
18-447

Computer Architecture

Lecture 3: ISA Tradeoffs

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/17/2014

Design Point

 A set of design considerations and their importance

 leads to tradeoffs in both ISA and uarch

 Considerations

 Cost

 Performance

 Maximum power consumption

 Energy consumption (battery life)

 Availability

 Reliability and Correctness

 Time to Market

 Design point determined by the “Problem” space
(application space), or the intended users/market

2

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space

 Dream, and they will appear…

3

Tradeoffs: Soul of Computer Architecture

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

 Why art?

4

Why Is It (Somewhat) Art?

5

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 We do not (fully) know the future (applications, users, market)

Logic

Circuits

Electrons

Why Is It (Somewhat) Art?

6

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 And, the future is not constant (it changes)!

Logic

Circuits

Electrons

Analog from Macro-Architecture

 Future is not constant in macro-architecture, either

 Example: Can a power plant boiler room be later used as a
classroom?

7

Macro-Architecture: Boiler Room

8

Readings for Next Time

 P&H, Chapter 4, Sections 4.1-4.4

 P&P, revised Appendix C – LC3b datapath and
microprogrammed operation

 P&P Chapter 5: LC-3 ISA

 P&P, revised Appendix A – LC3b ISA

9

ISA Principles and Tradeoffs

10

Many Different ISAs Over Decades

 x86

 PDP-x: Programmed Data Processor (PDP-11)

 VAX

 IBM 360

 CDC 6600

 SIMD ISAs: CRAY-1, Connection Machine

 VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)

 PowerPC, POWER

 RISC ISAs: Alpha, MIPS, SPARC, ARM

 What are the fundamental differences?

 E.g., how instructions are specified and what they do

 E.g., how complex are the instructions
11

Instruction

 Basic element of the HW/SW interface

 Consists of

 opcode: what the instruction does

 operands: who it is to do it to

 Example from Alpha ISA:

12

ARM

13

Set of Instructions, Encoding, and Spec

14

 Example from LC-3b ISA

 http://www.ece.utexas.e
du/~patt/11s.460N/hand
outs/new_byte.pdf

 x86 Manual

 Why unused instructions?

 Aside: concept of “bit
steering”

 A bit in the instruction
determines the
interpretation of other
bits

http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf

Bit Steering in Alpha

15

What Are the Elements of An ISA?

 Instruction sequencing model

 Control flow vs. data flow

 Tradeoffs?

 Instruction processing style

 Specifies the number of “operands” an instruction “operates”
on and how it does so

 0, 1, 2, 3 address machines

 0-address: stack machine (push A, pop A, op)

 1-address: accumulator machine (ld A, st A, op A)

 2-address: 2-operand machine (one is both source and dest)

 3-address: 3-operand machine (source and dest are separate)

 Tradeoffs? See your homework question

 Larger operate instructions vs. more executed operations

 Code size vs. execution time vs. on-chip memory space

16

An Example: Stack Machine

+ Small instruction size (no operands needed for operate
instructions)

 Simpler logic

 Compact code

+ Efficient procedure calls: all parameters on stack

 No additional cycles for parameter passing

-- Computations that are not easily expressible with “postfix
notation” are difficult to map to stack machines

 Cannot perform operations on many values at the same time
(only top N values on the stack at the same time)

 Not flexible

17

An Example: Stack Machine (II)

18

Koopman, “Stack Computers:

The New Wave,” 1989.

http://www.ece.cmu.edu/~koo

pman/stack_computers/sec3

_2.html

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

An Example: Stack Machine Operation

19

Koopman, “Stack Computers:

The New Wave,” 1989.

http://www.ece.cmu.edu/~koo

pman/stack_computers/sec3

_2.html

http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

Other Examples

 PDP-11: A 2-address machine

 PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers

 Why? Limited bits to specify an instruction

 Disadvantage: One source operand is always clobbered with
the result of the instruction

 How do you ensure you preserve the old value of the source?

 X86: A 2-address (memory/memory) machine

 Alpha: A 3-address (load/store) machine

 MIPS?

 ARM?

20

What Are the Elements of An ISA?

 Instructions

 Opcode

 Operand specifiers (addressing modes)

 How to obtain the operand?

 Data types

 Definition: Representation of information for which there are
instructions that operate on the representation

 Integer, floating point, character, binary, decimal, BCD

 Doubly linked list, queue, string, bit vector, stack

 VAX: INSQUEUE and REMQUEUE instructions on a doubly linked
list or queue; FINDFIRST

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,”
1977.

 X86: SCAN opcode operates on character strings; PUSH/POP
21

Why are there different addressing modes?

Data Type Tradeoffs

 What is the benefit of having more or high-level data types
in the ISA?

 What is the disadvantage?

 Think compiler/programmer vs. microarchitect

 Concept of semantic gap

 Data types coupled tightly to the semantic level, or complexity
of instructions

 Example: Early RISC architectures vs. Intel 432

 Early RISC: Only integer data type

 Intel 432: Object data type, capability based machine

22

What Are the Elements of An ISA?

 Memory organization

 Address space: How many uniquely identifiable locations in
memory

 Addressability: How much data does each uniquely identifiable
location store

 Byte addressable: most ISAs, characters are 8 bits

 Bit addressable: Burroughs 1700. Why?

 64-bit addressable: Some supercomputers. Why?

 32-bit addressable: First Alpha

 Food for thought

 How do you add 2 32-bit numbers with only byte addressability?

 How do you add 2 8-bit numbers with only 32-bit addressability?

 Big endian vs. little endian? MSB at low or high byte.

 Support for virtual memory
23

Some Historical Readings

 If you want to dig deeper

 Wilner, “Design of the Burroughs 1700,” AFIPS 1972.

 Levy, “The Intel iAPX 432,” 1981.

 http://www.cs.washington.edu/homes/levy/capabook/Chapter
9.pdf

24

http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf
http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf

What Are the Elements of An ISA?

 Registers

 How many

 Size of each register

 Why is having registers a good idea?

 Because programs exhibit a characteristic called data locality

 A recently produced/accessed value is likely to be used more
than once (temporal locality)

 Storing that value in a register eliminates the need to go to
memory each time that value is needed

25

Programmer Visible (Architectural) State

26

M[0]

M[1]

M[2]

M[3]

M[4]

M[N-1]
Memory

array of storage locations
indexed by an address

Program Counter

memory address
of the current instruction

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Instructions (and programs) specify how to transform
the values of programmer visible state

Aside: Programmer Invisible State

 Microarchitectural state

 Programmer cannot access this directly

 E.g. cache state

 E.g. pipeline registers

27

Evolution of Register Architecture

 Accumulator

 a legacy from the “adding” machine days

 Accumulator + address registers

 need register indirection

 initially address registers were special-purpose, i.e., can only
be loaded with an address for indirection

 eventually arithmetic on addresses became supported

 General purpose registers (GPR)

 all registers good for all purposes

 grew from a few registers to 32 (common for RISC) to 128 in
Intel IA-64

28

Instruction Classes

 Operate instructions

 Process data: arithmetic and logical operations

 Fetch operands, compute result, store result

 Implicit sequential control flow

 Data movement instructions

 Move data between memory, registers, I/O devices

 Implicit sequential control flow

 Control flow instructions

 Change the sequence of instructions that are executed

29

What Are the Elements of An ISA?

 Load/store vs. memory/memory architectures

 Load/store architecture: operate instructions operate only on
registers

 E.g., MIPS, ARM and many RISC ISAs

 Memory/memory architecture: operate instructions can
operate on memory locations

 E.g., x86, VAX and many CISC ISAs

30

What Are the Elements of An ISA?

 Addressing modes specify how to obtain the operands

 Absolute LW rt, 10000

use immediate value as address

 Register Indirect: LW rt, (rbase)

use GPR[rbase] as address

 Displaced or based: LW rt, offset(rbase)

use offset+GPR[rbase] as address

 Indexed: LW rt, (rbase, rindex)

use GPR[rbase]+GPR[rindex] as address

 Memory Indirect LW rt ((rbase))

use value at M[GPR[rbase]] as address

 Auto inc/decrement LW Rt, (rbase)

use GRP[rbase] as address, but inc. or dec. GPR[rbase] each time

31

What Are the Benefits of Different Addressing Modes?

 Another example of programmer vs. microarchitect tradeoff

 Advantage of more addressing modes:

 Enables better mapping of high-level constructs to the
machine: some accesses are better expressed with a different
mode  reduced number of instructions and code size

 Think array accesses (autoincrement mode)

 Think indirection (pointer chasing)

 Sparse matrix accesses

 Disadvantage:

 More work for the compiler

 More work for the microarchitect

32

ISA Orthogonality

 Orthogonal ISA:

 All addressing modes can be used with all instruction types

 Example: VAX

 (~13 addressing modes) x (>300 opcodes) x (integer and FP
formats)

 Who is this good for?

 Who is this bad for?

33

Is the LC-3b ISA Orthogonal?

34

LC-3b: Addressing Modes of ADD

35

LC-3b: Addressing Modes of of JSR(R)

36

What Are the Elements of An ISA?

 How to interface with I/O devices

 Memory mapped I/O

 A region of memory is mapped to I/O devices

 I/O operations are loads and stores to those locations

 Special I/O instructions

 IN and OUT instructions in x86 deal with ports of the chip

 Tradeoffs?

 Which one is more general purpose?

37

What Are the Elements of An ISA?
 Privilege modes

 User vs supervisor

 Who can execute what instructions?

 Exception and interrupt handling
 What procedure is followed when something goes wrong with an

instruction?

 What procedure is followed when an external device requests the
processor?

 Vectored vs. non-vectored interrupts (early MIPS)

 Virtual memory
 Each program has the illusion of the entire memory space, which is greater

than physical memory

 Access protection

 We will talk about these later 38

Another Question

 Does the LC-3b ISA contain complex instructions?

39

Complex vs. Simple Instructions

 Complex instruction: An instruction does a lot of work, e.g.
many operations

 Insert in a doubly linked list

 Compute FFT

 String copy

 Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations can
be built

 Add

 XOR

 Multiply

40

Complex vs. Simple Instructions

 Advantages of Complex instructions

+ Denser encoding  smaller code size  better memory

utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

 Disadvantages of Complex Instructions

- Larger chunks of work  compiler has less opportunity to

optimize (limited in fine-grained optimizations it can do)

- More complex hardware  translation from a high level to

control signals and optimization needs to be done by hardware

41

ISA-level Tradeoffs: Semantic Gap

 Where to place the ISA? Semantic gap

 Closer to high-level language (HLL)  Small semantic gap,

complex instructions

 Closer to hardware control signals?  Large semantic gap,

simple instructions

 RISC vs. CISC machines

 RISC: Reduced instruction set computer

 CISC: Complex instruction set computer

 FFT, QUICKSORT, POLY, FP instructions?

 VAX INDEX instruction (array access with bounds checking)

42

ISA-level Tradeoffs: Semantic Gap

 Some tradeoffs (for you to think about)

 Simple compiler, complex hardware vs.
complex compiler, simple hardware

 Caveat: Translation (indirection) can change the tradeoff!

 Burden of backward compatibility

 Performance?

 Optimization opportunity: Example of VAX INDEX instruction:
who (compiler vs. hardware) puts more effort into
optimization?

 Instruction size, code size

43

X86: Small Semantic Gap: String Operations

 An instruction operates on a string

 Move one string of arbitrary length to another location

 Compare two strings

 Enabled by the ability to specify repeated execution of an
instruction (in the ISA)

 Using a “prefix” called REP prefix

 Example: REP MOVS instruction

 Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4)

 Implicit source and destination registers pointing to the two
strings (ESI, EDI)

 Implicit count register (ECX) specifies how long the string is

44

X86: Small Semantic Gap: String Operations

45

REP MOVS (DEST SRC)

How many instructions does this take in ARM and MIPS?

Small Semantic Gap Examples in VAX

 FIND FIRST

 Find the first set bit in a bit field

 Helps OS resource allocation operations

 SAVE CONTEXT, LOAD CONTEXT

 Special context switching instructions

 INSQUEUE, REMQUEUE

 Operations on doubly linked list

 INDEX

 Array access with bounds checking

 STRING Operations

 Compare strings, find substrings, …

 Cyclic Redundancy Check Instruction

 EDITPC

 Implements editing functions to display fixed format output

 Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

46

Small versus Large Semantic Gap

 CISC vs. RISC

 Complex instruction set computer  complex instructions

 Initially motivated by “not good enough” code generation

 Reduced instruction set computer  simple instructions

 John Cocke, mid 1970s, IBM 801

 Goal: enable better compiler control and optimization

 RISC motivated by

 Memory stalls (no work done in a complex instruction when
there is a memory stall?)

 When is this correct?

 Simplifying the hardware  lower cost, higher frequency

 Enabling the compiler to optimize the code better

 Find fine-grained parallelism to reduce stalls

47

How High or Low Can You Go?

 Very large semantic gap

 Each instruction specifies the complete set of control signals in
the machine

 Compiler generates control signals

 Open microcode (John Cocke, circa 1970s)

 Gave way to optimizing compilers

 Very small semantic gap

 ISA is (almost) the same as high-level language

 Java machines, LISP machines, object-oriented machines,
capability-based machines

48

A Note on ISA Evolution

 ISAs have evolved to reflect/satisfy the concerns of the day

 Examples:

 Limited on-chip and off-chip memory size

 Limited compiler optimization technology

 Limited memory bandwidth

 Need for specialization in important applications (e.g., MMX)

 Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

 Concept of dynamic/static interface

 Contrast it with hardware/software interface

49

Effect of Translation

 One can translate from one ISA to another ISA to change
the semantic gap tradeoffs

 Examples

 Intel’s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

 Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

 Think about the tradeoffs

50

