-cores 



Data Marshaling Summary 

 Inter-segment data transfers between cores limit the benefit 
of promising Staged Execution (SE) models 
 

 Data Marshaling is a hardware/software cooperative solution: 
detect inter-segment data generator instructions and push 
their data to next segment’s core 

 Significantly reduces cache misses for inter-segment data 

 Low cost, high-coverage, timely for arbitrary address sequences 

 Achieves most of the potential of eliminating such misses 
 

 Applicable to several existing Staged Execution models 

 Accelerated Critical Sections: 9% performance benefit 

 Pipeline Parallelism: 16% performance benefit 

 Can enable new models very fine-grained remote execution 
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A Case for  

 Asymmetry Everywhere 

Onur Mutlu,  
"Asymmetry Everywhere (with Automatic Resource Management)" 

CRA Workshop on Advancing Computer Architecture Research: Popular 
Parallel Programming, San Diego, CA, February 2010.  

Position paper  
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The Setting 

 Hardware resources are shared among many threads/apps 
in a many-core based system 

 Cores, caches, interconnects, memory, disks, power, lifetime, 
… 

 

 Management of these resources is a very difficult task 

 When optimizing parallel/multiprogrammed workloads 

 Threads interact unpredictably/unfairly in shared resources 

 

 Power/energy is arguably the most valuable shared resource 

 Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

 Writing even sequential software is hard enough 

 Optimizing code for a complex shared-resource parallel system 
will be a nightmare for most programmers 

 

 Programmer should not worry about                   
(hardware) resource management 

 What should be executed where with what resources 

 

 Future cloud computer architectures should be designed to 

 Minimize programmer effort to optimize (parallel) programs 

 Maximize runtime system’s effectiveness in automatic     
shared resource management 

 

 
112 



Shared Resource Management: Goals 

 Future many-core systems should manage power and 
performance automatically across threads/applications 

 

 Minimize energy/power consumption 

 While satisfying performance/SLA requirements 

 Provide predictability and Quality of Service 

 Minimize programmer effort 

 In creating optimized parallel programs 

 

 Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

 

 

 

 

 

 

 

 Symmetric: One size fits all 

 Energy and performance suboptimal for different phase behaviors 

 Asymmetric: Enables tradeoffs and customization 

 Processing requirements vary across applications and phases 

 Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components 

 Different power/performance/reliability characteristics 

 To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

 Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each workload/phase 

 Satisfy performance/SLA with minimal energy 

 Dynamically stitch together the “best-fit” chip for each phase  
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Thought Experiment: Asymmetry Everywhere 
 

 Morph software components to match asymmetric HW 
components  

 Multiple versions for different resource characteristics 
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Many Research and Design Questions 

 How to design asymmetric components? 

 Fixed, partitionable, reconfigurable components? 

 What types of asymmetry? Access patterns, technologies? 

 

 What monitoring to perform cooperatively in HW/SW? 

 Automatically discover phase/task requirements 

 

 How to design feedback/control loop between components and 
runtime system software? 

 

 How to design the runtime to automatically manage resources? 

 Track task behavior, pick “best-fit” components for the entire workload 
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Exploiting Asymmetry: Simple Examples 
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 Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

 Programmer can write less optimized, but more likely correct programs  



Exploiting Asymmetry: Simple Examples 
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 Execute streaming “memory phases” on streaming-optimized 
cores and memory hierarchies 

 More efficient and higher performance than general purpose hierarchy 



Exploiting Asymmetry: Simple Examples 
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 Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 

 Higher performance and energy-efficiency than symmetric/free-for-all 
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 Have multiple different memory scheduling policies; apply them 
to different sets of threads based on thread behavior [Kim+ MICRO 

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 

 Higher performance and fairness than a homogeneous policy 
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 Build main memory with different technologies with different 
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE 

CAL’12] 

 Map pages/applications to the best-fit memory resource 

 Higher performance and energy-efficiency than single-level memory 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 


