
18-447

Computer Architecture

Lecture 27: Prefetching

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/9/2013

Announcements

 No office hours today

 Graded homework and labs

 You can find grade distributions on the website

 Lab 6: Memory Hierarchy Due April 20

 HW 6: Due today!

 HW 7: Will be out soon.

 Please do the homework to prepare for Midterm II

 Midterm II: April 23 – start preparing now

 Similar in format and spirit to Midterm I. Solve past midterms.

2

Suggestions for Midterm II

 Solve past midterms (and finals) on your own…

 And, check your solutions vs. the online solutions

 Questions will be similar in spirit

 http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exam
s

 http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exam
s

 Do Homework 7

 Study and internalize the lecture material well.

 Do the readings that are required. 3

http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams

Lab 4 Statistics

 MAX 100

 MIN 67.79

 MEDIAN 96.16

 MEAN 91.32

 STD 9.92

4

Lab 4 Grade Distribution

5

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

Lab 4 Grade Distribution

Lab 4 Extra Credit (Branch Performance)

 Bailey Forrest -- bcforres (0.858209405)

 Aaron Reyes -- areyes (0.821014754)

 Jeremie Kim -- jeremiek (0.74389269)

 Xiang Lin -- xianglin (0.701012488)

 Clement Loh -- changshl (0.69833888)

6

Lab 6: Memory Hierarchy

 Due Sunday (April 20)

 Cycle-level modeling of L2 cache and DRAM-based main
memory

 Extra credit: Prefetching

 Design your own hardware prefetcher to improve system
performance

7

Last Lecture

 Memory Latency Tolerance

 Runahead Execution and Enhancements

 Efficient Runahead Execution

 Address-Value Delta Prediction

8

Today

 Basics of Prefetching

 Advanced Prefetching

9

Tolerating Memory Latency

11

Cache Misses Responsible for Many Stalls

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

12

Review: Memory Latency Tolerance Techniques

 Caching [initially by Wilkes, 1965]
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching [initially in IBM 360/91, 1967]
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading [initially in CDC 6600, 1964]
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an

ongoing research effort

 Out-of-order execution [initially by Tomasulo, 1967]
 Tolerates irregular cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies
 Runahead execution alleviates this problem (as we will see in a later lecture)

Prefetching

Outline of Prefetching Lectures

 Why prefetch? Why could/does it work?

 The four questions

 What (to prefetch), when, where, how

 Software prefetching

 Hardware prefetching algorithms

 Execution-based prefetching

 Prefetching performance

 Coverage, accuracy, timeliness

 Bandwidth consumption, cache pollution

 Prefetcher throttling (if we get to it)

 Issues in multi-core (if we get to it)

14

Prefetching

 Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

 Why?

 Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict?

 Involves predicting which address will be needed in the
future

 Works if programs have predictable miss address patterns

15

Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction

16

Basics

 In modern systems, prefetching is usually done in cache
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by

 hardware

 compiler

 programmer

17

How a HW Prefetcher Fits in the Memory System

18

Prefetching: The Four Questions

 What

 What addresses to prefetch

 When

 When to initiate a prefetch request

 Where

 Where to place the prefetched data

 How

 Software, hardware, execution-based, cooperative

19

Challenges in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch

 Predict based on past access patterns

 Use the compiler’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
20

Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the
processor’s access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)

21

Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
22

Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L2, memory to L1. Advantages/disadvantages?

 L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?

23

Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only

 L2 misses only

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)

24

Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Hardware monitors processor accesses

 Memorizes or finds patterns/strides

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware

25

Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

 Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the
program

26

X86 PREFETCH Instruction

27

microarchitecture

dependent

specification

different instructions

for different cache

levels

Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

28

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?

Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access?

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency reduced accuracy

29

Hardware Prefetching (I)

 Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases

30

Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?

31

Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

 Idea:

 Record the distance between the memory addresses referenced by
a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

 Next time the same load instruction is fetched,
prefetch last address + stride

32

Instruction Based Stride Prefetching

 What is the problem with this?

 Hint: how far can this get ahead? How much of the miss latency can
the prefetch cover?

 Initiating the prefetch when the load is fetched the next time can be
too late

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table (decouple frontend of
the processor from backend)

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches

33

Load Inst. Last Address Last Confidence

PC (tag) Referenced Stride

……. ……. ……

Load

Inst

PC

Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address
based stride prefetching where N = 1

 Read the Jouppi paper

 Stream buffer also has data storage in that paper (no prefetching
into cache)

34

Address tag Stride Control/Confidence

……. ……

Block

address

Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of
sequentially prefetched cache lines

 On a load miss check the head of all
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache

with data

 if not, allocate a new stream buffer to the new
miss address (may have to recycle a stream
buffer following LRU policy)

 Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

35

FIFO

FIFO

FIFO

FIFO

DCache

M
e
m

o
ry

 i
n
te

rf
a
c
e

Stream Buffer Design

36

Stream Buffer Design

37

Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance

38

Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream

 Prefetch degree: how many prefetches per demand access

39

Predicted StreamPredicted Stream

X

Access Stream

Pmax
Prefetch Distance

Pmax
Very Conservative

Pmax
Middle of the Road

Pmax
Very Aggressive

P

Prefetch Degree
X+1

1 2 3

Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive Prefetcher

 Well ahead of the load access stream

 Hides memory access latency better

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative Prefetcher

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely

40

Prefetcher Performance (IV)

41

-100%

-50%

0%

50%

100%

150%

200%

250%

300%

350%

400%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e
 I
P

C
 c

h
a
n
g

e
 o

v
e
r

N
o

 P
re

fe
tc

h
in

g

Prefetcher Accuracy

Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

42

0.0

1.0

2.0

3.0

4.0

5.0

bz
ip
2

ga
p

m
cf

pa
rs

er

vo
rte

x
vp

r

am
m

p

ap
pl
u ar

t

eq
ua

ke

fa
ce

re
c

ga
lg
el

m
es

a

m
gr

id

si
xt
ra

ck

sw
im

w
up

w
is
e

gm
ea

n

In
s
tr
u

c
ti
o

n
s
 p

e
r
C

y
c
le

No Prefetching

Very Conservative

Middle-of-the-Road

Very Aggressive

48%
 29%

Feedback-Directed Prefetcher Throttling (I)

 Idea:

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past
performance

 Change the location prefetches are inserted in cache based on
past performance

43

High Accuracy

Not-Late

Polluting

Decrease

Late

Increase

Med Accuracy

Not-Poll

Late

Increase

Polluting

Decrease

Low Accuracy

Not-Poll

Not-Late

No Change

Decrease

Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers“,
HPCA 2007.

44

11%13%

How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers

45

Markov Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), are
some addresses more likely to be referenced next

46

A B C

D E F
1.0

.33 .5

.2

1.0.6
.2

.67

.6

.5

.2

Markov

Model

Markov Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch up to N next addresses to increase coverage

 Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) (C)

(A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

47

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr

Markov Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses
is infeasible

 Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

 Consumes a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
48

Content Directed Prefetching (I)

 A specialized prefetcher for pointer values

 Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

 Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache
block’s address if most-significant few bits match, pointer

49

Content Directed Prefetching (II)

50

x40373551

L2 DRAM
… …

= = = = = = = =

[
3

1
:2

0] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

x80011100

Generate Prefetch

Virtual Address Predictor

X80022220

22220X800

11100x800

Making Content Directed Prefetching Efficient

 Hardware does not have enough information on pointers

 Software does (and can profile to get more information)

 Idea:

 Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

 Hardware uses hints to prefetch only likely-useful pointers.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.

51

52

Efficient CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node -> Key != Key;

Struct node{

int Key;

int * D1_ptr;

int * D2_ptr;

node * Next;

}

node = node -> Next;

if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

) ;

Key

Example from mst

53

Efficient CDP – An Example

= = = = = = = =

[3
1

:2
0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key

54

Efficient CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node = node -> Next;

if (node)

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key

55

Efficient CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next

Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[3
1

:2
0]

