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Design Point 

 A set of design considerations and their importance  

 leads to tradeoffs in both ISA and uarch 

 Considerations 

 Cost 

 Performance 

 Maximum power consumption 

 Energy consumption (battery life) 

 Availability 

 Reliability and Correctness  

 Time to Market 

 

 Design point determined by the “Problem” space 
(application space), or the intended users/market 
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Microarchitecture 

ISA 

Program 

Algorithm 

Problem 

Circuits 

Electrons 



Application Space 

 Dream, and they will appear… 
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Tradeoffs: Soul of Computer Architecture 

 

 ISA-level tradeoffs 

 

 Microarchitecture-level tradeoffs 

 

 System and Task-level tradeoffs 

 How to divide the labor between hardware and software 

 

 

 Computer architecture is the science and art of making the 
appropriate trade-offs to meet a design point 

 Why art? 
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Why Is It (Somewhat) Art? 
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 We do not (fully) know the future (applications, users, market) 
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Why Is It (Somewhat) Art? 

6 

Microarchitecture 

ISA 

Program/Language 

Algorithm 

Problem 

Runtime System 
(VM, OS, MM) 

User 

 

 

 

 

 

 

 

 

 

 

 

 And, the future is not constant (it changes)! 
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Analog from Macro-Architecture 

 Future is not constant in macro-architecture, either 

 

 Example: Can a power plant boiler room be later used as a 
classroom? 
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Macro-Architecture: Boiler Room 
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Readings for Next Time 

 P&H, Chapter 4, Sections 4.1-4.4 

 P&P, revised Appendix C – LC3b datapath and 
microprogrammed operation 

 

 Optional: 

 P&P Chapter 5: LC-3 ISA  
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ISA Principles and Tradeoffs 
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Many Different ISAs Over Decades 

 x86 

 PDP-x: Programmed Data Processor (PDP-11) 

 VAX 

 IBM 360 

 CDC 6600 

 SIMD ISAs: CRAY-1, Connection Machine 

 VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC) 

 PowerPC, POWER 

 RISC ISAs: Alpha, MIPS, SPARC, ARM 

 

 What are the fundamental differences? 

 E.g., how instructions are specified and what they do  

 E.g., how complex are the instructions 
11 



Instruction 

 Basic element of the HW/SW interface 

 Consists of  

 opcode: what the instruction does 

 operands: who it is to do it to 

 

 Example from Alpha ISA: 
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Set of Instructions, Encoding, and Spec 
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 Example from LC-3b ISA 

 http://www.ece.utexas.e
du/~patt/11s.460N/hand
outs/new_byte.pdf 

 x86 Manual 

 

 Aside: concept of “bit 
steering” 

 A bit in the instruction 
determines the 
interpretation of other 
bits 

 Why unused instructions? 

 

 

http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf


Bit Steering in Alpha 
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What Are the Elements of An ISA? 

 Instruction sequencing model 

 Control flow vs. data flow 

 Tradeoffs? 
 

 Instruction processing style 

 Specifies the number of “operands” an instruction “operates” 
on and how it does so 

 0, 1, 2, 3 address machines 

 0-address: stack machine (push A, pop A, op) 

 1-address: accumulator machine (ld A, st A, op A) 

 2-address: 2-operand machine (one is both source and dest) 

 3-address: 3-operand machine (source and dest are separate) 

 Tradeoffs? See your homework question 

 Larger operate instructions vs. more executed operations 

 Code size vs. execution time vs. on-chip memory space 
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An Example: Stack Machine 

+ Small instruction size (no operands needed for operate 
instructions) 

 Simpler logic 

 Compact code 

 

+ Efficient procedure calls: all parameters on stack 

 No additional cycles for parameter passing 

 

-- Computations that are not easily expressible with “postfix 
notation” are difficult to map to stack machines 

 Cannot perform operations on many values at the same time 
(only top N values on the stack at the same time) 

 Not flexible  
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An Example: Stack Machine (II) 
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Koopman, “Stack Computers: 

The New Wave,” 1989. 

http://www.ece.cmu.edu/~koo

pman/stack_computers/sec3

_2.html 

 

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html


An Example: Stack Machine Operation 
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Koopman, “Stack Computers: 

The New Wave,” 1989. 

http://www.ece.cmu.edu/~koo

pman/stack_computers/sec3

_2.html 

 

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html


Other Examples 

 PDP-11: A 2-address machine 

 PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers 

 Why? Limited bits to specify an instruction 

 Disadvantage: One source operand is always clobbered with 
the result of the instruction 

 How do you ensure you preserve the old value of the source? 

 

 

 X86: A 2-address (memory/memory) machine 

 Alpha: A 3-address (load/store) machine 

 MIPS? 
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What Are the Elements of An ISA? 

 Instructions 

 Opcode 

 Operand specifiers (addressing modes) 

 How to obtain the operand? 
 

 Data types 

 Definition: Representation of information for which there are 
instructions that operate on the representation 

 Integer, floating point, character, binary, decimal, BCD 

 Doubly linked list, queue, string, bit vector, stack 

 VAX: INSQUEUE and REMQUEUE instructions on a doubly linked 
list or queue; FINDFIRST 

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 
1977. 

 X86: SCAN opcode operates on character strings; PUSH/POP 
20 

Why are there different addressing modes? 



Data Type Tradeoffs 

 What is the benefit of having more or high-level data types 
in the ISA? 

 What is the disadvantage? 

 

 Think compiler/programmer vs. microarchitect 

 

 Concept of semantic gap 

 Data types coupled tightly to the semantic level, or complexity 
of instructions 

 

 Example: Early RISC architectures vs. Intel 432 

 Early RISC: Only integer data type 

 Intel 432: Object data type, capability based machine 
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What Are the Elements of An ISA? 

 Memory organization 

 Address space: How many uniquely identifiable locations in 
memory 

 Addressability: How much data does each uniquely identifiable 
location store 

 Byte addressable: most ISAs, characters are 8 bits 

 Bit addressable: Burroughs 1700. Why? 

 64-bit addressable: Some supercomputers. Why? 

 32-bit addressable: First Alpha 

 Food for thought 

 How do you add 2 32-bit numbers with only byte addressability? 

 How do you add 2 8-bit numbers with only 32-bit addressability? 

 Big endian vs. little endian? MSB at low or high byte. 

 

 Support for virtual memory 
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Some Historical Readings 

 If you want to dig deeper 

 

 Wilner, “Design of the Burroughs 1700,” AFIPS 1972. 

 

 Levy, “The Intel iAPX 432,” 1981. 

 http://www.cs.washington.edu/homes/levy/capabook/Chapter
9.pdf  
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http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf
http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf


What Are the Elements of An ISA? 

 Registers 

 How many 

 Size of each register 

 

 Why is having registers a good idea? 

 Because programs exhibit a characteristic called data locality  

 A recently produced/accessed value is likely to be used more 
than once (temporal locality) 

 Storing that value in a register eliminates the need to go to 
memory each time that value is needed  
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Programmer Visible (Architectural) State 
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M[0] 

M[1] 

M[2] 

M[3] 

M[4] 

M[N-1] 
Memory 

array of storage locations 
indexed by an address 

Program Counter 
memory address 
of the current instruction 

Registers 

-  given special names in the ISA 
     (as opposed to addresses) 
-  general vs. special purpose 
 

Instructions (and programs) specify how to transform 
             the values of programmer visible state 



Aside: Programmer Invisible State 

 Microarchitectural state 

 Programmer cannot access this directly  

 

 E.g. cache state 

 E.g. pipeline registers 
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Evolution of Register Architecture 

 Accumulator 

 a legacy from the “adding” machine days 

 

 Accumulator + address registers 

 need register indirection 

 initially address registers were special-purpose, i.e., can only 
be loaded with an address for indirection 

 eventually arithmetic on addresses became supported 

 

 General purpose registers (GPR) 

 all registers good for all purposes 

 grew from a few registers to 32 (common for RISC) to 128 in 
Intel IA-64 
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Instruction Classes 

 Operate instructions 

 Process data: arithmetic and logical operations 

 Fetch operands, compute result, store result 

 Implicit sequential control flow 

 

 Data movement instructions 

 Move data between memory, registers, I/O devices 

 Implicit sequential control flow 

 

 Control flow instructions 

 Change the sequence of instructions that are executed 
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What Are the Elements of An ISA? 

 Load/store vs. memory/memory architectures 

 

 Load/store architecture: operate instructions operate only on 
registers 

 E.g., MIPS, ARM and many RISC ISAs 

 

 Memory/memory architecture: operate instructions can 
operate on memory locations 

 E.g., x86, VAX and many CISC ISAs 
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What Are the Elements of An ISA? 

 Addressing modes specify how to obtain the operands 

 Absolute   LW rt, 10000 

 use immediate value as address 

 Register Indirect:   LW rt, (rbase) 

 use GPR[rbase] as address 

 Displaced or based: LW rt, offset(rbase) 

 use offset+GPR[rbase] as address 

 Indexed:   LW rt, (rbase, rindex) 

 use GPR[rbase]+GPR[rindex] as address 

 Memory Indirect  LW rt ((rbase)) 

 use value at M[ GPR[ rbase ] ] as address 

 Auto inc/decrement LW Rt, (rbase) 

 use GRP[rbase] as address, but inc. or dec. GPR[rbase] each time  
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What Are the Benefits of Different Addressing Modes? 

 Another example of programmer vs. microarchitect tradeoff 

 

 Advantage of more addressing modes: 

 Enables better mapping of high-level constructs to the 
machine: some accesses are better expressed with a different 
mode  reduced number of instructions and code size 

 Think array accesses (autoincrement mode) 

 Think indirection (pointer chasing) 

 Sparse matrix accesses 

 

 Disadvantage: 

 More work for the compiler 

 More work for the microarchitect 
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ISA Orthogonality 

 Orthogonal ISA: 

 All addressing modes can be used with all instruction types 

 Example: VAX 

 (~13 addressing modes) x (>300 opcodes) x (integer and FP 
formats) 

 

 Who is this good for? 

 Who is this bad for? 
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Is the LC-3b ISA Orthogonal? 
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LC-3b: Addressing Modes of ADD 

34 



LC-3b: Addressing Modes of of JSR(R) 
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What Are the Elements of An ISA? 

 How to interface with I/O devices 

 Memory mapped I/O 

 A region of memory is mapped to I/O devices 

 I/O operations are loads and stores to those locations 

 

 Special I/O instructions 

 IN and OUT instructions in x86 deal with ports of the chip 

 

 Tradeoffs? 

 Which one is more general purpose? 
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What Are the Elements of An ISA? 
 Privilege modes 

 User vs supervisor 

 Who can execute what instructions? 
 

 Exception and interrupt handling 
 What procedure is followed when something goes wrong with an 

instruction? 

 What procedure is followed when an external device requests the 
processor? 

 Vectored vs. non-vectored interrupts (early MIPS) 
 

 Virtual memory 
 Each program has the illusion of the entire memory space, which is greater 

than physical memory 
 

 Access protection 
 

 We will talk about these later 
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Another Question 

 Does the LC-3b ISA contain complex instructions? 
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Complex vs. Simple Instructions 

 Complex instruction: An instruction does a lot of work, e.g. 
many operations 

 Insert in a doubly linked list 

 Compute FFT 

 String copy 

 

 Simple instruction: An instruction does small amount of 
work, it is a primitive using which complex operations can 
be built 

 Add 

 XOR 

 Multiply 
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Complex vs. Simple Instructions 

 Advantages of Complex instructions 

+ Denser encoding  smaller code size  better memory 

utilization, saves off-chip bandwidth, better cache hit rate 
(better packing of instructions) 

+ Simpler compiler: no need to optimize small instructions as 
much 

 

 Disadvantages of Complex Instructions 

- Larger chunks of work  compiler has less opportunity to 

optimize (limited in fine-grained optimizations it can do) 

- More complex hardware  translation from a high level to 

control signals and optimization needs to be done by hardware 
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ISA-level Tradeoffs: Semantic Gap 

 Where to place the ISA? Semantic gap 

 Closer to high-level language (HLL)  Small semantic gap, 

complex instructions 

 Closer to hardware control signals?  Large semantic gap, 

simple instructions 

 

 RISC vs. CISC machines 

 RISC: Reduced instruction set computer 

 CISC: Complex instruction set computer 

 FFT, QUICKSORT, POLY, FP instructions? 

 VAX INDEX instruction (array access with bounds checking) 
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ISA-level Tradeoffs: Semantic Gap 

 Some tradeoffs (for you to think about) 

 

 Simple compiler, complex hardware vs.                                  
complex compiler, simple hardware 

 Caveat: Translation (indirection) can change the tradeoff! 

 

 Burden of backward compatibility 

 

 Performance? 

 Optimization opportunity: Example of VAX INDEX instruction: 
who (compiler vs. hardware) puts more effort into 
optimization? 

 Instruction size, code size 
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X86: Small  Semantic Gap: String Operations 

 An instruction operates on a string 

 Move one string of arbitrary length to another location 

 Compare two strings  

 

 Enabled by the ability to specify repeated execution of an 
instruction (in the ISA) 

 Using a “prefix” called REP prefix 

 

 Example: REP MOVS instruction 

 Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4) 

 Implicit source and destination registers pointing to the two 
strings (ESI, EDI) 

 Implicit count register (ECX) specifies how long the string is 
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X86: Small Semantic Gap: String Operations 

44 

REP MOVS (DEST SRC) 

How many instructions does this take in MIPS? 



Small Semantic Gap Examples in VAX  

 FIND FIRST 

 Find the first set bit in a bit field 

 Helps OS resource allocation operations 

 SAVE CONTEXT, LOAD CONTEXT 

 Special context switching instructions 

 INSQUEUE, REMQUEUE 

 Operations on doubly linked list 

 INDEX 

 Array access with bounds checking 

 STRING Operations 

 Compare strings, find substrings, … 

 Cyclic Redundancy Check Instruction 

 EDITPC 

 Implements editing functions to display fixed format output 
 

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78. 
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Small versus Large Semantic Gap 

 CISC vs. RISC 

 Complex instruction set computer  complex instructions  

 Initially motivated by “not good enough” code generation 

 Reduced instruction set computer  simple instructions 

 John Cocke, mid 1970s, IBM 801 

 Goal: enable better compiler control and optimization 

 

 RISC motivated by  

 Memory stalls (no work done in a complex instruction when 
there is a memory stall?) 

 When is this correct? 

 Simplifying the hardware  lower cost, higher frequency 

 Enabling the compiler to optimize the code better 

 Find fine-grained parallelism to reduce stalls 
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How High or Low Can You Go? 

 Very large semantic gap 

 Each instruction specifies the complete set of control signals in 
the machine 

 Compiler generates control signals 

 Open microcode (John Cocke, circa 1970s) 

 Gave way to optimizing compilers 

 

 Very small semantic gap 

 ISA is (almost) the same as high-level language 

 Java machines, LISP machines, object-oriented machines, 
capability-based machines 
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A Note on ISA Evolution 

 ISAs have evolved to reflect/satisfy the concerns of the day 

 

 Examples: 

 Limited on-chip and off-chip memory size 

 Limited compiler optimization technology 

 Limited memory bandwidth 

 Need for specialization in important applications (e.g., MMX) 

 

 Use of translation (in HW and SW) enabled underlying 
implementations to be similar, regardless of the ISA 

 Concept of dynamic/static interface 

 Contrast it with hardware/software interface 
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Effect of Translation 

 One can translate from one ISA to another ISA to change 
the semantic gap tradeoffs 

 

 Examples 

 Intel’s and AMD’s x86 implementations translate x86 
instructions into programmer-invisible microoperations (simple 
instructions) in hardware 

 Transmeta’s x86 implementations translated x86 instructions 
into “secret” VLIW instructions in software (code morphing 
software) 

 

 Think about the tradeoffs 
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ISA-level Tradeoffs: Instruction Length 

 Fixed length: Length of all instructions the same 

 + Easier to decode single instruction in hardware 

 + Easier to decode multiple instructions concurrently 

 -- Wasted bits in instructions (Why is this bad?) 

 -- Harder-to-extend ISA (how to add new instructions?) 

 Variable length: Length of instructions different 
(determined by opcode and sub-opcode) 

+ Compact encoding (Why is this good?) 

 Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How? 

-- More logic to decode a single instruction 

-- Harder to decode multiple instructions concurrently 
 

 Tradeoffs 
 Code size (memory space, bandwidth, latency) vs. hardware complexity 

 ISA extensibility and expressiveness 

 Performance? Smaller code vs. imperfect decode 
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ISA-level Tradeoffs: Uniform Decode 

 Uniform decode: Same bits in each instruction correspond 
to the same meaning 

 Opcode is always in the same location 

 Ditto operand specifiers, immediate values, … 

 Many “RISC” ISAs: Alpha, MIPS, SPARC 

+ Easier decode, simpler hardware 

+ Enables parallelism: generate target address before knowing the 
instruction is a branch 

-- Restricts instruction format (fewer instructions?) or wastes space 

 

 Non-uniform decode 

 E.g., opcode can be the 1st-7th byte in x86 

+ More compact and powerful instruction format 

-- More complex decode logic 
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x86 vs. Alpha Instruction Formats 

 x86: 

 

 

 

 

 

 

 Alpha: 
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MIPS Instruction Format 

 R-type, 3 register operands 

 

 

 I-type, 2 register operands and 16-bit immediate operand 

 

 

 J-type, 26-bit immediate operand 

 

 

 Simple Decoding 

 4 bytes per instruction, regardless of format 

 must be 4-byte aligned          (2 lsb of PC must be 2b’00) 

 format and fields easy to extract in hardware 
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R-type 0 
6-bit 

rs 
5-bit 

rt 
5-bit 

rd 
5-bit 

shamt 
5-bit 

funct 
6-bit 

opcode 
6-bit 

rs 
5-bit 

rt 
5-bit 

immediate 
16-bit 

I-type 

opcode 
6-bit 

immediate 
26-bit 

J-type 



A Note on Length and Uniformity 

 Uniform decode usually goes with fixed length  

 

 In a variable length ISA, uniform decode can be a property 
of instructions of the same length  

 It is hard to think of it as a property of instructions of different 
lengths 
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A Note on RISC vs. CISC 

 Usually, … 

 

 RISC 

 Simple instructions 

 Fixed length 

 Uniform decode 

 Few addressing modes 

 

 CISC 

 Complex instructions 

 Variable length 

 Non-uniform decode 

 Many addressing modes 
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ISA-level Tradeoffs: Number of Registers 

 Affects: 

 Number of bits used for encoding register address 

 Number of values kept in fast storage (register file) 

 (uarch) Size, access time, power consumption of register file 

 

 Large number of registers: 

+ Enables better register allocation (and optimizations) by 
compiler  fewer saves/restores 

-- Larger instruction size 

-- Larger register file size 

56 



ISA-level Tradeoffs: Addressing Modes 

 Addressing mode specifies how to obtain an operand of an 
instruction 

 Register 

 Immediate 

 Memory (displacement, register indirect, indexed, absolute, 
memory indirect, autoincrement, autodecrement, …) 

 

 More modes:  

+ help better support programming constructs (arrays, pointer-
based accesses) 

-- make it harder for the architect to design  

-- too many choices for the compiler?  

 Many ways to do the same thing complicates compiler design 

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981 
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x86 vs. Alpha Instruction Formats 

 x86: 

 

 

 

 

 

 

 Alpha: 
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x86 

register 

absolute 

register 

indirect 

register +  

displacement 



x86 
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indexed 

(base + 

index) 

scaled 

(base + 

index*4) 



X86 SIB-D Addressing Mode 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 

Also, see Section 3.7.3 and 3.7.5 



X86 Manual: Suggested Uses of Addressing Modes 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 

Also, see Section 3.7.3 and 3.7.5 



X86 Manual: Suggested Uses of Addressing Modes 
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x86 Manual Vol. 1, page 3-22  -- see course resources on website 

Also, see Section 3.7.3 and 3.7.5 



Other Example ISA-level Tradeoffs 

 Condition codes vs. not 

 VLIW vs. single instruction 

 Precise vs. imprecise exceptions 

 Virtual memory vs. not 

 Unaligned access vs. not 

 Hardware interlocks vs. software-guaranteed interlocking 

 Software vs. hardware managed page fault handling 

 Cache coherence (hardware vs. software) 

 … 
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Back to Programmer vs. (Micro)architect 

 Many ISA features designed to aid programmers 

 But, complicate the hardware designer’s job 

 

 Virtual memory 

 vs. overlay programming  

 Should the programmer be concerned about the size of code 
blocks fitting physical memory? 

 Addressing modes 

 Unaligned memory access 

 Compile/programmer needs to align data 
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MIPS: Aligned Access 

 

 

 LW/SW alignment restriction: 4-byte word-alignment 

 not designed to fetch memory bytes not within a word boundary 

 not designed to rotate unaligned bytes into registers 

 Provide separate opcodes for the “infrequent” case 

 

 

 

 

 

 LWL/LWR is slower  

 Note LWL and LWR still fetch within word boundary 
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byte-3 byte-2 byte-1 byte-0 

byte-7 byte-6 byte-5 byte-4 

MSB LSB 

A B C D 

byte-6 byte-5 byte-4 D 

byte-6 byte-5 byte-4 byte-3 

LWL  rd 6(r0)  

 
LWR  rd 3(r0)  

 



X86: Unaligned Access 

 LD/ST instructions automatically align data that spans a 
“word” boundary 

 Programmer/compiler does not need to worry about where 
data is stored (whether or not in a word-aligned location) 
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X86: Unaligned Access 
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Aligned vs. Unaligned Access 

 Pros of having no restrictions on alignment 

 

 

 

 Cons of having no restrictions on alignment 

 

 

 

 Filling in the above: an exercise for you… 
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Implementing the ISA: 

Microarchitecture Basics 
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How Does a Machine Process Instructions?  

 What does processing an instruction mean? 

 Remember the von Neumann model 

 

A = Architectural (programmer visible) state before an 
instruction is processed 

 

Process instruction 

 

A’ = Architectural (programmer visible) state after an 
instruction is processed 

 

 Processing an instruction: Transforming A to A’ according to 
the ISA specification of the instruction 
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The “Process instruction” Step 

  ISA specifies abstractly what A’ should be, given an 
instruction and A 

 It defines an abstract finite state machine where 

 State = programmer-visible state  

 Next-state logic = instruction execution specification 

 From ISA point of view, there are no “intermediate states” 
between A and A’ during instruction execution 

 One state transition per instruction 
 

 Microarchitecture implements how A is transformed to A’ 

 There are many choices in implementation  

 We can have programmer-invisible state to optimize the speed of 
instruction execution: multiple state transitions per instruction 

 Choice 1: A  A’ (transform A to A’ in a single clock cycle) 

 Choice 2: A  A+MS1  A+MS2  A+MS3  A’ (take multiple clock 

cycles to transform A to A’) 
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A Very Basic Instruction Processing Engine 

 Each instruction takes a single clock cycle to execute 

 Only combinational logic is used to implement instruction 
execution  

 No intermediate, programmer-invisible state updates 

 

A = Architectural (programmer visible) state  

at the beginning of a clock cycle 

 

Process instruction in one clock cycle 

 

A’ = Architectural (programmer visible) state  

at the end of a clock cycle 
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A Very Basic Instruction Processing Engine 

 Single-cycle machine 

 

 

 

 

 

 

 

 

 What is the clock cycle time determined by? 

 What is the critical path of the combinational logic 
determined by? 
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ANext A Sequential 
Logic  
(State) 

Combinational 
Logic 



Remember: Programmer Visible (Architectural) State 
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M[0] 

M[1] 

M[2] 

M[3] 

M[4] 

M[N-1] 
Memory 

array of storage locations 
indexed by an address 

Program Counter 
memory address 
of the current instruction 

Registers 

-  given special names in the ISA 
     (as opposed to addresses) 
-  general vs. special purpose 
 

Instructions (and programs) specify how to transform 
             the values of programmer visible state 



Single-cycle vs. Multi-cycle Machines 

 Single-cycle machines 

 Each instruction takes a single clock cycle 

 All state updates made at the end of an instruction’s execution 

 Big disadvantage: The slowest instruction determines cycle time  

long clock cycle time 
 

 Multi-cycle machines  

 Instruction processing broken into multiple cycles/stages 

 State updates can be made during an instruction’s execution 

 Architectural state updates made only at the end of an instruction’s 
execution 

 Advantage over single-cycle: The slowest “stage” determines cycle time 
 

 Both single-cycle and multi-cycle machines literally follow the 
von Neumann model at the microarchitecture level 
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Instruction Processing “Cycle” 

 Instructions are processed under the direction of a “control 
unit” step by step.  

 Instruction cycle: Sequence of steps to process an instruction 

 Fundamentally, there are six phases: 
 

 Fetch 

 Decode 

 Evaluate Address 

 Fetch Operands 

 Execute 

 Store Result 

 

 Not all instructions require all six stages (see P&P Ch. 4) 
77 



Instruction Processing “Cycle” vs. Machine Clock Cycle 

 Single-cycle machine:  

 All six phases of the instruction processing cycle take a single 
machine clock cycle to complete 

 

 Multi-cycle machine:  

 All six phases of the instruction processing cycle can take 
multiple machine clock cycles to complete 

 In fact, each phase can take multiple clock cycles to complete 
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Instruction Processing Viewed Another Way 
 Instructions transform Data (AS) to Data’ (AS’) 

 This transformation is done by functional units  
 Units that “operate” on data 

 These units need to be told what to do to the data 
 

 An instruction processing engine consists of two components 

 Datapath: Consists of hardware elements that deal with and 
transform data signals 

 functional units that operate on data 

 hardware structures (e.g. wires and muxes) that enable the flow of 
data into the functional units and registers 

 storage units that store data (e.g., registers) 

 Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data 
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Single-cycle vs. Multi-cycle: Control & Data 

 Single-cycle machine: 

 Control signals are generated in the same clock cycle as data 
signals are operated on 

 Everything related to an instruction happens in one clock cycle 

 

 Multi-cycle machine: 

 Control signals needed in the next cycle can be generated in 
the previous cycle 

 Latency of control processing can be overlapped with latency 
of datapath operation 

 

 We will see the difference clearly in microprogrammed 
multi-cycle microarchitecture 
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Many Ways of Datapath and Control Design 

 There are many ways of designing the data path and 
control logic 

 

 Single-cycle, multi-cycle, pipelined datapath and control 

 Single-bus vs. multi-bus datapaths 

 See your homework 2 question 

 Hardwired/combinational vs. microcoded/microprogrammed 
control 

 Control signals generated by combinational logic versus 

 Control signals stored in a memory structure 

 

 Control signals and structure depend on the datapath 
design 
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Flash-Forward: Performance Analysis 

 Execution time of an instruction 

 {CPI}  x  {clock cycle time}  
 

 Execution time of a program 

 Sum over all instructions [{CPI}  x  {clock cycle time}] 

 {# of instructions}  x  {Average CPI}  x  {clock cycle time} 

 

 Single cycle microarchitecture performance  

 CPI = 1 

 Clock cycle time = long 

 Multi-cycle microarchitecture performance 

 CPI = different for each instruction 

 Average CPI  hopefully small 

 Clock cycle time = short 
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Now, we have  

two degrees of freedom 

to optimize independently 


