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Announcements

 No office hours today

 Graded homework and labs

 You can find grade distributions on the website

 Lab 6: Memory Hierarchy Due April 20

 HW 6: Due today!

 HW 7: Will be out soon. 

 Please do the homework to prepare for Midterm II

 Midterm II: April 23 – start preparing now

 Similar in format and spirit to Midterm I. Solve past midterms.
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Suggestions for Midterm II

 Solve past midterms (and finals) on your own…

 And, check your solutions vs. the online solutions

 Questions will be similar in spirit

 http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exam
s

 http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exam
s

 Do Homework 7

 Study and internalize the lecture material well. 

 Do the readings that are required. 3

http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s14/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams
http://www.ece.cmu.edu/~ece447/s13/doku.php?id=exams


Lab 4 Statistics

 MAX 100

 MIN 67.79

 MEDIAN 96.16

 MEAN 91.32

 STD 9.92
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Lab 4 Grade Distribution
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Lab 4 Extra Credit (Branch Performance)

 Bailey Forrest -- bcforres (0.858209405)

 Aaron Reyes -- areyes (0.821014754)

 Jeremie Kim -- jeremiek (0.74389269)

 Xiang Lin -- xianglin (0.701012488)

 Clement Loh -- changshl (0.69833888)
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Lab 6: Memory Hierarchy

 Due Sunday (April 20)

 Cycle-level modeling of L2 cache and DRAM-based main 
memory

 Extra credit: Prefetching

 Design your own hardware prefetcher to improve system 
performance
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Last Lecture

 Memory Latency Tolerance

 Runahead Execution and Enhancements

 Efficient Runahead Execution

 Address-Value Delta Prediction
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Today

 Basics of Prefetching

 Advanced Prefetching
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Tolerating Memory Latency
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Review: Memory Latency Tolerance Techniques

 Caching [initially by Wilkes, 1965]
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching [initially in IBM 360/91, 1967]
 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading [initially in CDC 6600, 1964]
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an 

ongoing research effort

 Out-of-order execution [initially by Tomasulo, 1967]
 Tolerates irregular cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies
 Runahead execution alleviates this problem (as we will see in a later lecture)



Prefetching



Outline of Prefetching Lectures

 Why prefetch? Why could/does it work?

 The four questions

 What (to prefetch), when, where, how

 Software prefetching

 Hardware prefetching algorithms

 Execution-based prefetching

 Prefetching performance

 Coverage, accuracy, timeliness

 Bandwidth consumption, cache pollution

 Prefetcher throttling (if we get to it)

 Issues in multi-core (if we get to it)
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Prefetching

 Idea: Fetch the data before it is needed (i.e. pre-fetch) by 
the program

 Why? 

 Memory latency is high. If we can prefetch accurately and 
early enough we can reduce/eliminate that latency.

 Can eliminate compulsory cache misses

 Can it eliminate all cache misses? Capacity, conflict?

 Involves predicting which address will be needed in the 
future

 Works if programs have predictable miss address patterns
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Prefetching and Correctness

 Does a misprediction in prefetching affect correctness?

 No, prefetched data at a “mispredicted” address is simply 
not used

 There is no need for state recovery

 In contrast to branch misprediction or value misprediction
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Basics

 In modern systems, prefetching is usually done in cache 
block granularity

 Prefetching is a technique that can reduce both

 Miss rate

 Miss latency

 Prefetching can be done by 

 hardware

 compiler

 programmer
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How a HW Prefetcher Fits in the Memory System
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Prefetching: The Four Questions

 What

 What addresses to prefetch

 When

 When to initiate a prefetch request

 Where

 Where to place the prefetched data

 How

 Software, hardware, execution-based, cooperative
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Challenges in Prefetching: What

 What addresses to prefetch

 Prefetching useless data wastes resources

 Memory bandwidth

 Cache or prefetch buffer space

 Energy consumption

 These could all be utilized by demand requests or more accurate 
prefetch requests

 Accurate prediction of addresses to prefetch is important

 Prefetch accuracy = used prefetches / sent prefetches

 How do we know what to prefetch

 Predict based on past access patterns

 Use the compiler’s knowledge of data structures

 Prefetching algorithm determines what to prefetch
20



Challenges in Prefetching: When

 When to initiate a prefetch request

 Prefetching too early

 Prefetched data might not be used before it is evicted from 
storage

 Prefetching too late

 Might not hide the whole memory latency

 When a data item is prefetched affects the timeliness of the 
prefetcher

 Prefetcher can be made more timely by

 Making it more aggressive: try to stay far ahead of the 
processor’s access stream (hardware)

 Moving the prefetch instructions earlier in the code (software)
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Challenges in Prefetching: Where (I)
 Where to place the prefetched data

 In cache

+ Simple design, no need for separate buffers

-- Can evict useful demand data  cache pollution

 In a separate prefetch buffer

+ Demand data protected from prefetches  no cache pollution

-- More complex memory system design

- Where to place the prefetch buffer

- When to access the prefetch buffer (parallel vs. serial with cache)

- When to move the data from the prefetch buffer to cache

- How to size the prefetch buffer

- Keeping the prefetch buffer coherent

 Many modern systems place prefetched data into the cache

 Intel Pentium 4, Core2’s, AMD systems, IBM POWER4,5,6, …
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Challenges in Prefetching: Where (II)

 Which level of cache to prefetch into?

 Memory to L2, memory to L1. Advantages/disadvantages?

 L2 to L1? (a separate prefetcher between levels)

 Where to place the prefetched data in the cache?

 Do we treat prefetched blocks the same as demand-fetched 
blocks?

 Prefetched blocks are not known to be needed

 With LRU, a demand block is placed into the MRU position

 Do we skew the replacement policy such that it favors the 
demand-fetched blocks?

 E.g., place all prefetches into the LRU position in a way?
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Challenges in Prefetching: Where (III)

 Where to place the hardware prefetcher in the memory 
hierarchy?

 In other words, what access patterns does the prefetcher see?

 L1 hits and misses

 L1 misses only 

 L2 misses only 

 Seeing a more complete access pattern:

+ Potentially better accuracy and coverage in prefetching

-- Prefetcher needs to examine more requests (bandwidth 
intensive, more ports into the prefetcher?)
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Challenges in Prefetching: How

 Software prefetching

 ISA provides prefetch instructions

 Programmer or compiler inserts prefetch instructions (effort)

 Usually works well only for “regular access patterns”

 Hardware prefetching

 Hardware monitors processor accesses

 Memorizes or finds patterns/strides

 Generates prefetch addresses automatically

 Execution-based prefetchers

 A “thread” is executed to prefetch data for the main program

 Can be generated by either software/programmer or hardware
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Software Prefetching (I)

 Idea: Compiler/programmer places prefetch instructions into 
appropriate places in code

 Mowry et al., “Design and Evaluation of a Compiler Algorithm for 
Prefetching,” ASPLOS 1992.

 Prefetch instructions prefetch data into caches

 Compiler or programmer can insert such instructions into the 
program
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X86 PREFETCH Instruction
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Software Prefetching (II)

 Can work for very regular array-based access patterns. Issues:

-- Prefetch instructions take up processing/execution bandwidth

 How early to prefetch? Determining this is difficult

-- Prefetch distance depends on hardware implementation (memory latency, 
cache size, time between loop iterations)  portability?

-- Going too far back in code reduces accuracy (branches in between)

 Need “special” prefetch instructions in ISA?

 Alpha load into register 31 treated as prefetch (r31==0)

 PowerPC dcbt (data cache block touch) instruction

-- Not easy to do for pointer-based data structures

28

for (i=0; i<N; i++) {

__prefetch(a[i+8]);

__prefetch(b[i+8]);

sum += a[i]*b[i];

}

while (p) {

__prefetch(pnext);

work(pdata);

p = pnext;

}

while (p) {

__prefetch(pnextnextnext);

work(pdata);

p = pnext;

}
Which one is better?



Software Prefetching (III)

 Where should a compiler insert prefetches?

 Prefetch for every load access? 

 Too bandwidth intensive (both memory and execution bandwidth)

 Profile the code and determine loads that are likely to miss

 What if profile input set is not representative?

 How far ahead before the miss should the prefetch be inserted?

 Profile and determine probability of use for various prefetch 
distances from the miss

 What if profile input set is not representative?

 Usually need to insert a prefetch far in advance to cover 100s of cycles 
of main memory latency  reduced accuracy
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Hardware Prefetching (I)

 Idea: Specialized hardware observes load/store access 
patterns and prefetches data based on past access behavior

 Tradeoffs:

+ Can be tuned to system implementation

+ Does not waste instruction execution bandwidth

-- More hardware complexity to detect patterns

- Software can be more efficient in some cases
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Next-Line Prefetchers

 Simplest form of hardware prefetching: always prefetch next 
N cache lines after a demand access (or a demand miss)

 Next-line prefetcher (or next sequential prefetcher)

 Tradeoffs:

+ Simple to implement. No need for sophisticated pattern detection

+ Works well for sequential/streaming access patterns (instructions?)

-- Can waste bandwidth with irregular patterns

-- And, even regular patterns:

- What is the prefetch accuracy if access stride = 2 and N = 1?

- What if the program is traversing memory from higher to lower 
addresses?

- Also prefetch “previous” N cache lines?
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Stride Prefetchers

 Two kinds

 Instruction program counter (PC) based

 Cache block address based

 Instruction based:

 Baer and Chen, “An effective on-chip preloading scheme to 
reduce data access penalty,” SC 1991.

 Idea: 

 Record the distance between the memory addresses referenced by 
a load instruction (i.e. stride of the load) as well as the last address 
referenced by the load

 Next time the same load instruction is fetched,                     
prefetch last address + stride
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Instruction Based Stride Prefetching

 What is the problem with this?

 Hint: how far can this get ahead? How much of the miss latency can 
the prefetch cover?

 Initiating the prefetch when the load is fetched the next time can be 
too late 

 Load will access the data cache soon after it is fetched!

 Solutions:

 Use lookahead PC to index the prefetcher table (decouple frontend of 
the processor from backend)

 Prefetch ahead (last address + N*stride)

 Generate multiple prefetches

33
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Cache-Block Address Based Stride Prefetching

 Can detect

 A, A+N, A+2N, A+3N, …

 Stream buffers are a special case of cache block address 
based stride prefetching where N = 1

 Read the Jouppi paper

 Stream buffer also has data storage in that paper (no prefetching 
into cache)

34
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Stream Buffers (Jouppi, ISCA 1990)

 Each stream buffer holds one stream of 
sequentially prefetched cache lines 

 On a load miss check the head of all 
stream buffers for an address match
 if hit, pop the entry from FIFO, update the cache 

with data 

 if not, allocate a new stream buffer to the new 
miss address (may have to recycle a stream 
buffer following LRU policy)

 Stream buffer FIFOs are continuously 
topped-off with subsequent cache lines 
whenever there is room and the bus is not 
busy
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Stream Buffer Design
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Stream Buffer Design

37



Prefetcher Performance (I)

 Accuracy (used prefetches / sent prefetches)

 Coverage (prefetched misses / all misses)

 Timeliness (on-time prefetches / used prefetches)

 Bandwidth consumption

 Memory bandwidth consumed with prefetcher / without 
prefetcher

 Good news: Can utilize idle bus bandwidth (if available)

 Cache pollution

 Extra demand misses due to prefetch placement in cache

 More difficult to quantify but affects performance
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Prefetcher Performance (II)

 Prefetcher aggressiveness affects all performance metrics

 Aggressiveness dependent on prefetcher type

 For most hardware prefetchers:

 Prefetch distance: how far ahead of the demand stream 

 Prefetch degree: how many prefetches per demand access

39
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Prefetcher Performance (III)

 How do these metrics interact?

 Very Aggressive Prefetcher

 Well ahead of the load access stream

 Hides memory access latency better 

 More speculative

+ Higher coverage, better timeliness

-- Likely lower accuracy, higher bandwidth and pollution

 Very Conservative Prefetcher

 Closer to the load access stream

 Might not hide memory access latency completely

 Reduces potential for cache pollution and bandwidth contention

+ Likely higher accuracy, lower bandwidth, less polluting

-- Likely lower coverage and less timely
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Prefetcher Performance (IV)
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Prefetcher Performance (V)

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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Feedback-Directed Prefetcher Throttling (I)

 Idea: 

 Dynamically monitor prefetcher performance metrics

 Throttle the prefetcher aggressiveness up/down based on past 
performance

 Change the location prefetches are inserted in cache based on 
past performance
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Feedback-Directed Prefetcher Throttling (II)

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.

 Srinath et al., “Feedback Directed Prefetching: Improving the 
Performance and Bandwidth-Efficiency of Hardware Prefetchers“, 
HPCA 2007.
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How to Prefetch More Irregular Access Patterns?

 Regular patterns: Stride, stream prefetchers do well

 More irregular access patterns

 Indirect array accesses

 Linked data structures

 Multiple regular strides (1,2,3,1,2,3,1,2,3,…)

 Random patterns?

 Generalized prefetcher for all patterns?

 Correlation based prefetchers

 Content-directed prefetchers

 Precomputation or execution-based prefetchers
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Markov Prefetching (I)

 Consider the following history of cache block addresses

A, B, C, D, C, E, A, C, F, F, E, A, A, B, C, D, E, A, B, C, D, C

 After referencing a particular address (say A or E), are 
some addresses more likely to be referenced next
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Markov Prefetching (II)

 Idea: Record the likely-next addresses (B, C, D) after seeing an address A

 Next time A is accessed, prefetch B, C, D

 A is said to be correlated with B, C, D

 Prefetch up to N next addresses to increase coverage 

 Prefetch accuracy can be improved by using multiple addresses as key for 
the next address: (A, B)  (C)

(A,B) correlated with C

 Joseph and Grunwald, “Prefetching using Markov Predictors,” ISCA 1997.

47

Cache Block Addr Prefetch Confidence …. Prefetch Confidence

(tag) Candidate 1 …. Candidate N

……. ……. …… .… ……. ……

….

Cache

Block

Addr



Markov Prefetching (III)

 Advantages:

 Can cover arbitrary access patterns

 Linked data structures

 Streaming patterns (though not so efficiently!)

 Disadvantages:

 Correlation table needs to be very large for high coverage

 Recording every miss address and its subsequent miss addresses 
is infeasible

 Low timeliness: Lookahead is limited since a prefetch for the 
next access/miss is initiated right after previous

 Consumes a lot of memory bandwidth

 Especially when Markov model probabilities (correlations) are low

 Cannot reduce compulsory misses
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Content Directed Prefetching (I) 

 A specialized prefetcher for pointer values 

 Cooksey et al., “A stateless, content-directed data 
prefetching mechanism,” ASPLOS 2002.

 Idea: Identify pointers among all values in a fetched cache 
block and issue prefetch requests for them.

+ No need to memorize/record past addresses!

+ Can eliminate compulsory misses (never-seen pointers)

-- Indiscriminately prefetches all pointers in a cache block

 How to identify pointer addresses:

 Compare address sized values within cache block with cache 
block’s address  if most-significant few bits match, pointer
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Content Directed Prefetching (II)
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Making Content Directed Prefetching Efficient

 Hardware does not have enough information on pointers

 Software does (and can profile to get more information)

 Idea:

 Compiler profiles and provides hints as to which pointer 
addresses are likely-useful to prefetch.

 Hardware uses hints to prefetch only likely-useful pointers.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient 
Prefetching of Linked Data Structures in Hybrid Prefetching 
Systems,” HPCA 2009.
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Efficient CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node -> Key != Key;

Struct node{

int Key;

int * D1_ptr;

int * D2_ptr;

node * Next;

}

node = node -> Next;

if (node) return node->D1;

}

…

Key

D2

Key D1

D2

Key D1

D2

…

Key D1

D2

Key

D1

D2

D1

)  ;

Key

Example from mst
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Efficient CDP – An Example

= = = = = = = =

[3
1

:2
0]

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key Next Key Next

Cache Line Addr

…

Key

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

D1

D2

D1

D1_ptr D2_ptr D1_ptr D2_ptr

Key
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Efficient CDP – An Example

HashLookup(int Key) {

…

for (node = head ; node = node -> Next;

if (node) 

}

) ;

…

Key

D2

D1

D2

Key D1

D2

…

Key D1

D2

Key D1

D2

D1

node -> Key != Key;

return node -> D1;

Key
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Efficient CDP – An Example

…

= = = = = = = =

[31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20] [31:20]

Virtual Address Predictor

Key D1_ptr D2_ptr Next Key D1_ptr D2_ptr Next

Cache Line Addr

Key D1

D2

Key D1

D2

Key D1

D2

…

…

Key D1

D2

Key D1

D2

[3
1

:2
0]


