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Announcements

No office hours today

Graded homework and labs
o You can find grade distributions on the website

Lab 6: Memory Hierarchy Due April 20

HW 6: Due today!

HW 7: Will be out soon.
o Please do the homework to prepare for Midterm II

Midterm II: April 23 — start preparing now

o Similar in format and spirit to Midterm I. Solve past midterms.
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Suggestions for Midterm 11

Solve past midterms (and finals) on your own...
o And, check your solutions vs. the online solutions
o Questions will be similar in spirit

http://www.ece.cmu.edu/~ece447//s14/doku.php?id=exam
S

http://www.ece.cmu.edu/~ece447//s13/doku.php?id=exam
S

Do Homework 7

Study and internalize the lecture material well.

Do the readings that are required.


http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams

Lab 4 Statistics

MAX 100

MIN 67.79
MEDIAN 96.16
MEAN 91.32

STD 9.92
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Lab 4 Extra Credit (Branch Performance)

Bailey Forrest -- bcforres (0.858209405)
Aaron Reyes -- areyes (0.821014754)
Jeremie Kim -- jeremiek (0.74389269)
Xiang Lin -- xianglin (0.701012488)
Clement Loh -- changshl (0.69833888)



Lab 6: Memory Hierarchy

Due Sunday (April 20)

Cycle-level modeling of L2 cache and DRAM-based main
memory

Extra credit: Prefetching

o Design your own hardware prefetcher to improve system
performance



l.ast Lecture

Memory Latency Tolerance

Runahead Execution and Enhancements
o Efficient Runahead Execution
o Address-Value Delta Prediction



Today

Basics of Prefetching

Advanced Prefetching



Tolerating Memory Latency




Cache Misses Responsible for Many Stalls
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Review: Memory Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetching [initially in IBM 360/91, 1967]
o Works well for regular memory access patterns

o Prefetching irregular access patterns is difficult, inaccurate, and hardware-
intensive

Multithreading [initially in CDC 6600, 1964]
o Works well if there are multiple threads

o Improving single thread performance using multithreading hardware is an
ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]

o Tolerates irregular cache misses that cannot be prefetched

o Requires extensive hardware resources for tolerating long latencies

o Runahead execution alleviates this problem (as we will see in a later lecture)
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Prefetching




Outline of Prefetching Lectures

Why prefetch? Why could/does it work?
The four questions

o What (to prefetch), when, where, how
Software prefetching

Hardware prefetching algorithms
Execution-based prefetching

Prefetching performance
o Coverage, accuracy, timeliness
o Bandwidth consumption, cache pollution

Prefetcher throttling (if we get to it)
Issues in multi-core (if we get to it)
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Prefetching

Idea: Fetch the data before it is needed (i.e. pre-fetch) by
the program

Why?

o Memory latency is high. If we can prefetch accurately and
early enough we can reduce/eliminate that latency.

o Can eliminate compulsory cache misses

o Can it eliminate all cache misses? Capacity, conflict?

Involves predicting which address will be needed in the
future

o Works if programs have predictable miss address patterns

15



Prefetching and Correctness

Does a misprediction in prefetching affect correctness?

No, prefetched data at a “mispredicted” address is simply
not used

There is no need for state recovery

In contrast to branch misprediction or value misprediction
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Basics

In modern systems, prefetching is usually done in cache
block granularity

Prefetching is a technique that can reduce both
o Miss rate
o Miss latency

Prefetching can be done by
o hardware

o compiler

0 programmer
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How a HW Pretetcher Fits in the Memory System
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Prefetching: The Four Questions

What
o What addresses to prefetch

When
o When to initiate a prefetch request

Where
o Where to place the prefetched data

How
o Software, hardware, execution-based, cooperative
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Challenges 1n Prefetching: What

What addresses to prefetch

o Prefetching useless data wastes resources
Memory bandwidth
Cache or prefetch buffer space
Energy consumption

These could all be utilized by demand requests or more accurate
prefetch requests

o Accurate prediction of addresses to prefetch is important
Prefetch accuracy = used prefetches / sent prefetches

How do we know what to prefetch

o Predict based on past access patterns

o Use the compiler’ s knowledge of data structures

Prefetching algorithm determines what to prefetch
20



Challenges 1n Prefetching: When

When to initiate a prefetch request
a Prefetching too early

Prefetched data might not be used before it is evicted from
storage

o Prefetching too late
Might not hide the whole memory latency

When a data item is prefetched affects the timeliness of the
prefetcher

Prefetcher can be made more timely by

o Making it more aggressive: try to stay far ahead of the
processor’ s access stream (hardware)

o Moving the prefetch instructions earlier in the code (software)
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Challenges 1n Prefetching: Where (I)

Where to place the prefetched data

o In cache
+ Simple design, no need for separate buffers
-- Can evict useful demand data - cache pollution
o In a separate prefetch buffer
+ Demand data protected from prefetches = no cache pollution
-- More complex memory system design
- Where to place the prefetch buffer
- When to access the prefetch buffer (parallel vs. serial with cache)
- When to move the data from the prefetch buffer to cache
- How to size the prefetch buffer
- Keeping the prefetch buffer coherent

Many modern systems place prefetched data into the cache
o Intel Pentium 4, Core2’ s, AMD systems, IBM POWER4,5,6, ...
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Challenges 1n Prefetching: Where (1I)

Which level of cache to prefetch into?
o Memory to L2, memory to L1. Advantages/disadvantages?
a L2 to L1? (a separate prefetcher between levels)

Where to place the prefetched data in the cache?

o Do we treat prefetched blocks the same as demand-fetched
blocks?

o Prefetched blocks are not known to be needed
With LRU, a demand block is placed into the MRU position

Do we skew the replacement policy such that it favors the
demand-fetched blocks?

a E.g., place all prefetches into the LRU position in a way?
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Challenges 1n Prefetching: Where (111

Where to place the hardware prefetcher in the memory
hierarchy?

o In other words, what access patterns does the prefetcher see?
o L1 hits and misses

o L1 misses only

0 L2 misses only

Seeing a more complete access pattern:
+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth
intensive, more ports into the prefetcher?)
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Challenges 1n Prefetching: How

Software prefetching

o ISA provides prefetch instructions

o Programmer or compiler inserts prefetch instructions (effort)
o Usually works well only for “regular access patterns”

Hardware prefetching

o Hardware monitors processor accesses

o Memorizes or finds patterns/strides

o Generates prefetch addresses automatically

Execution-based prefetchers
o A “thread” is executed to prefetch data for the main program
a Can be generated by either software/programmer or hardware
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Sotftware Prefetching (I)

Idea: Compiler/programmer places prefetch instructions into
appropriate places in code

Mowry et al., “Design and Evaluation of a Compiler Algorithm for
Prefetching,” ASPLOS 1992.

Prefetch instructions prefetch data into caches

Compiler or programmer can insert such instructions into the
program
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X86 PREFETCH Instruction

PREFETCHh—Prefetch Data Into Caches

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 1871  PREFETCHTD m& Valid Walid Move data from mé& closer o the
processor using TO hint,
OF18/2  PREFETCHT1 m&8 Valid \falid Mowe data from m8 closer to the
processor using T1 hint.
OF18/3  PREFETCHTZ m&8 Valid \falid Move data from m& closer to the
processor using T2 hint.
OF18/0  PREFETCHNTA mZ  Valid Valid Move data from m& closer o the
processor using NTA hint.
Description

Fetches the line of data from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:

microarchitecture * TO (temporal data)—prefetch data into all levels of the cache hierarchy.
dependent < — Pentium Il processor—1st- or 2nd-level cache.
specification — Pentium 4 and Intel Xeon processors—2nd-level cache.

* T1 (temporal data with respect to first level cache)—prefetch data into level 2
cache and higher.

— Pentium Il processor—2nd-level cache.

— Pentium 4 and Intel Xeon processors—2nd-level cache.

* T2 (temporal data with respect to second level cache)—prefetch data into level 2
cache and higher.

different instructions
for different cache
levels

— Pentium Il processor—2nd-level cache.
— Pentium 4 and Intel Xeon processors—2nd-level cache.

NTA (non-temporal data with respect to all cache levels)—prefetch data into non-
temporal cache structure and into a location close to the processor, minimizing
cache pollution.

— Pentium lll processor—1st-level cache

— Pentium 4 and Intel Xeon processors—2nd-level cache 27



Sotftware Pretetching (II)

for (i=0; i<N; i++) {  while (p) { while (p) {
__prefetch(a[i+8]); ___prefetch(p=>next); ___prefetch(p=2>next>next>next);
___prefetch(b[i+8)); work(p—>data); work(p—>data);
sum += a[i]*b[i]; p = p>next; =p—>next;

} } }

Which one is better?
Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth
o How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency,
cache size, time between loop iterations) - portability?

-- Going too far back in code reduces accuracy (branches in between)
o Need “special” prefetch instructions in ISA?
Alpha load into register 31 treated as prefetch (r31==0)
PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures
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Sottware Pretetching (I11)

Where should a compiler insert prefetches?

a Prefetch for every load access?
Too bandwidth intensive (both memory and execution bandwidth)

o Profile the code and determine loads that are likely to miss
What if profile input set is not representative?

o How far ahead before the miss should the prefetch be inserted?
Profile and determine probability of use for various prefetch
distances from the miss
o What if profile input set is not representative?

0 Usually need to insert a prefetch far in advance to cover 100s of cycles
of main memory latency = reduced accuracy
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Hardware Prefetching (I)

Idea: Specialized hardware observes load/store access
patterns and prefetches data based on past access behavior

Tradeoffs:
+ Can be tuned to system implementation
+ Does not waste instruction execution bandwidth
-- More hardware complexity to detect patterns
- Software can be more efficient in some cases
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Next-Line Prefetchers

Simplest form of hardware prefetching: always prefetch next
N cache lines after a demand access (or a demand miss)
o Next-line prefetcher (or next sequential prefetcher)
o Tradeoffs:
+ Simple to implement. No need for sophisticated pattern detection
+ Works well for sequential/streaming access patterns (instructions?)
-- Can waste bandwidth with irregular patterns
-- And, even regular patterns:
- What is the prefetch accuracy if access stride =2 and N = 1?

- What if the program is traversing memory from higher to lower
addresses?

- Also prefetch “previous” N cache lines?
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Stride Prefetchers

Two kinds

a Instruction program counter (PC) based
o Cache block address based

Instruction based:

o Baer and Chen, “An effective on-chip preloading scheme to
reduce data access penalty,” SC 1991.

o Idea:

Record the distance between the memory addresses referenced by

a load instruction (i.e. stride of the load) as well as the last address
referenced by the load

Next time the same load instruction is fetched,
prefetch last address + stride
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Instruction Based Stride Prefetching

Load
Inst — |

d

PC

N

Load Inst.

Last Address

Confidence

What is the problem with this?

Q

the prefetch cover?

too late
Load will access the data cache soon after it is fetched!

Solutions:

Hint: how far can this get ahead? How much of the miss latency can

Initiating the prefetch when the load is fetched the next time can be

Use lookahead PC to index the prefetcher table (decouple frontend of
the processor from backend)

Prefetch ahead (last address + N*stride)
Generate multiple prefetches
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Cache-Block Address Based Stride Prefetching

d

Address tag Stride Control/Confidence

Block_’
address

Can detect
o A, A+N, A+2N, A+3N, ...
o Stream buffers are a special case of cache block address
based stride prefetching where N = 1
Read the Jouppi paper

Stream buffer also has data storage in that paper (no prefetching
into cache)
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Stream Buftfers (Jouppi, ISCA 1990)

Each stream buffer holds one stream of
sequentially prefetched cache lines

On a load miss check the head of all
stream buffers for an address match

o if hit, pop the entry from FIFO, update the cache
with data

o if not, allocate a new stream buffer to the new
miss address (may have to recycle a stream
buffer following LRU policy)

Stream buffer FIFOs are continuously
topped-off with subsequent cache lines
whenever there is room and the bus is not
busy

DCache

Memory interface
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Stream Buffer Design

CPU address

i

Compare

Next Address Cache Block Tag
v
Increment
Cache Block Tag
v

Prefetch Address

36



Stream Buffer Design
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Prefetcher Performance (I)

Accuracy (used prefetches / sent prefetches)
Coverage (prefetched misses / all misses)
Timeliness (on-time prefetches / used prefetches)

Bandwidth consumption

o Memory bandwidth consumed with prefetcher / without
prefetcher

o Good news: Can utilize idle bus bandwidth (if available)

Cache pollution
o Extra demand misses due to prefetch placement in cache
o More difficult to quantify but affects performance
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Pretetcher Performance (IT)

Prefetcher aggressiveness affects all performance metrics
Aggressiveness dependent on prefetcher type

For most hardware prefetchers:
o Prefetch distance: how far ahead of the demand stream
o Prefetch degree: how many prefetches per demand access

Prefetch Degree
XX+1 «—

btream

t 123 1 t 1
max maXPmaX

Very Cbhida e afetinAusmrasve
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Pretetcher Performance (I11)

How do these metrics interact?

Very Aggressive Prefetcher

o Well ahead of the load access stream

o Hides memory access latency better

o More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution
Very Conservative Prefetcher

o Closer to the load access stream

o Might not hide memory access latency completely

o Reduces potential for cache pollution and bandwidth contention
+ Likely higher accuracy, lower bandwidth, less polluting
-- Likely lower coverage and less timely
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Pretetcher Performance (IV)
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Pretetcher Pertformance (V)

o
o

B No Prefetching

B Very Conservative
E Middle-of-the-Road
B Very Aggressive

B
o

w
o

g
o

Instructions per Cycle

=
o

= Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

= Idea:
a Dynamically monitor prefetcher performance metrics

a Throttle the prefetcher aggressiveness up/down based on past
performance

o Change the location prefetches are inserted in cache based on
past performance

\

Decrease

Increase | Decrease

Decrease Increase No Change
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Feedback-Directed Prefetcher Throttling (II)
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Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers”,
HPCA 2007.
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How to Prefetch More Irregular Access Patterns?

Regular patterns: Stride, stream prefetchers do well

More irregular access patterns

o Indirect array accesses

Linked data structures

Multiple regular strides (1,2,3,1,2,3,1,2,3,...)
Random patterns?

Generalized prefetcher for all patterns?

Correlation based prefetchers

Content-directed prefetchers
Precomputation or execution-based prefetchers
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Markov Prefetching (I)

Consider the following history of cache block addresses
A B CD,CEACGCFFEAABCD,E A B,CD,C

After referencing a particular address (say A or E), are

some addresses more likely to be referenced next
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Markov Prefetching (I1I)

Cache
Block™
Addr

-~

N

Cache Block Addr

Prefetch

Confidence

Prefetch

Confidence

Idea: Record the likely-next addresses (B, C, D) after seeing an address A
o Next time A is accessed, prefetch B, C, D
o Ais said to be correlated with B, C, D

Prefetch up to N next addresses to increase coverage

Prefetch accuracy can be improved by using multiple addresses as key for
the next address: (A, B) = (C)

(A,B) correlated with C

Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.
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Markov Prefetching (I1I)

Advantages:

o Can cover arbitrary access patterns
Linked data structures
Streaming patterns (though not so efficiently!)

Disadvantages:

o Correlation table needs to be very large for high coverage

Recording every miss address and its subsequent miss addresses
is infeasible

o Low timeliness: Lookahead is limited since a prefetch for the
next access/miss is initiated right after previous

o Consumes a lot of memory bandwidth
Especially when Markov model probabilities (correlations) are low

o Cannot reduce compulsory misses
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Content Directed Prefetching (I)

A specialized prefetcher for pointer values

Cooksey et al., “A stateless, content-directed data
prefetching mechanism,” ASPLOS 2002.

Idea: Identify pointers among all values in a fetched cache
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!
+ Can eliminate compulsory misses (never-seen pointers)
-- Indiscriminately prefetches a// pointers in a cache block

How to identify pointer addresses:

o Compare address sized values within cache block with cache
block’ s address - if most-significant few bits match, pointer
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Content Directed Prefetching (II)

Virtual Address Predictor

'Generate Prefetch

[31:20]

X80022220

L2

DRAM
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Making Content Directed Prefetching Efficient

= Hardware does not have enough information on pointers
= Software does (and can profile to get more information)

= Idea:

o Compiler profiles and provides hints as to which pointer
addresses are likely-useful to prefetch.

o Hardware uses hints to prefetch only likely-useful pointers.

= Ebrahimi et al., “Techniques for Bandwidth-Efficient
Prefetching of Linked Data Structures in Hybrid Prefetching
Systems,” HPCA 2009.
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Eftficient CDP — An Example

Struct node{
HashLookup(int Key) { int Key;
int* D1_ptr;

for (node = head ; node -> Key != Key; node = node -> Next; ) : int * D2_ptr;
if (node) return node->D1; node * Next;
} }
// \
Key D1 \
" D2 Key » D1
- "| D2
Key » D1 v
> D2 Key » D1
| D2
"| D2

Example from mst

52



Efficient CDP — An |

“xample

Cache Line Addr
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D1 ptr

D2 ptr

Next

Key

D1 ptr
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Next
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l [31:20] 1[31;20] l [31:20] ’ [31:20]

—>
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Virtual Address Predictor

l [31:20]
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N \
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Etticient CDP — An Example

HashLookup(int Key) {

for (node = head ; node -> Key != Key; node = node -> Next; );

if (node) return node -> D1;

}
/ \
e \
" D2 Key » D1
v | D2
Key » D1 v
"I D2 Key » D1
"| D2
Key » D1
" D2
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Efficient CDP — An |

“xample

Cache Line Addr

[oz:T€E]

Key

D1 ptr

D2 ptr

Next

Key

D1 ptr

D2 ptr

Next
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510 B O 0

l [31:20]

l [31:20]

e

Virtual Address Predictor

// AN
Key 102 \ D1
" D2 Key >
v > D2
Key » D1 v 1
" D2 Key >
" D2
Key » D1
" D2
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