
18-447

Computer Architecture

Lecture 27: Prefetching

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/9/2013

Announcements

 No office hours today

 Graded homework and labs

 You can find grade distributions on the website

 Lab 6: Memory Hierarchy Due April 20

 HW 6: Due today!

 HW 7: Will be out soon.

 Please do the homework to prepare for Midterm II

 Midterm II: April 23 – start preparing now

 Similar in format and spirit to Midterm I. Solve past midterms.

2

Suggestions for Midterm II

 Solve past midterms (and finals) on your own…

 And, check your solutions vs. the online solutions

 Questions will be similar in spirit

 http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exam
s

 http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exam
s

 Do Homework 7

 Study and internalize the lecture material well.

 Do the readings that are required. 3

http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams

Lab 4 Statistics

 MAX 100

 MIN 67.79

 MEDIAN 96.16

 MEAN 91.32

 STD 9.92

4

Lab 4 Grade Distribution

5

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

Lab 4 Grade Distribution

Lab 4 Extra Credit (Branch Performance)

 Bailey Forrest -- bcforres (0.858209405)

 Aaron Reyes -- areyes (0.821014754)

 Jeremie Kim -- jeremiek (0.74389269)

 Xiang Lin -- xianglin (0.701012488)

 Clement Loh -- changshl (0.69833888)

6

Lab 6: Memory Hierarchy

 Due Sunday (April 20)

 Cycle-level modeling of L2 cache and DRAM-based main
memory

 Extra credit: Prefetching

 Design your own hardware prefetcher to improve system
performance

7

Last Lecture

 Memory Latency Tolerance

 Runahead Execution and Enhancements

 Efficient Runahead Execution

 Address-Value Delta Prediction

8

Today

 Basics of Prefetching

 Advanced Prefetching

9

Tolerating Memory Latency

11

Cache Misses Responsible for Many Stalls

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

12

Review: Memory Latency Tolerance Techniques

 Caching [initially by Wilkes, 1965]
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching [initially in IBM 360/91, 1967]
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading [initially in CDC 6600, 1964]
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an

ongoing research effort

 Out-of-order execution [initially by Tomasulo, 1967]
 Tolerates irregular cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies
 Runahead execution alleviates this problem (as we will see in a later lecture)

Prefetching

Outline of Prefetching Lectures

 Why prefetch? Why could/does it work?

 The four questions

 What (to prefetch), when, where, how

 Software prefetching

 Hardware prefetching algorithms

 Execution-based prefetching

 Prefetching performance

 Coverage, accuracy, timeliness

 Bandwidth consumption, cache pollution

 Prefetcher throttling (if we get to it)

 Issues in multi-core (if we get to it)

14

Prefetching

 Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

 Why?

 Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict?

 Involves predicting which address will be needed in the
future

 Works if programs have predictable miss address patterns

15

Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction

16

Basics

 In modern systems, prefetching is usually done in cache
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by

 hardware

 compiler

 programmer

17

How a HW Prefetcher Fits in the Memory System

18

Prefetching: The Four Questions

 What

 What addresses to prefetch

 When

 When to initiate a prefetch request

 Where

 Where to place the prefetched data

 How

 Software, hardware, execution-based, cooperative

19

Challenges in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch

 Predict based on past access patterns

 Use the compiler’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
20

Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the
processor’s access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)

21

Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data  cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches  no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
22

Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L2, memory to L1. Advantages/disadvantages?

 L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?

23

Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only

 L2 misses only

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

24

Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Hardware monitors processor accesses

 Memorizes or finds patterns/strides

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

25

Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

 Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the
program

26

X86 PREFETCH Instruction

27

microarchitecture

dependent

specification

different instructions

for different cache

levels

Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

28

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?

Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access?

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency  reduced accuracy

29

Hardware Prefetching (I)

 Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

30

Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?

31

Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

 Idea:

 Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

 Next time the same load instruction is fetched,
prefetch last address + stride

32

Instruction Based Stride Prefetching

 What is the problem with this?

 Hint: how far can this get ahead? How much of the miss latency can
the prefetch cover?

 Initiating the prefetch when the load is fetched the next time can be
too late

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table (decouple frontend of
the processor from backend)

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches

33

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address
based stride prefetching where N = 1

 Read the Jouppi paper

 Stream buffer also has data storage in that paper (no prefetching
into cache)

34

Address tag Stride Control/Confidence

……. ……

Block

address

Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of
sequentially prefetched cache lines

 On a load miss check the head of all
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache

with data

 if not, allocate a new stream buffer to the new
miss address (may have to recycle a stream
buffer following LRU policy)

 Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

35

FIFO

FIFO

FIFO

FIFO

DCache

M
e
m

o
ry

 i
n
te

rf
a
c
e

Stream Buffer Design

36

Stream Buffer Design

37

Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance

38

Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream

 Prefetch degree: how many prefetches per demand access

39

Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive Prefetcher

 Well ahead of the load access stream

 Hides memory access latency better

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative Prefetcher

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

40

Prefetcher Performance (IV)

41

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 I
P

C
 c

h
a
n
g

e
 o

v
e
r

N
o

 P
re

fe
tc

h
in

g

Prefetcher Accuracy

Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

42

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip
2

ga
p

m
cf

pa
rs

er

vo
rte

x
vp

r

am
m

p

ap
pl
u ar

t

eq
ua

ke

fa
ce

re
c

ga
lg
el

m
es

a

m
gr

id

si
xt
ra

ck

sw
im

w
up

w
is
e

gm
ea

n

In
s
tr
u

c
ti
o

n
s
 p

e
r
C

y
c
le

No Prefetching

Very Conservative

Middle-of-the-Road

Very Aggressive

48%
 29%

Feedback-Directed Prefetcher Throttling (I)

 Idea:

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past
performance

 Change the location prefetches are inserted in cache based on
past performance

43

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

44

11%13%

How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers

45

Markov Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

46

A B C

D E F
1.0

.33 .5

.2

1.0.6
.2

.67

.6

.5

.2

Markov

Model

Markov Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch up to N next addresses to increase coverage

 Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B)  (C)

(A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

47

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr

Markov Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses
is infeasible

 Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

 Consumes a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
48

Content Directed Prefetching (I)

 A specialized prefetcher for pointer values

 Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

 Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache
block’s address  if most-significant few bits match, pointer

49

Content Directed Prefetching (II)

50

x40373551

L2 DRAM
… …

= = = = = = = =

[
3

1
:2

0] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220X800

11100x800

Making Content Directed Prefetching Efficient

 Hardware does not have enough information on pointers

 Software does (and can profile to get more information)

 Idea:

 Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

 Hardware uses hints to prefetch only likely-useful pointers.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

51

52

Efficient CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node -> Key != Key;

Struct node{

int Key;

int * D1_ptr;

int * D2_ptr;

node * Next;

}

node = node -> Next;

if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

53

Efficient CDP – An Example

= = = = = = = =

[3
1

:2
0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

54

Efficient CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node = node -> Next;

if (node)

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key

55

Efficient CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next

Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[3
1

:2
0]

