18-447
Computer Architecture
Lecture 3: ISA Tradeofts

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 1/17/2014




Design Point

A set of design considerations and their importance
o leads to tradeoffs in both ISA and uarch

Considerations Problem

o Cost Algorithm

a Performance Program

o Maximum power consumption ISA

o Energy consumption (battery life) Microarchitecture
o Availability Circuits

o Reliability and Correctness Electrons

o Time to Market

Design point determined by the “Problem” space
(application space), or the intended users/ market



Application Space

= Dream, and they will appear...

Other examples of the application space that continue to
drive the need for umique design points are the following:

1) scientific apphications such as those whose computa-
tions confrol nuclear power plants, determine where to
dnll for o1l, and predict the weather;

2) transaction-based applications such as those that
handle ATM transfers and e-commerce business;

3) busmness data processing applications, such as those
that handle mventory control, payrolls, IRS activity,
and vanous personnel record keeping, whether the per-
sonnel are employees, students, or voters;

4) network applications, such as high-speed routing of
Internet packets, that enable the connection of your
home system to take advantage of the Internet;

5) guaranteed delivery (ak a. real ime) applications that
require the result of a computation by a certain critical
deadline;

6) embedded applications, where the processor 1s a com-
ponent of a larper system that 15 used to solve the (usu-
ally) dedicated application;

7) media applhications such as those that decode video and
audio files;

8) random software packages that desktop users would
like to mn on their PCs.

Each of these application areas has a very different set of
charactenistics. Each apphication area demands a different set
of tradeoffs to be made m specifying the microprocessor to

do the job.




Tradeotts: Soul of Computer Architecture

s [SA-level tradeoffs
s Microarchitecture-level tradeoffs

= System and Task-level tradeoffs
o How to divide the labor between hardware and software

= Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

o Why art?




Why Is It (Somewhat) Art?

Runtime System

= We do not (fully) know the future (applications, users, market)

5



Why Is It (Somewhat) Art?

l ISA

= And, the future is not constant (it changes)!




Analog from Macro-Architecture

Future is not constant in macro-architecture, either

Example: Can a power plant boiler room be later used as a
classroom?



Macro-Architecture: Boiler Room

At the west end of campus was a small structure that housed the boiler
room that functioned as the school's power plant. Below, in the rain beside

the railroad tracks, a farmer’'s goat grazed and occasionally wandered up to
eat the grass of this yet untamed end of campus.

Over a 20 month penod from 1912 - 1914, Machinery Hall was built on top of
that boiler room. The massive tower, which has become a symbol of Care-

gie Mellon, was designed to disguise the smokestack. Architect Henry
Hombostel had created a “temple of technology” that would become
“one of the most renowned buildings of the Beaux Arts style in the country.

Early course catalogs described the boiller room as a classroom where stu
dents learned about powsr genarating machinery. The tower continued to
belch smoke until 1975, but in 1979 the boiler room became the cleanest
room on campus with the construction of the Nanofabrication Facility. The
coal bin area became the offices and computer room of the D-level.

8



Readings for Next Time

P&H, Chapter 4, Sections 4.1-4.4

P&P, revised Appendix C — LC3b datapath and
microprogrammed operation

P&P Chapter 5: LC-3 ISA
P&P, revised Appendix A — LC3b ISA



ISA Principles and Tradeotts




Many Ditterent ISAs Over Decades

X86

PDP-x: Programmed Data Processor (PDP-11)
VAX

IBM 360

CDC 6600

SIMD ISAs: CRAY-1, Connection Machine
VLIW ISAs: Multiflow, Cydrome, IA-64 (EPIC)
PowerPC, POWER

RISC ISAs: Alpha, MIPS, SPARC, ARM

What are the fundamental differences?
a E.g., how instructions are specified and what they do

o E.g., how complex are the instructions
11



Instruction

Basic element of the HW/SW interface

Consists of

o opcode: what the instruction does

o operands: who it is to do it to

o Example from Alpha ISA:

31 26 25 1615 0
Opcode Number

Opcode RA Disp

Opcode RA RB Disp

Opcode RA RB Function RC

FPALcode Format

Branch Format
Memory Format

Operate Format

12



ARM

33222222222211111111119876543210
1098765432109876543210
Cond |0(0|1| Opcode |5 Rn Rd Cperand 2 Data Processing /
PSR Transfer
Cond |Q|{O|0|0|O(O|A|S Rd RBn Rs 1(0(0]|1 Rm Multiply
Cond |O(0|0(0]1[U|A|S| RdHI RdLo Rn 1(0]0]|1 Rm Multiply Long
Cond (OQ|(0|{Q{1({0(B|0O|0O Rn Rd Q(o(O[d|1|0]0](1 Rm Single Data Swap
Cond (Q{Of{d{1{Of{a{1{a{1(1[T[1(1[1[T|1|1|1|1]|1]|0O 0|1 Rn Branch and Exchange
Cond |O(0)0(F|U[D[W|L Rn Rd O(o)o(o]1(S|H|1 Rm Halfword Data Transfer:
register offset
Cond Q0|0 (|F|U[1[W|L Rn Rd Offset [1|5(H|1| Offset | Halfword Data Transfer:
immediate affset
Cond |O[1]1|F|U[B[W|L Rn Rd Offset Single Data Transfer
Cond (211 1 Undefined
Cond |1({0|0|P|U[S|W|L Rn Register List Block Data Transfer
Cond |[1{0f1]L Offset Branch
Cond |1({1|0|F|U[M|W| L Rn CRd CP# Offset Coprocessor Data
Transfer
Cond |1(1|1]|0| CP Opc CRn CRd CP# CP |0| CRBm Coprocessor Data
Cperation
Cond |1(1|1|0/CPOpg/L| CRn Rd CP# CP |1| CRBm Coprocessor Registar
Transfer
Cond |1({1]1]1 lgnored by processor Software Inferrupt
33222222222211111111119876543210
1098765432109876543210

Figure 4-1: ARM instruction set formais




Set of Instructions, Encoding, and Spec

ADD'
AND’
BR
JMP
JSR(R)
LDB*
LDW *
LEA®
RTI
SHF"
STB
STW
TRAP
XOR'

not used

not used

15 14 13 12 1 w9 a 7 & 5 4 3 2 1 a

I
0001 DR SR1 A op.spec
| | | | | | | | ] | |
0101 DR SR1 A op.spec
T T T T 1 1 T 1 T T
0000 nlz|p PCoffsel?
| | | | | | | | | | |
I I I T I I I I T I I
1100 000 BaseR 000000
| | | | | | | | | | | |
T T T 1 T T T T T T
0100 A operand.specifier
| | | |
II : : T T II : T II T II :
0010 DR BaseR bofiseté
——— T
0110 DR BaseR offseté
II : : : : II : T T II : II T
1110 DR PCoffsel?
| | | | | | | | | | | |
T T T T T T 1 1 T 1 T T
1000 000000000000
| | | 1 | 1 | | | | | | | |
I I I I I I I T I I
1101 DR SR A |D| amountd
T T T T T T T T T T T T
0011 SR BaseR bofiseté
| |
——T —
o1 SR BaseR offseté
II : : : : T : : T T II : II
1111 0000 trapvects
| | | | | | | | | | |
I I I I I I I I T I I
1001 DR SR1 A op.spec
| | | | | | | | | | |
1010
| | | | | | | | | | | | |
I I I I I I T I I I I I I
1011
| | |

Example from LC-3b ISA

o http://www.ece.utexas.e
du/~patt/11s.460N/hand
outs/new byte.pdf

x86 Manual

Why unused instructions?

Aside: concept of “bit

steering”

o A bit in the instruction
determines the

interpretation of other
bits

14


http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf
http://www.ece.utexas.edu/~patt/11s.460N/handouts/new_byte.pdf

Bit Steering in Alpha

Figure 3—4: Operate Instruction Format

31 26 23 2120 16151312 11 3 4 0

Opcode | Ra Rb [SBZ0| Function Rc

26 25 2120 13 12 11

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction 1s 1. an 8-bit zero-extended literal constant 1s formed by bits
<20:13> of the instruction. The literal is interpreted as a positive integer between 0 and 255
and 1s zero-extended to 64 bits. Symbolically, the integer Rbv operand 1s formed as follows:

15



What Are the Elements of An ISA?

Instruction sequencing model

o Control flow vs. data flow
o Tradeoffs?

Instruction processing style

o Specifies the number of “operands” an instruction “operates”
on and how it does so

a 0, 1, 2, 3 address machines
0-address: stack machine (push A, pop A, op)
1-address: accumulator machine (Id A, st A, op A)
2-address: 2-operand machine (one is both source and dest)

3-address: 3-operand machine (source and dest are separate)

o Tradeoffs? See your homework question
Larger operate instructions vs. more executed operations
Code size vs. execution time vs. on-chip memory space
16



An Example: Stack Machine

+ Small instruction size (no operands needed for operate
instructions)

o Simpler logic
o Compact code

+ Efficient procedure calls: all parameters on stack
o No additional cycles for parameter passing

-- Computations that are not easily expressible with “postfix
notation” are difficult to map to stack machines
o Cannot perform operations on many values at the same time
(only top N values on the stack at the same time)
a Not flexible

17



An Example: Stack Machine (II)

DS
DATA STACK

RS
RETURN STACK

()

CONTROL
LOGIC
& IR

Figure 3.1 -- The canonical stack machine.

=D

i m

L - »
S PC
B — MAR
+ FODRESS
DATA PROGRAM
' ' MEMORY

Koopman, “Stack Computers:

The New Wave,” 1989.

http://www.ece.cmu.edu/~koo

pman/stack computers/sec3
2.html

18


http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

An Example: Stack Machine Operation

% 9§ 12
?:—‘:% EZ:% Koopman, “Stack Computers:
EMPTY SUSH PUISH The New Wave,” 1989.
STACK 94 12 http://www.ece.cmu.edu/~koo
pman/stack computers/sec3
2.html
45 =
12
04
PLISH + *
45

Figure 3.2 -- An example stack machine.

19


http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html
http://www.ece.cmu.edu/~koopman/stack_computers/sec3_2.html

Other Examples

PDP-11: A 2-address machine
o PDP-11 ADD: 4-bit opcode, 2 6-bit operand specifiers
o Why? Limited bits to specify an instruction

o Disadvantage: One source operand is always clobbered with
the result of the instruction
How do you ensure you preserve the old value of the source?

X86: A 2-address (memory/memory) machine
Alpha: A 3-address (load/store) machine
MIPS?

ARM?

20



What Are the Elements of An ISA?

Instructions
o Opcode

o Operand specifiers (addressing modes)
How to obtain the operand? Why are there different addressing modes?

Data types

o Definition: Representation of information for which there are
instructions that operate on the representation

o Integer, floating point, character, binary, decimal, BCD

o Doubly linked list, queue, string, bit vector, stack

VAX: INSQUEUE and REMQUEUE instructions on a doubly linked
list or queue; FINDFIRST

Digital Equipment Corp., “VAX11 780 Architecture Handbook,”
1977.

X86: SCAN opcode operates on character strings; PUSH/POP
21



Data Type Tradeoffs

What is the benefit of having more or high-level data types
in the ISA?

What is the disadvantage?
Think compiler/programmer vs. microarchitect

Concept of semantic gap

o Data types coupled tightly to the semantic level, or complexity
of instructions

Example: Early RISC architectures vs. Intel 432
o Early RISC: Only integer data type
o Intel 432: Object data type, capability based machine

22



What Are the Elements of An ISA?

Memory organization

o Address space: How many uniquely identifiable locations in
memory

o Addressability: How much data does each uniquely identifiable

location store
Byte addressable: most ISAs, characters are 8 bits
Bit addressable: Burroughs 1700. Why?
64-bit addressable: Some supercomputers. Why?
32-bit addressable: First Alpha

Food for thought

0 How do you add 2 32-bit numbers with only byte addressability?
0 How do you add 2 8-bit numbers with only 32-bit addressability?
0 Big endian vs. little endian? MSB at low or high byte.

o Support for virtual memory

23



Some Historical Readings

= If you want to dig deeper
= Wilner, "Design of the Burroughs 1700,” AFIPS 1972.

= Levy, "The Intel iAPX 432,” 1981.

o http://www.cs.washington.edu/homes/levy/capabook/Chapter
9.pdf

24


http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf
http://www.cs.washington.edu/homes/levy/capabook/Chapter9.pdf

What Are the Elements of An ISA?

= Registers
2 How many
o Size of each register

= Why is having registers a good idea?
o Because programs exhibit a characteristic called data locality

a A recently produced/accessed value is likely to be used more
than once (temporal locality)

= Storing that value in a register eliminates the need to go to
memory each time that value is needed

25



Programmer Visible (Architectural) State

Memory

array of storage locations
indexed by an address

M(O]

M[1]

M[2]

M[3]

M(4]

M[N-1]

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Program Counter

memory address
of the current instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

26



Aside: Programmer Invisible State

Microarchitectural state
Programmer cannot access this directly

E.g. cache state
E.g. pipeline registers

27



Evolution of Register Architecture

Accumulator
o a legacy from the “adding” machine days

Accumulator + address registers
o heed register indirection

o initially address registers were special-purpose, i.e., can only
be loaded with an address for indirection

o eventually arithmetic on addresses became supported

General purpose registers (GPR)

o all registers good for all purposes

o grew from a few registers to 32 (common for RISC) to 128 in
Intel IA-64

28



Instruction Classes

Operate instructions

o Process data: arithmetic and logical operations
o Fetch operands, compute result, store result

o Implicit sequential control flow

Data movement instructions
o Move data between memory, registers, I/O devices
o Implicit sequential control flow

Control flow instructions
o Change the sequence of instructions that are executed

29



What Are the Elements of An ISA?

Load/store vs. memory/memory architectures

o Load/store architecture: operate instructions operate only on
registers

E.g., MIPS, ARM and many RISC ISAs

o Memory/memory architecture: operate instructions can
operate on memory locations

E.g., x86, VAX and many CISC ISAs

30



What Are the Elements of An ISA?

Addressing modes specify how to obtain the operands

Q

Absolute LW rt, 10000

use immediate value as address

Register Indirect: LW rt, (r,...)

use GPR[r,...] as address

Displaced or based: LW rt, offset(r,...)
use offset+GPR[r,...] as address

Indexed: LW rt, (1 .cor Mingey)
use GPR[r,..]*+GPR[r, 4.,] as address
Memory Indirect LW rt ((r...))

use value at M[ GPR[ r__..] ] as address
Auto inc/decrement LW Rt, (r,...)

use GRP[r,...] as address, but inc. or dec. GPR[r,...] each time

31



What Are the Benefits of Different Addressing Modes?

Another example of programmer vs. microarchitect tradeoff

Advantage of more addressing modes:

o Enables better mapping of high-level constructs to the
machine: some accesses are better expressed with a different
mode = reduced number of instructions and code size

Think array accesses (autoincrement mode)
Think indirection (pointer chasing)
Sparse matrix accesses

Disadvantage:
a More work for the compiler
o More work for the microarchitect

32



ISA Orthogonality

Orthogonal ISA:
o All addressing modes can be used with all instruction types

o Example: VAX

(~13 addressing modes) x (>300 opcodes) x (integer and FP
formats)

Who is this good for?
Who is this bad for?

33



Is the .LC-3b ISA Orthogonal?

T T T T T T T T T T T
ADD" 0001 DR SR1 |A| opspec
| | | | | | | | | | |
AND 0101 DR SR1 |A| opspec
T T T T T 1 T T T T T
BR 0000 nlzlp PColiset9
| | | | | | |
T T T T T T T T II : II :
JMP 1100 000 BaseR 000000
1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T
JSR(IRD) | 0 IIDD | A o clnpelmnld.s;l:lecl:ifielr w
+ T T T T T T T T T T T T
LDB 0010 DR BaseR boftiseté
e e e e e e e e e e =
LDW 0110 DR BaseR offseté
| | | |
+ T T T T : II : T : II : II :
LEA 1110 DR PCofiset9
1 1 1 1 1 1 1 | 1 1 1 1 1
|?T| T T T T T T T T 1 T T T T T
1000 000000000000
| | | | | | | | | | | | | |
+ T T T T T T T T T T
SHF 1101 DR SR |A|D| amountd
T T T T T T T T T T T T
STB 0011 SR BaseR boffseté
1 1 1 1 1 1 1 | 1 1 1 1
T T T T T T T T T T T T
STW 0111 SR BaseR offseté
| | | | |
T T T T T T : : T : II : II :
TRAP 1111 0000 trapvect
1 1 1 1 1 1 1 | 1 1 1 1 1
+ T T T T T T T T T T T
XOR 1001 DR SR1 |A| op.spec
1 1 1 l l 1 1 1 | 1 1
T T T T T T T T T T T T T T
nGT USEd 1 lI[]III D 1 1 1 1 | 1 | 1 1 1 1 1
T T T T T T T T I T T T T T
not used 1011
| | | | | | | | | | | | |




L.C-3b: Addressing Modes of ADD

Encodings
15 132 n 9 ] L] 5 4 3 2 0
1 | | | | | | 1 | |
0001 DR SR1 |0 | oo 5R2
| | | | | | | | | |
15 12 ;11 q a & 5 F] a
1 | | | | | | 1 | | |
0001 DR SR 1 imm5
| | | | | | | | | | |
Operation
if (bat[5] = 0)
DR =5R1 + SRZ;
else

DR = SR1 + SEXT(imm5);
setee();




L.C-3b: Addressing Modes of of JSR(R)

Encodings

15 12 1 1 a

|
JSR 0100 1 PCoffsetl1
|

15 2 1n  m % | L] 5 a
| | | I I

| | | |
JSRR 0100 0| o0 | BaseR 000000
| | | |

Operation

R7=PC';
if (bat[11] ==0)
PC = BaseR;
else
PC = PC! + LSHF(SEXT(PCoffszetll), 1);

Description

First, the incremented PC 1s saved m R7. Thas 1s the linkage back to the calling routine. Then, the PC 15
loaded with the address of the first mstmuction of the subroutine, causing an unconditional jump to that
address. The address of the subroutne 1s obtained from the base register (1f bit[11] 15 0), or the address 1s
computed by sign-extending bits [10:0] to 16 bats, left-shifting the result one bit, and then adding this value
to the incremented PC (if bit[11] 1s 1).



What Are the Elements of An ISA?

How to interface with I/O devices

o Memory mapped I/O
A region of memory is mapped to I/O devices
I/O operations are loads and stores to those locations

o Special I/0 instructions
IN and OUT instructions in x86 deal with ports of the chip

o Tradeoffs?
Which one is more general purpose?

37



What Are the Elements of An ISA?

Privilege modes
o User vs supervisor
o Who can execute what instructions?

Exception and interrupt handling

o What procedure is followed when something goes wrong with an
instruction?

o What procedure is followed when an external device requests the
processor?

o Vectored vs. non-vectored interrupts (early MIPS)

Virtual memory

o Each program has the illusion of the entire memory space, which is greater
than physical memory

Access protection

We will talk about these later 38



Another Question

= Does the LC-3b ISA contain complex instructions?

39



Complex vs. Simple Instructions

Complex instruction: An instruction does a lot of work, e.qg.
many operations

o Insert in a doubly linked list
o Compute FFT
o String copy

Simple instruction: An instruction does small amount of
work, it is a primitive using which complex operations can
be built

o Add
a XOR
o Multiply

40



Complex vs. Simple Instructions

Advantages of Complex instructions

+ Denser encoding - smaller code size - better memory
utilization, saves off-chip bandwidth, better cache hit rate
(better packing of instructions)

+ Simpler compiler: no need to optimize small instructions as
much

Disadvantages of Complex Instructions

- Larger chunks of work = compiler has less opportunity to
optimize (limited in fine-grained optimizations it can do)

- More complex hardware - translation from a high level to
control signals and optimization needs to be done by hardware

41



ISA-level Tradeoffs: Semantic Gap

Where to place the ISA? Semantic gap

o Closer to high-level language (HLL) - Small semantic gap,
complex instructions

o Closer to hardware control signals? - Large semantic gap,
simple instructions

RISC vs. CISC machines

o RISC: Reduced instruction set computer

o CISC: Complex instruction set computer
FFT, QUICKSORT, POLY, FP instructions?
VAX INDEX instruction (array access with bounds checking)

42



ISA-level Tradeotts: Semantic Gap

Some tradeoffs (for you to think about)

Simple compiler, complex hardware vs.
complex compiler, simple hardware

o Caveat: Translation (indirection) can change the tradeoff!
Burden of backward compatibility

Performance?

o Optimization opportunity: Example of VAX INDEX instruction:
who (compiler vs. hardware) puts more effort into
optimization?

o Instruction size, code size

43



X86: Small Semantic Gap: String Operations

An instruction operates on a string
o Move one string of arbitrary length to another location
o Compare two strings

Enabled by the ability to specify repeated execution of an
instruction (in the ISA)

o Using a “prefix” called REP prefix

Example: REP MOVS instruction
a Only two bytes: REP prefix byte and MOVS opcode byte (F2 A4)

o Implicit source and destination registers pointing to the two
strings (ESI, EDI)

o Implicit count register (ECX) specifies how long the string is

44



X86: Small Semantic Gap: String Operations

REP MOVS (DEST SRC) DEST « SRC;
IF (Byte move)
THEN IFDF=0
THEN
. (RIE)SI < (RIE)SI = 1;
IF AddressSize = 16 RIEIDI < (RIEDI = 1;
THEN ELSE
(RIEJS! « (RIE)SI - 1;
Use CX for CountReq; (RIE)DI « (RIE)DI - 1:
ELSE IF AddressSize = 64 and REX.W used ELSE It (Word move)
THEN Use RCX for CountReq; FI; THEN IF DF =0
(RIESS! « (RIE)SI + 2:
ELSE (RIEJDI < (RE)DI + 2;
. Fl;
Use ECX for CountReq; ELSE
FI: (RIE)SI < (RE)SI - 2;
WHILE CountReg = 0 g 0 RERE
ELSE IF (Doubleword move)
DO _ o . THEN IFDF =0
Service pending interrupts (if any); (RIEJS! < (RIEJSI + 4;
Execute associated string instruction; LT'EJDIHRIE]DH%

ELSE
(RIE)S! « (RIE)SI - 4;
{RIEID! < (RIE)DI - 4;

CountReg « (CountReg - 1);
IF CountReg=10
THEN exit WHILE loop; FI;
IF (Repeat prefix is REPZ or REPE) and (ZF = 0)
or (Repeat prefix is REPNZ or REPNE) and (ZF = 1)
THEN exit WHILE loop; FI;

Fl:
ELSE IF (Quadword move)

THENIFDF =0
(RIE)SI « (RIE)SI + B:
(RIEIDI « (RIE)DI + 8;
Fl;

ELSE
(RIE)SI « (RIE)SI - B;
(RIEDI « (RIE)DI - 8;

Fl:

0D;

Fl;

How many instructions does this take in ARM and MIPS?

45



Small Semantic Gap Examples in VAX

FIND FIRST

o Find the first set bit in a bit field

o Helps OS resource allocation operations
SAVE CONTEXT, LOAD CONTEXT

o Special context switching instructions
INSQUEUE, REMQUEUE

o Operations on doubly linked list

INDEX

o Array access with bounds checking
STRING Operations

o Compare strings, find substrings, ...
Cyclic Redundancy Check Instruction
EDITPC

o Implements editing functions to display fixed format output

Digital Equipment Corp., “VAX11 780 Architecture Handbook,” 1977-78.

46



Small versus Large Semantic Gap

CISC vs. RISC

o Complex instruction set computer = complex instructions
Initially motivated by “not good enough” code generation
o Reduced instruction set computer = simple instructions

John Cocke, mid 1970s, IBM 801
0 Goal: enable better compiler control and optimization

RISC motivated by

o Memory stalls (no work done in a complex instruction when
there is a memory sta/f?)

When is this correct?
o Simplifying the hardware = lower cost, higher frequency

o Enabling the compiler to optimize the code better
Find fine-grained parallelism to reduce stalls

47



How High or LLow Can You Go?

Very large semantic gap

o Each instruction specifies the complete set of control signals in
the machine

o Compiler generates control signals

o Open microcode (John Cocke, circa 1970s)
Gave way to optimizing compilers

Very small semantic gap
o ISA is (almost) the same as high-level language

o Java machines, LISP machines, object-oriented machines,
capability-based machines

48



A Note on ISA Evolution

ISAs have evolved to reflect/satisfy the concerns of the day

Examples:

o Limited on-chip and off-chip memory size

o Limited compiler optimization technology

o Limited memory bandwidth

o Need for specialization in important applications (e.g., MMX)

Use of translation (in HW and SW) enabled underlying
implementations to be similar, regardless of the ISA

o Concept of dynamic/static interface
o Contrast it with hardware/software interface

49



Effect of Translation

One can translate from one ISA to another /54 to change
the semantic gap tradeoffs

Examples

o Intel’'s and AMD’s x86 implementations translate x86
instructions into programmer-invisible microoperations (simple
instructions) in hardware

o Transmeta’s x86 implementations translated x86 instructions
into “secret” VLIW instructions in software (code morphing
software)

Think about the tradeoffs

50



