18-447
Computer Architecture
Lecture 3: ISA Tradeoffs

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/17/2013

Design Point

A set of design considerations and their importance

o leads to tradeoffs in both ISA and uarch

Considerations

Cost

Performance

Maximum power consumption
Energy consumption (battery life)
Availability

Reliability and Correctness

Time to Market

o o 0o 0 o o o

Problem

Algorithm

Program

ISA

Microarchitecture

Circuits

Electrons

Design point determined by the “Problem” space
(application space), or the intended users/ market

Application Space

= Dream, and they will appear...

Other examples of the application space that continue to
drive the need for umique design points are the following:

1) scientific apphications such as those whose computa-
tions confrol nuclear power plants, determine where to
dnll for o1l, and predict the weather;

2) transaction-based applications such as those that
handle ATM transfers and e-commerce business;

3) busmness data processing applications, such as those
that handle mventory control, payrolls, IRS activity,
and vanous personnel record keeping, whether the per-
sonnel are employees, students, or voters;

4) network applications, such as high-speed routing of
Internet packets, that enable the connection of your
home system to take advantage of the Internet;

5) guaranteed delivery (ak a. real ime) applications that
require the result of a computation by a certain critical
deadline;

6) embedded applications, where the processor 1s a com-
ponent of a larper system that 15 used to solve the (usu-
ally) dedicated application;

7) media applhications such as those that decode video and
audio files;

8) random software packages that desktop users would
like to mn on their PCs.

Each of these application areas has a very different set of
charactenistics. Each apphication area demands a different set
of tradeoffs to be made m specifying the microprocessor to

do the job.

Tradeotts: Soul of Computer Architecture

s [SA-level tradeoffs
s Microarchitecture-level tradeoffs

= System and Task-level tradeoffs
o How to divide the labor between hardware and software

= Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

a Why art?

Why Is It (Somewhat) Art?

l ISA

= We do not (fully) know the future (applications, users, market)

5

Why Is It (Somewhat) Art?

l ISA

= And, the future is not constant (it changes)!

Analog from Macro-Architecture

Future is not constant in macro-architecture, either

Example: Can a power plant boiler room be later used as a
classroom?

Macro-Architecture: Boiler Room

At the west end of campus was a small structure that housed the boiler
room that functioned as the school's power plant. Below, in the rain beside

the railroad tracks, a farmer’'s goat grazed and occasionally wandered up to
eat the grass of this yet untamed end of campus.

Over a 20 month penod from 1912 - 1914, Machinery Hall was built on top of
that boiler room. The massive tower, which has become a symbol of Care-

gie Mellon, was designed to disguise the smokestack. Architect Henry
Hombostel had created a “temple of technology” that would become
“one of the most renowned buildings of the Beaux Arts style in the country.

Early course catalogs described the boiller room as a classroom where stu
dents learned about powsr genarating machinery. The tower continued to
belch smoke until 1975, but in 1979 the boiler room became the cleanest
room on campus with the construction of the Nanofabrication Facility. The
coal bin area became the offices and computer room of the D-level.

8

Readings for Next Time

P&H, Chapter 4, Sections 4.1-4.4

P&P, revised Appendix C — LC3b datapath and
microprogrammed operation

Optional:
o P&P Chapter 5: LC-3 ISA

ISA Principles and Tradeotfts

Many Ditterent ISAs Over Decades

X86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine
VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM

What are the fundamental differences?
o E.g., how instructions are specified and what they do

o E.g., how complex are the instructions
11

Instruction

Basic element of the HW/SW interface

Consists of

o opcode: what the instruction does

o operands: who it is to do it to

o Example from Alpha ISA:

31 26 25 1615 0
Opcode Number

Opcode RA Disp

Opcode RA RB Disp

Opcode RA RB Function RC

FPALcode Format

Branch Format
Memory Format

Operate Format

12

Set of Instructions, Encoding, and Spec

ADD'
AND’
BR
JMP
JSR(R)
LDB*
LDW *
LEA®
RTI
SHF"
STB
STW
TRAP
XOR'

not used

not used

15 14 13 12 1 w9 a 7 & 5 4 3 2 1 a

I I I I I I I I T I I
0001 DR SR1 A op.spec
| | | | | | | |] | |
0101 DR SR1 A op.spec
T T T T 1 1 T 1 T T
0000 nlz|p PCoffsel?
| | | | | | | | | | |
I I I T I I I I T I I
1100 000 BaseR 000000
| | | | | | | | | | | |
T T T 1 T T T T T T
0100 A operand.specifier
| | | |
II : : T T II : T II T II :
0010 DR BaseR bofiseté
——— T
0110 DR BaseR offseté
II : : : : II : T T II : II T
1110 DR PCoffsel?
| | | | | | | | | | | |
T T T T T T 1 1 T 1 T T
1000 000000000000
| | | 1 | 1 | | | | | | | |
I I I I I I I T I I
1101 DR SR A |D| amountd
T T T T T T T T T T T
0011 SR BaseR bofiseté
| |
II : I : : II : II T II
o1 SR BaseR offseté
II : : : : T : : T T II : II
1111 0000 trapvects
| | | | | | | | | | |
I I I I I I I I T I I
1001 DR SR1 A op.spec
| | | | | | | | | | |
1010
| | | | | | | | | | | |
I I I I I I T I I I I I I
1011
| | |

Example from LC-3b ISA

o http://www.ece.utexas.e
du/~patt/11s.460N/hand
outs/new_byte.pdf

x86 Manual

Aside: concept of “bit
steering”

a A bit in the instruction
determines the
interpretation of other
bits

Why unused instructions?

13

http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf

Bit Steering in Alpha

Figure 3—4: Operate Instruction Format

31 26 23 2120 16151312 11 3 4 0

Opcode | Ra Rb [SBZ0| Function Rc

26 25 2120 13 12 11

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction 1s 1. an 8-bit zero-extended literal constant 1s formed by bits
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and 255
and 1s zero-extended to 64 bits. Symbolically, the integer Rbv operand 1s formed as follows:

14

What Are the Elements of An ISA?

Instruction sequencing model

o Control flow vs. data flow
o Tradeoffs?

Instruction processing style

o Specifies the number of “operands” an instruction “operates”
on and how it does so

a 0, 1, 2, 3 address machines
0-address: stack machine (push A, pop A, op)
1-address: accumulator machine (Id A, st A, op A)
2-address: 2-operand machine (one is both source and dest)

3-address: 3-operand machine (source and dest are separate)

o Tradeoffs? See your homework question
Larger operate instructions vs. more executed operations
Code size vs. execution time vs. on-chip memory space
15

An Example: Stack Machine

+ Small instruction size (no operands needed for operate
instructions)

o Simpler logic
o Compact code

+ Efficient procedure calls: all parameters on stack
o No additional cycles for parameter passing

-- Computations that are not easily expressible with “postfix
notation” are difficult to map to stack machines
o Cannot perform operations on many values at the same time
(only top N values on the stack at the same time)

o Not flexible

16

An Example: Stack Machine (II)

DS —— TOS
DATA STACK 1
v |
RETUHﬁSSTﬂCH] |4 “ ’ Koopman, “Stack Computers:
D The New Wave,” 1989.
A http://www.ece.cmu.edu/~koo
l"—" PC pman/stack computers/sec3
2.html
B
U
O a— | S ap— MAR
- AOOFRESS
CONTROL DATA PROGRAM
LOGIC — ap—
2 IR MEMORY

Figure 3.1 -- The canonical stack machine.
17

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

An Example: Stack Machine Operation

% 9§ 12
?:—‘:% EZ:% Koopman, “Stack Computers:
EMPTY SUSH PUISH The New Wave,” 1989.
STACK 94 12 http://www.ece.cmu.edu/~koo
pman/stack computers/sec3
2.html
45 —=
12
04
PLISH + *
45

Figure 3.2 -- An example stack machine.

18

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

Other Examples

PDP-11: A 2-address machine
o PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers
o Why? Limited bits to specify an instruction

o Disadvantage: One source operand is always clobbered with
the result of the instruction
How do you ensure you preserve the old value of the source?

X86: A 2-address (memory/memory) machine
Alpha: A 3-address (load/store) machine
MIPS?

19

What Are the Elements of An ISA?

Instructions
o Opcode

o Operand specifiers (addressing modes)
How to obtain the operand? Why are there different addressing modes?

Data types

o Definition: Representation of information for which there are
instructions that operate on the representation

o Integer, floating point, character, binary, decimal, BCD

o Doubly linked list, queue, string, bit vector, stack

VAX: INSQUEUE and REMQUEUE instructions on a doubly linked
list or queue; FINDFIRST

Digital Equipment Corp., “VAX11 780 Architecture Handbook,”
1977.

X86: SCAN opcode operates on character strings; PUSH/POP
20

Data Type Tradeotts

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions

Example: Early RISC architectures vs. Intel 432
o Early RISC: Only integer data type
o Intel 432: Object data type, capability based machine

21

What Are the Elements of An ISA?

Memory organization

o Address space: How many uniquely identifiable locations in
memory

o Addressability: How much data does each uniquely identifiable

location store
Byte addressable: most ISAs, characters are 8 bits
Bit addressable: Burroughs 1700. Why?
64-bit addressable: Some supercomputers. Why?
32-bit addressable: First Alpha

Food for thought

0 How do you add 2 32-bit numbers with only byte addressability?
o How do you add 2 8-bit numbers with only 32-bit addressability?
0 Big endian vs. little endian? MSB at low or high byte.

o Support for virtual memory

22

Some Historical Readings

= If you want to dig deeper
= Wilner, “Design of the Burroughs 1700,” AFIPS 1972.

= Levy, "The Intel iAPX 432,” 1981.
o http://www.cs.washington.edu/homes/levy/capabook/Chapter
9.pdf

23

http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf
http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf

What Are the Elements of An ISA?

= Registers
2 How many
o Size of each register

= Why is having registers a good idea?
o Because programs exhibit a characteristic called data locality
a A recently produced/accessed value is likely to be used more

than once (temporal locality)

= Storing that value in a register eliminates the need to go to
memory each time that value is needed

24

Programmer Visible (Architectural) State

Memory

array of storage locations
indexed by an address

M(O]

M[1]

M[2]

M[3]

M(4]

M[N-1]

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Program Counter

memory address
of the current instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

25

Aside: Programmer Invisible State

Microarchitectural state
Programmer cannot access this directly

E.g. cache state
E.g. pipeline registers

26

Evolution of Register Architecture

Accumulator
o a legacy from the “adding” machine days

Accumulator + address registers
o heed register indirection

o initially address registers were special-purpose, i.e., can only
be loaded with an address for indirection

o eventually arithmetic on addresses became supported

General purpose registers (GPR)

o all registers good for all purposes

o grew from a few registers to 32 (common for RISC) to 128 in
Intel IA-64

27

Instruction Classes

Operate instructions

o Process data: arithmetic and logical operations
o Fetch operands, compute result, store result

o Implicit sequential control flow

Data movement instructions
o Move data between memory, registers, I/O devices
o Implicit sequential control flow

Control flow instructions
o Change the sequence of instructions that are executed

28

What Are the Elements of An ISA?

Load/store vs. memory/memory architectures

o Load/store architecture: operate instructions operate only on
registers

E.g., MIPS, ARM and many RISC ISAs

o Memory/memory architecture: operate instructions can
operate on memory locations

E.g., x86, VAX and many CISC ISAs

29

What Are the Elements of An ISA?

Addressing modes specify how to obtain the operands

Q

Absolute LW rt, 10000

use immediate value as address

Register Indirect: LW rt, (r...)

use GPR[r,...] as address

Displaced or based: LW rt, offset(r,...)
use offset+GPR[r,..] as address

Indexed: LW rt, (Ipaeer Fingex)
use GPR[r,..]*+GPR[r, 4.,] as address
Memory Indirect LW rt ((r,...))

use value at M[GPR[r__..]] as address
Auto inc/decrement LW Rt, (r,...)

use GRP[r,...] as address, but inc. or dec. GPR|[r,..] each time

30

What Are the Benefits of Different Addressing Modes?

Another example of programmer vs. microarchitect tradeoff

Advantage of more addressing modes:

o Enables better mapping of high-level constructs to the
machine: some accesses are better expressed with a different
mode = reduced number of instructions and code size

Think array accesses (autoincrement mode)
Think indirection (pointer chasing)
Sparse matrix accesses

Disadvantage:
a More work for the compiler
o More work for the microarchitect

31

ISA Orthogonality

Orthogonal ISA:
o All addressing modes can be used with all instruction types

o Example: VAX

(~13 addressing modes) x (>300 opcodes) x (integer and FP
formats)

Who is this good for?
Who is this bad for?

32

Is the .LC-3b ISA Orthogonal?

T T T T T T T T T T T
ADD" 0001 DR SR1 |A| opspec
| | | | | | | | | | |
AND 0101 DR SR1 |A| opspec
T T T T T 1 T T T T T
BR 0000 nlzlp PColiset9
| | | | | | |
T T T T T T T T II : II :
JMP 1100 000 BaseR 000000
1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T
JSR(IRD) | 0 IIDD | A o clnpelmnld.s;l:lecl:ifielr w
+ T T T T T T T T T T T T
LDB 0010 DR BaseR boftiseté
e e e e e e e e e e =
LDW 0110 DR BaseR offseté
| | | |
+ T T T T : II : T : II : II :
LEA 1110 DR PCofiset9
1 1 1 1 1 1 1 | 1 1 1 1 1
|?T| T T T T T T T T 1 T T T T T
1000 000000000000
| | | | | | | | | | | | | |
+ T T T T T T T T T T
SHF 1101 DR SR |A|D| amountd
T T T T T T T T T T T T
STB 0011 SR BaseR boffseté
1 1 1 1 1 1 1 | 1 1 1 1
T T T T T T T T T T T T
STW 0111 SR BaseR offseté
| | | | |
T T T T T T : : T : II : II :
TRAP 1111 0000 trapvect
1 1 1 1 1 1 1 | 1 1 1 1 1
+ T T T T T T T T T T T
XOR 1001 DR SR1 |A| op.spec
1 1 1 l l 1 1 1 | 1 1
T T T T T T T T T T T T T T
nGT USEd 1 lI[]III D 1 1 1 1 | 1 | 1 1 1 1 1
T T T T T T T T I T T T T T
not used 1011
| | | | | | | | | | | | |

L.C-3b: Addressing Modes of ADD

Encodings
15 132 n 9] L] 5 4 3 2 0
1 | | | | | | 1 | |
0001 DR SR1 |0 | oo 5R2
| | | | | | | | | |
15 12 ;11 q a & 5 F] a
1 | | | | | | 1 | | |
0001 DR SR 1 imm5
| | | | | | | | | | |
Operation
if (bat[5] = 0)
DR =5R1 + SRZ;
else

DR = SR1 + SEXT(imm5);
setee();

LLC-3b: Addressing Modes of of J[SR(R)

Encodings

15 12 1 1 a

|
JSR 0100 1 PCoffsetl1
|

15 2 1n m % | L] 5 a
| | | I I

| | | |
JSRR 0100 0| o0 | BaseR 000000
| | | |

Operation

R7=PC';
if (bat[11] ==0)
PC = BaseR;
else
PC = PC! + LSHF(SEXT(PCoffszetll), 1);

Description

First, the incremented PC 1s saved m R7. Thas 1s the linkage back to the calling routine. Then, the PC 15
loaded with the address of the first mstmuction of the subroutine, causing an unconditional jump to that
address. The address of the subroutne 1s obtained from the base register (1f bit[11] 15 0), or the address 1s
computed by sign-extending bits [10:0] to 16 bats, left-shifting the result one bit, and then adding this value
to the incremented PC (if bit[11] 1s 1).

What Are the Elements of An ISA?

How to interface with I/O devices

2 Memory mapped I/O
A region of memory is mapped to I/O devices
I/O operations are loads and stores to those locations

o Special I/0 instructions
IN and OUT instructions in x86 deal with ports of the chip

o Tradeoffs?
Which one is more general purpose?

36

What Are the Elements of An ISA?

Privilege modes
o User vs supervisor
o Who can execute what instructions?

Exception and interrupt handling

o What procedure is followed when something goes wrong with an
instruction?

o What procedure is followed when an external device requests the
processor?

o Vectored vs. non-vectored interrupts (early MIPS)

Virtual memory

o Each program has the illusion of the entire memory space, which is greater
than physical memory

Access protection

We will talk about these later 37

Another Question

= Does the LC-3b ISA contain complex instructions?

38

Complex vs. Simple Instructions

Complex instruction: An instruction does a lot of work, e.qg.
many operations

o Insert in a doubly linked list
o Compute FFT
o String copy

Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations can
be built

o Add
o XOR
o Multiply

39

Complex vs. Simple Instructions

Advantages of Complex instructions

+ Denser encoding - smaller code size - better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions

- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware

40

ISA-level Tradeotts: Semantic Gap

Where to place the ISA? Semantic gap

o Closer to high-level language (HLL) - Small semantic gap,
complex instructions

o Closer to hardware control signals? - Large semantic gap,
simple instructions

RISC vs. CISC machines

o RISC: Reduced instruction set computer

o CISC: Complex instruction set computer
FFT, QUICKSORT, POLY, FP instructions?
VAX INDEX instruction (array access with bounds checking)

41

ISA-level Tradeoffs: Semantic Gap

Some tradeoffs (for you to think about)

Simple compiler, complex hardware vs.
complex compiler, simple hardware

a Caveat: Translation (indirection) can change the tradeoff!
Burden of backward compatibility

Performance?

o Optimization opportunity: Example of VAX INDEX instruction:
who (compiler vs. hardware) puts more effort into
optimization?

o Instruction size, code size

42

X86: Small Semantic Gap: String Operations

An instruction operates on a string
o Move one string of arbitrary length to another location
o Compare two strings

Enabled by the ability to specify repeated execution of an
instruction (in the ISA)

o Using a “prefix” called REP prefix

Example: REP MOVS instruction
a Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4)

o Implicit source and destination registers pointing to the two
strings (ESI, EDI)

o Implicit count register (ECX) specifies how long the string is

43

X86: Small Semantic Gap: String Operations

REP MOVS (DEST SRC)

IF AddressSize = 16
THEN
Use CX for CountReq;

ELSE IF AddressSize = 64 and REX.\W used
THEN Use RCX for CountReq; FI;

ELSE
Use ECX for CountReq;
Fl:
WHILE CountReg = 0
DO

Service pending interrupts (if any);
Execute associated string instruction;

CountReq « (CountReg - 1);
IF CountReg=10

THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;

0D;

How many instructions does this take in MIPS?

DEST « SRC;
IF (Byte move)

Fl;

THENIFDF =0
THEM
(RIE)SI « (RIE)SI = 1;
(RIEJDI « (RIE)DI + 1;
ELSE
(RIE)SI < (RIE)SI - 1:
(RIEJDI « (RIE)DI - 1;
Fl;
ELSE IF (Word move)
THENIFDF =10
[RIE)SI « (RIE)SI + 2;
(RIEJDI « (RIE)DI + 2;
Fl:

ELSE
(RIE)SI < (RIE)SI - 2;
(R|E)DI « (RIE)DI - 2;
F:
ELSE IF (Doubleword move)
THEN IFDF=0
(RIE)S! « (RIE)SI + 4;
(RIE)DI « (RIE)DI + 4;
Fl;
ELSE
(RIE)SI — (RIE)SI - 4;
(RIE)DI « (RIE)DI - 4;
Fl:
ELSE IF (Quadword move)
THENIFDF =0
(RIE)SI < (RIE)SI + &
(RIE)DI « (RIE)DI + 8;
Fl;
ELSE
(RIE)SI « (R|E)SI - 8;
(RIE)DI « (RIE)DI - &;
Fl:

44

Small Semantic Gap Examples in VAX

FIND FIRST

o Find the first set bit in a bit field

o Helps OS resource allocation operations
SAVE CONTEXT, LOAD CONTEXT

o Special context switching instructions
INSQUEUE, REMQUEUE

o Operations on doubly linked list

INDEX

o Array access with bounds checking
STRING Operations

o Compare strings, find substrings, ...
Cyclic Redundancy Check Instruction
EDITPC

o Implements editing functions to display fixed format output

Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

45

Small versus Large Semantic Gap

CISC vs. RISC

o Complex instruction set computer = complex instructions
Initially motivated by “not good enough” code generation
o Reduced instruction set computer = simple instructions

John Cocke, mid 1970s, IBM 801
0 Goal: enable better compiler control and optimization

RISC motivated by

o Memory stalls (no work done in a complex instruction when
there is a memory sta/f?)

When is this correct?
o Simplifying the hardware = lower cost, higher frequency
o Enabling the compiler to optimize the code better

Find fine-grained parallelism to reduce stalls

46

How High or LLow Can You Go?

Very large semantic gap

o Each instruction specifies the complete set of control signals in
the machine

o Compiler generates control signals

o Open microcode (John Cocke, circa 1970s)
Gave way to optimizing compilers

Very small semantic gap
o ISA is (almost) the same as high-level language

o Java machines, LISP machines, object-oriented machines,
capability-based machines

47

A Note on ISA Evolution

ISAs have evolved to reflect/satisfy the concerns of the day

Examples:

o Limited on-chip and off-chip memory size

o Limited compiler optimization technology

o Limited memory bandwidth

o Need for specialization in important applications (e.g., MMX)

Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

o Concept of dynamic/static interface
o Contrast it with hardware/software interface

48

Effect of Translation

One can translate from one ISA to another 754 to change
the semantic gap tradeoffs

Examples

o Intel’'s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

o Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

Think about the tradeoffs

49

ISA-level Tradeotts: Instruction Length

Fixed length: Length of all instructions the same

+ Easier to decode single instruction in hardware

+ Easier to decode multiple instructions concurrently

-- Wasted bits in instructions (Why is this bad?)

-- Harder-to-extend ISA (how to add new instructions?)

Variable length: Length of instructions different

(determined by opcode and sub-opcode)
+ Compact encoding (Why is this good?)
Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?
-- More logic to decode a single instruction
-- Harder to decode multiple instructions concurrently

Tradeoffs

o Code size (memory space, bandwidth, latency) vs. hardware complexity
o ISA extensibility and expressiveness

o Performance? Smaller code vs. imperfect decode
50

[SA-level Tradeotfs: Uniform Decode

Uniform decode: Same bits in each instruction correspond
to the same meaning

o Opcode is always in the same location

o Ditto operand specifiers, immediate values, ...

o Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

Non-uniform decode

o E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format
-- More complex decode logic

51

x80 vs. Alpha Instruction Formats

X86:

Inpsrter]Lchich}n Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,or4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 65 32 0 7 65 32 0
Mod Osfogéle R/M Scale | Index Base
Alpha:

31 26 25 2120 16 15 5 4 0

Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

52

MIPS Instruction Format

R-type, 3 register operands

0 rs rt rd shamt | funct R-type
6-bit 5-bit 5-bit 5-bit 5-bit 6-bit

I-type, 2 register operands and 16-bit immediate operand

opcode |rs rt immediate I-type
6-bit 5-bit 5-bit 16-bit

J-type, 26-bit immediate operand

opcode |immediate J-type
6-bit 26-bit
Simple Decoding

o 4 bytes per instruction, regardless of format
o must be 4-byte aligned (2 Isb of PC must be 2b’00)
o format and fields easy to extract in hardware

53

A Note on Length and Uniformity

Uniform decode usually goes with fixed length

In a variable length ISA, uniform decode can be a property

of instructions of the same length

o It is hard to think of it as a property of instructions of different
lengths

54

A Note on RISC vs

Usually, ...

RISC

a Simple instructions

o Fixed length

o Uniform decode

o Few addressing modes

CISC

o Complex instructions

o Variable length

a2 Non-uniform decode

o Many addressing modes

. CISC

55

ISA-level Tradeotts: Number of Registers

Affects:

o Number of bits used for encoding register address

o Number of values kept in fast storage (register file)

o (uarch) Size, access time, power consumption of register file

Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler > fewer saves/restores

-- Larger instruction size
-- Larger register file size

56

ISA-level Tradeotts: Addressing Modes

Addressing mode specifies how to obtain an operand of an
Instruction

o Register
o Immediate

o Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, ...)

More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design
-- too many choices for the compiler?

Many ways to do the same thing complicates compiler design

Wulf, “Compilers and Computer Architecture, ” IEEE Computer 1981
57

x80 vs. Alpha Instruction Formats

X86:

Inpsrter]Lchich}n Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,or4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 65 32 0 7 65 32 0
Mod Osfogéle R/M Scale | Index Base
Alpha:

31 26 25 2120 16 15 5 4 0

Opcode Number PALcode Format
Opcode RA Disp Branch Format
Opcode RA RB Disp Memory Format
Opcode RA RB Function RC |Operate Format

58

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

= r. AL CL oL BL AH CH OH g4
r1 :. A C¥ O BY SP g= sl ol
X 8 6 raz -'r EAX |ECX | EDK | EBX |ESP [EBP | ESI E0l
rnrnif-'ru MM MM1 MM2 MM3 M4 MMS MME MM7
:xr'rnl.'rl AEMMOO | EMMT) EMM2 | AMM3 | KMME | EMM5 | EMME | XMMT
i n decimal) / :ljsglt (Opcode) 0 1 z 3 4 5 6 7
.'|t:'|ary D00 001 010 011 100 1M 110 111
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
X 0180 |07 (88 |17 |18 |8 |:@ (31 |3
reglster /EDK 010 |oz |oAa |12 [1a |2z |za |32 [3a
T EEtJ{ 011 o3 |oB [13 [1B |23 |28 |33 |[3B
indirect 100 Jo4 |oC |14 [1C |24 [2C |34 |3C
|5 3 2 101 Jos |oD |15 |10 |25 |20 |35 |3D
o N CAERAL RN
absolute
EAX]+disp8? 01 (o000 |40 |48 |s¢ |58 |60 |68 (70 |78
EC[+disp8 oo1 |41 |43 (21 |53 |81 |69 |71 |79
EDX+disp8 010 |42 |4a |25 |sAa ez |BA |72 |7a
ERY ladisnd 011 43 4B g4 5B B3 B 73 7B
—][--]+dispE> 100 |44 |4C [22 |5C |64 |[6C |74 |7C
EBP]-disp8 101 |45 |40 |22 |5D |65 |6BD |75 |7D
ESIJ+dispB 110 |46 |4E SE |66 |BE |76 | 7E
EDI)+disp8 111 |47 |4F 5F |67 |BF |77 | 7F
EAX]+disp32 10 |oo0 |80 (88 |90 |98 |AaD |(AB |BO |BB
ECK[+disp32 oo1 |81 |B3 |91 |99 |Aa1 |A9 |B1 |[B9
EDX+disp32 010 |8z |BA |92 |9a |Az |AA |B2 |BA
EBXJ+disp32 011 |83 |BB |93 |98 |A3 |AB |B3 |BB
_ %tlp +disp32 100 |84 |BC |94 |oc |a4 |AC |B4 |BC
EEPT+disp 52 101 |85 |80 |95 |90 |Aas |AD |BS |BD
) ESl dlSpEIE 110 |86 |BE |95 |9 |a6 |AE |B& |BE
reglster + /EDI +disp32 111 |87 |8F |97 |9F |A7 |AF |B7 |BF
i EAX/AX/AL/MMO/XMMO [11 |ooo |co |ce |po |(pe |en |es |FO [FB
displacement L ECK/CXICLIMMIXMM1 oo1 |ci [co |p1 |pe |e1 |e2 |[m |FS
EDX/DX/DL/MMZ/XMM2 010 |cz |cA |p2z |pa |E2 |EA |Fz2 |FA
register EEX/BX/BL/MM3/XMM3 011 |3 |cB (D3 |DB |E3 |EB |F3 |[FB
g ESP/SP/AH/MMA/XMMA 100 Jc4 |cc |D4 |DC |E4 |EC |F4 |FC
EBP/BP/CH/MMS/XMMS 101 Jcs |b |Ds |DD |es |eD |F5 | FD
ESI/SI/DH/MME/XMMB 110 |6 |CE |D6 |DE |Ee |EE |F6 |FE
EDI/DI/BH/MM7/XMM7 111 |c7 |cF |D7 |DF |E7 |EF |F7 |FF
NOTES:

1. The [-][--] nomenclzture means a SIE follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The dispB nomenclature denctes an B-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
Coanaral nirmoce raaietare ncad 2o 34 hzaca a3ra indicatrad 2ernce thea ton of the fabkla

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

32 EAX ECY EDX EQX ESP ‘] sl =]
X 8 6 {In declﬂqlbiase - a 1 2 3 4 5 G 7
Inzinary) Base = 000 0m mo on 100 m 110 111
Scaled Index 5SS | Index Value of SIB Byte (in Hexadecimal)
EAX 00 |ooo foo o1 Joz o3 |04 o5 |oe |07
ECX 001 Jos |03 |oa |[0B |oc |oD |oE |oF
€D o0 Jio |11 |12 [13 |14 |15 |16 |17
[EBX o11 |18 |19 |1a |18 |ic |1D |1E |iF
hone 100 20 |21 |22 |23 |22 |25 |26 |27
[EBP] 101 |28 |29 |2a |28 |2c |20 |2 |2F
- ES| 170 30 |31 (32 |33 |34 |35 |3 |37
indexed jEDﬂ 111]38 [39 |32 |38 |3C |30 |3E |3F
(base + [EAX?2 01 |ooo [40 [21 |42 |43 |44 |45 |46 |47
ECK 2 001 |48 |49 |28 |48 |4ac |40 |4 |4F
index) [EDX*2 010 |s0 |51 |52 (53 |54 |55 |36 |s7
[EBX*2 011 |58 |53 |5& |88 |5C |3D |3 |°F
hone 100 |60 |81 |62 |63 |84 |65 |66 |67
EBP*2] 101 |68 |e9 |6 |6B |sC |60 |6E |6F
[ESI2 1m0 [0 |71 |72 |73 |78 |15 |78 |77
[EDI*2 1m | |79 |7 |8 |7 |m |7 |7F
EAX"4 10 |ooo |so |81 |sz |83 |s4 |85 |86 |87
[ECX4 001 |ss |83 |sa |88 |sc |sD |ee |&F
[EDX+4 010 Jso |91 |s2 (93 |94 |95 |96 |97
[EBX*4 011 |8 |89 |sa |38 |oc |9 % |oF
none 100 [ao |a1 |Az |A3 [Ad |As |As |A7
EBP*4] 101 [#8 |As |aA |AB [AC |AD |AE |AF
[ESI4 170 |s0 |81 |82 |B3 |B4 |BS |BE |B7
scaled jEDhﬂ 111 |es |8 |ea |ee |BC |BD |BE |BF
[EAX*B 11 |ooo Jco |1 |2 |@3 |@¢ |5 |6 @
e | Sl 5 B R ERE
1 *
index*4) [EBX*8 011 |loe |ps |oa |pB |bc |[pD |pE |DF
hone 100 [0 |e1 |e2 |3 |e4 |es |es |&7
[EBP*8] 101 |8 |es |ea |eB8 |ec |eD |ee |€F
[ESI*B 170 [fFo |A |f2 |3 |4 |5 |8 |F7
[EDI*E 111 |8 |F@ | |B [c |0 |FE|FF
NOTES:

1. The [*] nomenclature means a disp3 2 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP). This provides the following address modes:

MOD bits Effective Address

0a [scaled index] + disp32

01 [scaled index] + dispB + [EEP]
10 [scaled index] + disp32 + [EBP]

X386 SIB-D Addressing Mode

Haze Index Scale Desplacement
EAX lex -
EBX | % | 1 Mone
ECX ;. i | .
EDX | | 2 | B-it
ESP | X ' -t
i { ! |

ERP EBP 4
Esl " g/ 32-hit
EDI : o

Offfset = Base + (Index * Scale) + Displacement

Figure 3-11. Offset (or Effective Address) Computation

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

The following addressing modes suggest uses for common combinations of address components.

* Displacement — A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an absolute or static
address. It is commonly used to access a statically allocated scalar operand.

* Base — A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

* Base + Displacement — A base register and a displacement can be used together for two distinct purposes:

— As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement component
encodes the static offset to the beginning of the array. The base register holds the results of a calculation to
determine the offset to a specific element within the array.

— To access a field of a record: the base register holds the address of the beginning of the record, while the
displacement is a static offset to the field.

An important special case of this combination is access to parameters in a procedure activation record. A
procedure activation record is the stack frame created when a procedure is entered. Here, the EBP register is
the best choice for the base register, because it automatically selects the stack segment. This is a compact
encoding for this common function.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

62

X86 Manual: Suggested Uses of Addressing Modes

-

* [(Index * Scale) + Displacement — This address mode offers an efficient way
to index into a static array when the element size is 2, 4, or 8 bytes. The

displacement locates the beginning of the armmay, the index register holds the
subscript of the desired array element, and the processor automatically converts

the subscript into an index by applying the scaling factor,

* Base + Index + Displacement — Using two registers together supports either

a two-dimensional array (the displacement holds the address of the beginning of
the array) or one of several instances of an array of records (the displacement is

an offset to a field within the record).

* Base 4+ (Index * Scale) + Displacement — Using all the addressing
components together allows efficient indexing of a two-dimensional array when

the elements of the array are 2, 4, or 8 bytes in size.

x86 Manual Vol. 1, page 3-22 -- see course resources on website
Also, see Section 3.7.3 and 3.7.5

03

Other Example ISA-level Tradeotts

Condition codes vs. not

VLIW vs. single instruction

Precise vs. imprecise exceptions

Virtual memory vs. not

Unaligned access vs. not

Hardware interlocks vs. software-guaranteed interlocking
Software vs. hardware managed page fault handling
Cache coherence (hardware vs. software)

04

Back to Programmer vs. (Micro)architect

Many ISA features designed to aid programmers
But, complicate the hardware designer’ s job

Virtual memory
0 VS. overlay programming

o Should the programmer be concerned about the size of code
blocks fitting physical memory?

Addressing modes

Unaligned memory access
o Compile/programmer needs to align data

65

MIPS: Aligned Access

MSB | byte-3 byte-2 byte-1 byte-0 LSB
byte-7 byte-6 byte-5 byte-4

LW/SW alignment restriction: 4-byte word-alignment
o hot designed to fetch memory bytes not within a word boundary
o not designed to rotate unaligned bytes into registers

Provide separate opcodes for the “infrequent” case

A B C D

LWL rd 6(r0) > byte-6 byte-5 byte-4 D

LWR rd 3(r0) = | byte-6 byte-5 byte-4 byte-3

o LWL/LWR is slower

o Note LWL and LWR still fetch within word boundary
66

X86: Unaligned Access

= LD/ST instructions automatically align data that spans a
“word” boundary

= Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

4.1.1 Alignment of Words, Doublewords, Quadwords, and Double
Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural
boundaries. The natural boundaries for words, double words, and quadwords are
even- nurnl::ered addresses, addresses evenly divisible by four, and addresses evenly
divisible . Tespectively. However, to improve the perform rams,
a structures [especially stacks) should be aligned on natural boundaries whe
ever possible. The reason for this is that the processor requires two memory
esses to make an unaligned memory access; aligned accesses reguire only o
memory ord or doubleword operand that crosses a 4- ndary or a
quadword operand that crosses an 8-byte boundary is considered unaligned and
requires two separate memory bus cycles for access.

67

X86: Unaligned Access

Word at Address BH
Contains FEDGH

Word at Address bH
Contains 2308H

Word at Address 2H
Contains 74{EH

Word at Addres=s 1H
Comtains (B31H

|

Byte at Address OH —
Comtains 1TFAH

T

4EH FH
12H ZH
TAH OH
=zH CH
DEH BH
26H AH
1FH oH
A4H 2H
23H TH
0B+ EH
45H 5H
&7H 4H
T4H IH
CBH 2H
31H 1H
12H OH

¥

Doubleword at Address AH
Contains 7AFEDGIEH

Quadword at Address 6H
Contains
TAFED&3IG1FA4230BH

Double quadword at Address OH
Contains

4E127ARDG361 FA4230B4567 7408311,

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in

Memory

068

Aligned vs. Unaligned Access

Pros of having no restrictions on alignment

Cons of having no restrictions on alignment

Filling in the above: an exercise for you...

69

Implementing the ISA:
Microarchitecture Basics

How Does a Machine Process Instructions?

What does processing an instruction mean?
Remember the von Neumann model

A = Architectural (programmer visible) state before an
instruction is processed

A

Process instruction

A" = Architectural (programmer visible) state after an
instruction is processed

Processing an instruction: Transforming A to A" according to

the ISA specification of the instruction
71

The “Process instruction” Step

ISA specifies abstractly what A’ should be, given an
instruction and A

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution
One state transition per instruction

Microarchitecture implements how A is transformed to A’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: A > A’ (transform A to A’ in a single clock cycle)

Choice 2: A > A+MS1 > A+MS2 - A+MS3 - A’ (take multiple clock

cycles to transform A to A) =

A Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to execute
= Only combinational logic is used to implement instruction

execution
a No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state
at the beginninﬁf a clock cycle

Process instruction in one clock cycle

A" = Architectural (programmer visible) state
at the end of a clock cycle

73

A Very Basic Instruction Processing Engine

= Single-cycle machine

Sequential |
Logic
(State)

Combinational
Logic

= What is the clock cycle time determined by?

= What is the critical path of the combinational logic
determined by?

74

Remember: Programmer Visible (Architectural) State

MIO]
MI[1]
MI[2]
MI3] Registers
M[4] - given special names in the ISA
(as opposed to addresses)
- general vs. special purpose
M[N-1]
Memory Program Counter
array of storage locations memory address
indexed by an address of the current instruction

Instructions (and programs) specify how to transform

the values of programmer visible state
75

Single-cycle vs. Multi-cycle Machines

Single-cycle machines

Q

Q

Q

Each instruction takes a single clock cycle
All state updates made at the end of an instruction’s execution

Big disadvantage: The slowest instruction determines cycle time >
long clock cycle time

Multi-cycle machines

Q

Q

Q

Instruction processing broken into multiple cycles/stages
State updates can be made during an instruction’s execution

Architectural state updates made only at the end of an instruction’s
execution

Advantage over single-cycle: The slowest “stage” determines cycle time

Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

76

Instruction Processing “Cycle”

Instructions are processed under the direction of a “control
unit” step by step.

Instruction cycle: Sequence of steps to process an instruction
Fundamentally, there are six phases:

Fetch

Decode

Evaluate Address
Fetch Operands
Execute

Store Result

Not all instructions require all six stages (see P&P Ch. 4)
77

Instruction Processing “Cycle” vs. Machine Clock Cycle

Single-cycle machine:

o All six phases of the instruction processing cycle take a single
machine clock cycle to complete

Multi-cycle machine:

o All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

a In fact, each phase can take multiple clock cycles to complete

78

Instruction Processing Viewed Another Way

Instructions transform Data (AS) to Data’ (AS’)

This transformation is done by functional units
o Units that “operate” on data

These units need to be told what to do to the data

An instruction processing engine consists of two components

o Datapath: Consists of hardware elements that deal with and
transform data signals
functional units that operate on data

hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

storage units that store data (e.q., registers)

o Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

79

Single-cycle vs. Multi-cycle: Control & Data

Single-cycle machine:

o Control signals are generated in the same clock cycle as data
signals are operated on

o Everything related to an instruction happens in one clock cycle

Multi-cycle machine:

o Control signals needed in the next cycle can be generated in
the previous cycle

o Latency of control processing can be overlapped with latency
of datapath operation

We will see the difference clearly in microprogrammed
multi-cycle microarchitecture

80

Many Ways of Datapath and Control Design

There are many ways of designing the data path and
control logic

Single-cycle, multi-cycle, pipelined datapath and control
Single-bus vs. multi-bus datapaths
o See your homework 2 question

Hardwired/combinational vs. microcoded/microprogrammed
control

o Control signals generated by combinational logic versus
o Control signals stored in a memory structure

Control signals and structure depend on the datapath
design

81

Flash-Forward: Performance Analysis

Execution time of an instruction
o {CPI} x {clock cycle time}

Execution time of a program
o Sum over all instructions [{CPI} x {clock cycle time}]
a {# of instructions} x {Average CPI} x {clock cycle time}

Single cycle microarchitecture performance
a CPI=1

o Clock cycle time = long

Multi-cycle microarchitecture performance

o CPI = different for each instruction Now. we have
Average CPI - hopefully small two degrees of freedom

o Clock cycle time = short to optimize independently
82

