
18-447

Computer Architecture

Lecture 3: ISA Tradeoffs

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/17/2013

Design Point

 A set of design considerations and their importance

 leads to tradeoffs in both ISA and uarch

 Considerations

 Cost

 Performance

 Maximum power consumption

 Energy consumption (battery life)

 Availability

 Reliability and Correctness

 Time to Market

 Design point determined by the “Problem” space
(application space), or the intended users/market

2

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space

 Dream, and they will appear…

3

Tradeoffs: Soul of Computer Architecture

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

 Why art?

 4

Why Is It (Somewhat) Art?

5

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 We do not (fully) know the future (applications, users, market)

Logic
 Circuits

Electrons

Why Is It (Somewhat) Art?

6

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 And, the future is not constant (it changes)!

Logic
 Circuits

Electrons

Analog from Macro-Architecture

 Future is not constant in macro-architecture, either

 Example: Can a power plant boiler room be later used as a
classroom?

7

Macro-Architecture: Boiler Room

8

Readings for Next Time

 P&H, Chapter 4, Sections 4.1-4.4

 P&P, revised Appendix C – LC3b datapath and
microprogrammed operation

 Optional:

 P&P Chapter 5: LC-3 ISA

9

ISA Principles and Tradeoffs

10

Many Different ISAs Over Decades

 x86

 PDP-x: Programmed Data Processor (PDP-11)

 VAX

 IBM 360

 CDC 6600

 SIMD ISAs: CRAY-1, Connection Machine

 VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)

 PowerPC, POWER

 RISC ISAs: Alpha, MIPS, SPARC, ARM

 What are the fundamental differences?

 E.g., how instructions are specified and what they do

 E.g., how complex are the instructions
11

Instruction

 Basic element of the HW/SW interface

 Consists of

 opcode: what the instruction does

 operands: who it is to do it to

 Example from Alpha ISA:

12

Set of Instructions, Encoding, and Spec

13

 Example from LC-3b ISA

 http://www.ece.utexas.e
du/~patt/11s.460N/hand
outs/new_byte.pdf

 x86 Manual

 Aside: concept of “bit
steering”

 A bit in the instruction
determines the
interpretation of other
bits

 Why unused instructions?

http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf

Bit Steering in Alpha

14

What Are the Elements of An ISA?

 Instruction sequencing model

 Control flow vs. data flow

 Tradeoffs?

 Instruction processing style

 Specifies the number of “operands” an instruction “operates”
on and how it does so

 0, 1, 2, 3 address machines

 0-address: stack machine (push A, pop A, op)

 1-address: accumulator machine (ld A, st A, op A)

 2-address: 2-operand machine (one is both source and dest)

 3-address: 3-operand machine (source and dest are separate)

 Tradeoffs? See your homework question

 Larger operate instructions vs. more executed operations

 Code size vs. execution time vs. on-chip memory space

 15

An Example: Stack Machine

+ Small instruction size (no operands needed for operate
instructions)

 Simpler logic

 Compact code

+ Efficient procedure calls: all parameters on stack

 No additional cycles for parameter passing

-- Computations that are not easily expressible with “postfix
notation” are difficult to map to stack machines

 Cannot perform operations on many values at the same time
(only top N values on the stack at the same time)

 Not flexible

16

An Example: Stack Machine (II)

17

Koopman, “Stack Computers:

The New Wave,” 1989.

http://www.ece.cmu.edu/~koo

pman/stack_computers/sec3

_2.html

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

An Example: Stack Machine Operation

18

Koopman, “Stack Computers:

The New Wave,” 1989.

http://www.ece.cmu.edu/~koo

pman/stack_computers/sec3

_2.html

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

Other Examples

 PDP-11: A 2-address machine

 PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers

 Why? Limited bits to specify an instruction

 Disadvantage: One source operand is always clobbered with
the result of the instruction

 How do you ensure you preserve the old value of the source?

 X86: A 2-address (memory/memory) machine

 Alpha: A 3-address (load/store) machine

 MIPS?

19

What Are the Elements of An ISA?

 Instructions

 Opcode

 Operand specifiers (addressing modes)

 How to obtain the operand?

 Data types

 Definition: Representation of information for which there are
instructions that operate on the representation

 Integer, floating point, character, binary, decimal, BCD

 Doubly linked list, queue, string, bit vector, stack

 VAX: INSQUEUE and REMQUEUE instructions on a doubly linked
list or queue; FINDFIRST

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,”
1977.

 X86: SCAN opcode operates on character strings; PUSH/POP
20

Why are there different addressing modes?

Data Type Tradeoffs

 What is the benefit of having more or high-level data types
in the ISA?

 What is the disadvantage?

 Think compiler/programmer vs. microarchitect

 Concept of semantic gap

 Data types coupled tightly to the semantic level, or complexity
of instructions

 Example: Early RISC architectures vs. Intel 432

 Early RISC: Only integer data type

 Intel 432: Object data type, capability based machine

 21

What Are the Elements of An ISA?

 Memory organization

 Address space: How many uniquely identifiable locations in
memory

 Addressability: How much data does each uniquely identifiable
location store

 Byte addressable: most ISAs, characters are 8 bits

 Bit addressable: Burroughs 1700. Why?

 64-bit addressable: Some supercomputers. Why?

 32-bit addressable: First Alpha

 Food for thought

 How do you add 2 32-bit numbers with only byte addressability?

 How do you add 2 8-bit numbers with only 32-bit addressability?

 Big endian vs. little endian? MSB at low or high byte.

 Support for virtual memory

 22

Some Historical Readings

 If you want to dig deeper

 Wilner, “Design of the Burroughs 1700,” AFIPS 1972.

 Levy, “The Intel iAPX 432,” 1981.

 http://www.cs.washington.edu/homes/levy/capabook/Chapter
9.pdf

23

http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf
http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf

What Are the Elements of An ISA?

 Registers

 How many

 Size of each register

 Why is having registers a good idea?

 Because programs exhibit a characteristic called data locality

 A recently produced/accessed value is likely to be used more
than once (temporal locality)

 Storing that value in a register eliminates the need to go to
memory each time that value is needed

24

Programmer Visible (Architectural) State

25

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers

- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

Aside: Programmer Invisible State

 Microarchitectural state

 Programmer cannot access this directly

 E.g. cache state

 E.g. pipeline registers

26

Evolution of Register Architecture

 Accumulator

 a legacy from the “adding” machine days

 Accumulator + address registers

 need register indirection

 initially address registers were special-purpose, i.e., can only
be loaded with an address for indirection

 eventually arithmetic on addresses became supported

 General purpose registers (GPR)

 all registers good for all purposes

 grew from a few registers to 32 (common for RISC) to 128 in
Intel IA-64

 27

Instruction Classes

 Operate instructions

 Process data: arithmetic and logical operations

 Fetch operands, compute result, store result

 Implicit sequential control flow

 Data movement instructions

 Move data between memory, registers, I/O devices

 Implicit sequential control flow

 Control flow instructions

 Change the sequence of instructions that are executed

28

What Are the Elements of An ISA?

 Load/store vs. memory/memory architectures

 Load/store architecture: operate instructions operate only on
registers

 E.g., MIPS, ARM and many RISC ISAs

 Memory/memory architecture: operate instructions can
operate on memory locations

 E.g., x86, VAX and many CISC ISAs

29

What Are the Elements of An ISA?

 Addressing modes specify how to obtain the operands

 Absolute LW rt, 10000

 use immediate value as address

 Register Indirect: LW rt, (rbase)

 use GPR[rbase] as address

 Displaced or based: LW rt, offset(rbase)

 use offset+GPR[rbase] as address

 Indexed: LW rt, (rbase, rindex)

 use GPR[rbase]+GPR[rindex] as address

 Memory Indirect LW rt ((rbase))

 use value at M[GPR[rbase]] as address

 Auto inc/decrement LW Rt, (rbase)

 use GRP[rbase] as address, but inc. or dec. GPR[rbase] each time

 30

What Are the Benefits of Different Addressing Modes?

 Another example of programmer vs. microarchitect tradeoff

 Advantage of more addressing modes:

 Enables better mapping of high-level constructs to the
machine: some accesses are better expressed with a different
mode reduced number of instructions and code size

 Think array accesses (autoincrement mode)

 Think indirection (pointer chasing)

 Sparse matrix accesses

 Disadvantage:

 More work for the compiler

 More work for the microarchitect

31

ISA Orthogonality

 Orthogonal ISA:

 All addressing modes can be used with all instruction types

 Example: VAX

 (~13 addressing modes) x (>300 opcodes) x (integer and FP
formats)

 Who is this good for?

 Who is this bad for?

32

Is the LC-3b ISA Orthogonal?

33

LC-3b: Addressing Modes of ADD

34

LC-3b: Addressing Modes of of JSR(R)

35

What Are the Elements of An ISA?

 How to interface with I/O devices

 Memory mapped I/O

 A region of memory is mapped to I/O devices

 I/O operations are loads and stores to those locations

 Special I/O instructions

 IN and OUT instructions in x86 deal with ports of the chip

 Tradeoffs?

 Which one is more general purpose?

36

What Are the Elements of An ISA?
 Privilege modes

 User vs supervisor

 Who can execute what instructions?

 Exception and interrupt handling
 What procedure is followed when something goes wrong with an

instruction?

 What procedure is followed when an external device requests the
processor?

 Vectored vs. non-vectored interrupts (early MIPS)

 Virtual memory
 Each program has the illusion of the entire memory space, which is greater

than physical memory

 Access protection

 We will talk about these later

37

Another Question

 Does the LC-3b ISA contain complex instructions?

38

Complex vs. Simple Instructions

 Complex instruction: An instruction does a lot of work, e.g.
many operations

 Insert in a doubly linked list

 Compute FFT

 String copy

 Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations can
be built

 Add

 XOR

 Multiply

39

Complex vs. Simple Instructions

 Advantages of Complex instructions

+ Denser encoding smaller code size better memory

utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

 Disadvantages of Complex Instructions

- Larger chunks of work compiler has less opportunity to

optimize (limited in fine-grained optimizations it can do)

- More complex hardware translation from a high level to

control signals and optimization needs to be done by hardware

40

ISA-level Tradeoffs: Semantic Gap

 Where to place the ISA? Semantic gap

 Closer to high-level language (HLL) Small semantic gap,

complex instructions

 Closer to hardware control signals? Large semantic gap,

simple instructions

 RISC vs. CISC machines

 RISC: Reduced instruction set computer

 CISC: Complex instruction set computer

 FFT, QUICKSORT, POLY, FP instructions?

 VAX INDEX instruction (array access with bounds checking)

41

ISA-level Tradeoffs: Semantic Gap

 Some tradeoffs (for you to think about)

 Simple compiler, complex hardware vs.
complex compiler, simple hardware

 Caveat: Translation (indirection) can change the tradeoff!

 Burden of backward compatibility

 Performance?

 Optimization opportunity: Example of VAX INDEX instruction:
who (compiler vs. hardware) puts more effort into
optimization?

 Instruction size, code size

 42

X86: Small Semantic Gap: String Operations

 An instruction operates on a string

 Move one string of arbitrary length to another location

 Compare two strings

 Enabled by the ability to specify repeated execution of an
instruction (in the ISA)

 Using a “prefix” called REP prefix

 Example: REP MOVS instruction

 Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4)

 Implicit source and destination registers pointing to the two
strings (ESI, EDI)

 Implicit count register (ECX) specifies how long the string is

43

X86: Small Semantic Gap: String Operations

44

REP MOVS (DEST SRC)

How many instructions does this take in MIPS?

Small Semantic Gap Examples in VAX

 FIND FIRST

 Find the first set bit in a bit field

 Helps OS resource allocation operations

 SAVE CONTEXT, LOAD CONTEXT

 Special context switching instructions

 INSQUEUE, REMQUEUE

 Operations on doubly linked list

 INDEX

 Array access with bounds checking

 STRING Operations

 Compare strings, find substrings, …

 Cyclic Redundancy Check Instruction

 EDITPC

 Implements editing functions to display fixed format output

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

45

Small versus Large Semantic Gap

 CISC vs. RISC

 Complex instruction set computer complex instructions

 Initially motivated by “not good enough” code generation

 Reduced instruction set computer simple instructions

 John Cocke, mid 1970s, IBM 801

 Goal: enable better compiler control and optimization

 RISC motivated by

 Memory stalls (no work done in a complex instruction when
there is a memory stall?)

 When is this correct?

 Simplifying the hardware lower cost, higher frequency

 Enabling the compiler to optimize the code better

 Find fine-grained parallelism to reduce stalls

 46

How High or Low Can You Go?

 Very large semantic gap

 Each instruction specifies the complete set of control signals in
the machine

 Compiler generates control signals

 Open microcode (John Cocke, circa 1970s)

 Gave way to optimizing compilers

 Very small semantic gap

 ISA is (almost) the same as high-level language

 Java machines, LISP machines, object-oriented machines,
capability-based machines

47

A Note on ISA Evolution

 ISAs have evolved to reflect/satisfy the concerns of the day

 Examples:

 Limited on-chip and off-chip memory size

 Limited compiler optimization technology

 Limited memory bandwidth

 Need for specialization in important applications (e.g., MMX)

 Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

 Concept of dynamic/static interface

 Contrast it with hardware/software interface

48

Effect of Translation

 One can translate from one ISA to another ISA to change
the semantic gap tradeoffs

 Examples

 Intel’s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

 Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

 Think about the tradeoffs

49

ISA-level Tradeoffs: Instruction Length

 Fixed length: Length of all instructions the same

 + Easier to decode single instruction in hardware

 + Easier to decode multiple instructions concurrently

 -- Wasted bits in instructions (Why is this bad?)

 -- Harder-to-extend ISA (how to add new instructions?)

 Variable length: Length of instructions different
(determined by opcode and sub-opcode)

+ Compact encoding (Why is this good?)

 Intel 432: Huffman encoding (sort of). 6 to 321 bit instructions. How?

-- More logic to decode a single instruction

-- Harder to decode multiple instructions concurrently

 Tradeoffs
 Code size (memory space, bandwidth, latency) vs. hardware complexity

 ISA extensibility and expressiveness

 Performance? Smaller code vs. imperfect decode
50

ISA-level Tradeoffs: Uniform Decode

 Uniform decode: Same bits in each instruction correspond
to the same meaning

 Opcode is always in the same location

 Ditto operand specifiers, immediate values, …

 Many “RISC” ISAs: Alpha, MIPS, SPARC

+ Easier decode, simpler hardware

+ Enables parallelism: generate target address before knowing the
instruction is a branch

-- Restricts instruction format (fewer instructions?) or wastes space

 Non-uniform decode

 E.g., opcode can be the 1st-7th byte in x86

+ More compact and powerful instruction format

-- More complex decode logic

51

x86 vs. Alpha Instruction Formats

 x86:

 Alpha:

52

MIPS Instruction Format

 R-type, 3 register operands

 I-type, 2 register operands and 16-bit immediate operand

 J-type, 26-bit immediate operand

 Simple Decoding

 4 bytes per instruction, regardless of format

 must be 4-byte aligned (2 lsb of PC must be 2b’00)

 format and fields easy to extract in hardware

53

R-type 0
6-bit

rs
5-bit

rt
5-bit

rd
5-bit

shamt
5-bit

funct
6-bit

opcode
6-bit

rs
5-bit

rt
5-bit

immediate
16-bit

I-type

opcode
6-bit

immediate
26-bit

J-type

A Note on Length and Uniformity

 Uniform decode usually goes with fixed length

 In a variable length ISA, uniform decode can be a property
of instructions of the same length

 It is hard to think of it as a property of instructions of different
lengths

54

A Note on RISC vs. CISC

 Usually, …

 RISC

 Simple instructions

 Fixed length

 Uniform decode

 Few addressing modes

 CISC

 Complex instructions

 Variable length

 Non-uniform decode

 Many addressing modes

55

ISA-level Tradeoffs: Number of Registers

 Affects:

 Number of bits used for encoding register address

 Number of values kept in fast storage (register file)

 (uarch) Size, access time, power consumption of register file

 Large number of registers:

+ Enables better register allocation (and optimizations) by
compiler fewer saves/restores

-- Larger instruction size

-- Larger register file size

56

ISA-level Tradeoffs: Addressing Modes

 Addressing mode specifies how to obtain an operand of an
instruction

 Register

 Immediate

 Memory (displacement, register indirect, indexed, absolute,
memory indirect, autoincrement, autodecrement, …)

 More modes:

+ help better support programming constructs (arrays, pointer-
based accesses)

-- make it harder for the architect to design

-- too many choices for the compiler?

 Many ways to do the same thing complicates compiler design

 Wulf, “Compilers and Computer Architecture,” IEEE Computer 1981

 57

x86 vs. Alpha Instruction Formats

 x86:

 Alpha:

58

59

x86

register

absolute

register

indirect

register +

displacement

x86

60

indexed

(base +

index)

scaled

(base +

index*4)

X86 SIB-D Addressing Mode

61

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

62

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

X86 Manual: Suggested Uses of Addressing Modes

63

x86 Manual Vol. 1, page 3-22 -- see course resources on website

Also, see Section 3.7.3 and 3.7.5

Other Example ISA-level Tradeoffs

 Condition codes vs. not

 VLIW vs. single instruction

 Precise vs. imprecise exceptions

 Virtual memory vs. not

 Unaligned access vs. not

 Hardware interlocks vs. software-guaranteed interlocking

 Software vs. hardware managed page fault handling

 Cache coherence (hardware vs. software)

 …

64

Back to Programmer vs. (Micro)architect

 Many ISA features designed to aid programmers

 But, complicate the hardware designer’s job

 Virtual memory

 vs. overlay programming

 Should the programmer be concerned about the size of code
blocks fitting physical memory?

 Addressing modes

 Unaligned memory access

 Compile/programmer needs to align data

65

MIPS: Aligned Access

 LW/SW alignment restriction: 4-byte word-alignment

 not designed to fetch memory bytes not within a word boundary

 not designed to rotate unaligned bytes into registers

 Provide separate opcodes for the “infrequent” case

 LWL/LWR is slower

 Note LWL and LWR still fetch within word boundary

 66

byte-3 byte-2 byte-1 byte-0

byte-7 byte-6 byte-5 byte-4

MSB LSB

A B C D

byte-6 byte-5 byte-4 D

byte-6 byte-5 byte-4 byte-3

LWL rd 6(r0)

LWR rd 3(r0)

X86: Unaligned Access

 LD/ST instructions automatically align data that spans a
“word” boundary

 Programmer/compiler does not need to worry about where
data is stored (whether or not in a word-aligned location)

67

X86: Unaligned Access

68

Aligned vs. Unaligned Access

 Pros of having no restrictions on alignment

 Cons of having no restrictions on alignment

 Filling in the above: an exercise for you…

69

Implementing the ISA:

Microarchitecture Basics

70

How Does a Machine Process Instructions?

 What does processing an instruction mean?

 Remember the von Neumann model

A = Architectural (programmer visible) state before an
instruction is processed

Process instruction

A’ = Architectural (programmer visible) state after an
instruction is processed

 Processing an instruction: Transforming A to A’ according to
the ISA specification of the instruction

71

The “Process instruction” Step

 ISA specifies abstractly what A’ should be, given an
instruction and A

 It defines an abstract finite state machine where

 State = programmer-visible state

 Next-state logic = instruction execution specification

 From ISA point of view, there are no “intermediate states”
between A and A’ during instruction execution

 One state transition per instruction

 Microarchitecture implements how A is transformed to A’

 There are many choices in implementation

 We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction

 Choice 1: A A’ (transform A to A’ in a single clock cycle)

 Choice 2: A A+MS1 A+MS2 A+MS3 A’ (take multiple clock

cycles to transform A to A’)

72

A Very Basic Instruction Processing Engine

 Each instruction takes a single clock cycle to execute

 Only combinational logic is used to implement instruction
execution

 No intermediate, programmer-invisible state updates

A = Architectural (programmer visible) state

at the beginning of a clock cycle

Process instruction in one clock cycle

A’ = Architectural (programmer visible) state

at the end of a clock cycle

73

A Very Basic Instruction Processing Engine

 Single-cycle machine

 What is the clock cycle time determined by?

 What is the critical path of the combinational logic
determined by?

74

ANext A Sequential
Logic
(State)

Combinational
Logic

Remember: Programmer Visible (Architectural) State

75

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter
memory address
of the current instruction

Registers

- given special names in the ISA
 (as opposed to addresses)
- general vs. special purpose

Instructions (and programs) specify how to transform
 the values of programmer visible state

Single-cycle vs. Multi-cycle Machines

 Single-cycle machines

 Each instruction takes a single clock cycle

 All state updates made at the end of an instruction’s execution

 Big disadvantage: The slowest instruction determines cycle time

long clock cycle time

 Multi-cycle machines

 Instruction processing broken into multiple cycles/stages

 State updates can be made during an instruction’s execution

 Architectural state updates made only at the end of an instruction’s
execution

 Advantage over single-cycle: The slowest “stage” determines cycle time

 Both single-cycle and multi-cycle machines literally follow the
von Neumann model at the microarchitecture level

76

Instruction Processing “Cycle”

 Instructions are processed under the direction of a “control
unit” step by step.

 Instruction cycle: Sequence of steps to process an instruction

 Fundamentally, there are six phases:

 Fetch

 Decode

 Evaluate Address

 Fetch Operands

 Execute

 Store Result

 Not all instructions require all six stages (see P&P Ch. 4)
77

Instruction Processing “Cycle” vs. Machine Clock Cycle

 Single-cycle machine:

 All six phases of the instruction processing cycle take a single
machine clock cycle to complete

 Multi-cycle machine:

 All six phases of the instruction processing cycle can take
multiple machine clock cycles to complete

 In fact, each phase can take multiple clock cycles to complete

78

Instruction Processing Viewed Another Way
 Instructions transform Data (AS) to Data’ (AS’)

 This transformation is done by functional units
 Units that “operate” on data

 These units need to be told what to do to the data

 An instruction processing engine consists of two components

 Datapath: Consists of hardware elements that deal with and
transform data signals

 functional units that operate on data

 hardware structures (e.g. wires and muxes) that enable the flow of
data into the functional units and registers

 storage units that store data (e.g., registers)

 Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

79

Single-cycle vs. Multi-cycle: Control & Data

 Single-cycle machine:

 Control signals are generated in the same clock cycle as data
signals are operated on

 Everything related to an instruction happens in one clock cycle

 Multi-cycle machine:

 Control signals needed in the next cycle can be generated in
the previous cycle

 Latency of control processing can be overlapped with latency
of datapath operation

 We will see the difference clearly in microprogrammed
multi-cycle microarchitecture

80

Many Ways of Datapath and Control Design

 There are many ways of designing the data path and
control logic

 Single-cycle, multi-cycle, pipelined datapath and control

 Single-bus vs. multi-bus datapaths

 See your homework 2 question

 Hardwired/combinational vs. microcoded/microprogrammed
control

 Control signals generated by combinational logic versus

 Control signals stored in a memory structure

 Control signals and structure depend on the datapath
design

 81

Flash-Forward: Performance Analysis

 Execution time of an instruction

 {CPI} x {clock cycle time}

 Execution time of a program

 Sum over all instructions [{CPI} x {clock cycle time}]

 {# of instructions} x {Average CPI} x {clock cycle time}

 Single cycle microarchitecture performance

 CPI = 1

 Clock cycle time = long

 Multi-cycle microarchitecture performance

 CPI = different for each instruction

 Average CPI hopefully small

 Clock cycle time = short
82

Now, we have

two degrees of freedom

to optimize independently

