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Readings 

 Required 

 Mutlu et al., “Runahead execution”, HPCA 2003. 

 Srinath et al., “Feedback directed prefetching”, HPCA 2007. 

 

 Optional 

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006. 

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005. 

 Armstrong et al., “Wrong Path Events,” MICRO 2004. 
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Tolerating Memory Latency 

 

 

 

 



Latency Tolerance 

 An out-of-order execution processor tolerates latency of 
multi-cycle operations by executing independent 
instructions concurrently 

 It does so by buffering instructions in reservation stations and 
reorder buffer  

 Instruction window: Hardware resources needed to buffer all 
decoded but not yet retired/committed instructions 

 

 What if an instruction takes 500 cycles? 

 How large of an instruction window do we need to continue 
decoding? 

 How many cycles of latency can OoO tolerate? 
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Stalls due to Long-Latency Instructions 

 When a long-latency instruction is not complete,               
it blocks instruction retirement.  

 Because we need to maintain precise exceptions  

 

 Incoming instructions fill the instruction window (reorder 
buffer, reservation stations). 

 

 Once the window is full, processor cannot place new 
instructions into the window.  

 This is called a full-window stall. 

 

 A full-window stall prevents the processor from making 
progress in the execution of the program. 
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ADD R2  R2, 64 

STOR mem[R2]  R4 

ADD R4  R4, R5 

MUL R4  R4, R3 

LOAD R3  mem[R2] 

ADD R2  R2, 8 

BEQ R1, R0, target 

LOAD R1  mem[R5] 

Full-window Stall Example 

Oldest L2 Miss! Takes 100s of cycles. 

8-entry instruction window: 

Independent of the L2 miss, 

executed out of program order,  

but cannot be retired. 

Younger instructions cannot be executed 

    because there is no space in the instruction window. 

The processor stalls until the L2 Miss is serviced. 

 Long-latency cache misses are responsible for  

    most full-window stalls. 

 

LOAD R3  mem[R2] 
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Cache Misses Responsible for Many Stalls 
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How Do We Tolerate Stalls Due to Memory? 

 Two major approaches 

 Reduce/eliminate stalls 

 Tolerate the effect of a stall when it happens 

 

 Four fundamental techniques to achieve these 

 Caching 

 Prefetching 

 Multithreading 

 Out-of-order execution 

 

 Many techniques have been developed to make these four 
fundamental techniques more effective in tolerating 
memory latency 
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Memory Latency Tolerance Techniques 

 Caching [initially by Wilkes, 1965] 
 Widely used, simple, effective, but inefficient, passive 
 Not all applications/phases exhibit temporal or spatial locality 

 
 Prefetching [initially in IBM 360/91, 1967] 

 Works well for regular memory access patterns 
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive 
 

 Multithreading [initially in CDC 6600, 1964] 
 Works well if there are multiple threads 
 Improving single thread performance using multithreading hardware is an 

ongoing research effort 
 

 Out-of-order execution [initially by Tomasulo, 1967] 
 Tolerates irregular cache misses that cannot be prefetched 
 Requires extensive hardware resources for tolerating long latencies 
 Runahead execution alleviates this problem (as we will see today) 



Runahead Execution 
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ADD R2  R2, 64 

STOR mem[R2]  R4 

ADD R4  R4, R5 

MUL R4  R4, R3 

LOAD R3  mem[R2] 

ADD R2  R2, 8 

BEQ R1, R0, target 

LOAD R1  mem[R5] 

Small Windows: Full-window Stalls 

Oldest L2 Miss! Takes 100s of cycles. 

8-entry instruction window: 

Independent of the L2 miss, 

executed out of program order,  

but cannot be retired. 

Younger instructions cannot be executed 

    because there is no space in the instruction window. 

The processor stalls until the L2 Miss is serviced. 

 L2 cache misses are responsible for most full-window stalls. 

 

LOAD R3  mem[R2] 
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Impact of L2 Cache Misses 
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Impact of L2 Cache Misses 
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The Problem 

 Out-of-order execution requires large instruction windows 
to tolerate today’s main memory latencies. 

 

 As main memory latency increases, instruction window size 
should also increase to fully tolerate the memory latency. 

 

 Building a large instruction window is a challenging task       
if we would like to achieve  

 Low power/energy consumption (tag matching logic, ld/st 
buffers) 

 Short cycle time (access, wakeup/select latencies) 

 Low design and verification complexity 

 



Efficient Scaling of Instruction Window Size 

 One of the major research issues in out of order execution 

 

 How to achieve the benefits of a large window with a small 
one (or in a simpler way)? 

 

 How do we efficiently tolerate memory latency with the 
machinery of out-of-order execution (and a small 
instruction window)? 
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Memory Level Parallelism (MLP) 

 Idea: Find and service multiple cache misses in parallel so 
that the processor stalls only once for all misses 

 

 

 

 

 

 

 

 Enables latency tolerance: overlaps latency of different misses 

 

 How to generate multiple misses? 

 Out-of-order execution, multithreading, prefetching, runahead 
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time 

A 
B 

C 

isolated miss parallel miss 



Runahead Execution (I) 

 A technique to obtain the memory-level parallelism benefits 
of a large instruction window 

 

 When the oldest instruction is a long-latency cache miss: 

 Checkpoint architectural state and enter runahead mode 

 In runahead mode: 

 Speculatively pre-execute instructions 

 The purpose of pre-execution is to generate prefetches 

 L2-miss dependent instructions are marked INV and dropped 

 Runahead mode ends when the original miss returns 

 Checkpoint is restored and normal execution resumes 

 

 Mutlu et al., “Runahead Execution: An Alternative to Very Large 
Instruction Windows for Out-of-order Processors,” HPCA 2003. 
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Compute 

Compute 

Compute 

Load 1 Miss 

Miss 1 

Stall Compute 

Load 2 Miss 

Miss 2 

Stall 

Load 1 Hit Load 2 Hit 

Compute 

Load 1 Miss 

Runahead 

Load 2 Miss Load 2 Hit 

Miss 1 

Miss 2 

Compute 

Load 1 Hit 

Saved Cycles 

Perfect Caches: 

Small Window: 

Runahead: 

Runahead Example 



Benefits of Runahead Execution 

Instead of stalling during an L2 cache miss: 

 

 Pre-executed loads and stores independent of L2-miss 
instructions generate very accurate data prefetches: 

 For both regular and irregular access patterns 

 

 Instructions on the predicted program path are prefetched 
into the instruction/trace cache and L2. 

 

 Hardware prefetcher and branch predictor tables are trained 
using future access information.  



Runahead Execution Mechanism 

 Entry into runahead mode 

 Checkpoint architectural register state 

 

 

 Instruction processing in runahead mode 

 

 

 

 Exit from runahead mode 

 Restore architectural register state from checkpoint 

 

 



Instruction Processing in Runahead Mode 

Compute 

Load 1 Miss 

Runahead 

Miss 1 

Runahead mode processing is the same as                
normal instruction processing, EXCEPT: 

 

 It is purely speculative: Architectural (software-visible) 
register/memory state is NOT updated in runahead mode. 

 

 L2-miss dependent instructions are identified and treated 
specially. 
 They are quickly removed from the instruction window. 

 Their results are not trusted. 

 

 
 



L2-Miss Dependent Instructions 

Compute 

Load 1 Miss 

Runahead 

Miss 1 

 Two types of results produced: INV and VALID 

 

 INV = Dependent on an L2 miss 

 

 INV results are marked using INV bits in the register file and 
store buffer. 

 

 INV values are not used for prefetching/branch resolution. 

 



Removal of Instructions from Window 

Compute 

Load 1 Miss 

Runahead 

Miss 1 

 Oldest instruction is examined for pseudo-retirement 

 An INV instruction is removed from window immediately. 

 A VALID instruction is removed when it completes execution. 

 

 Pseudo-retired instructions free their allocated resources. 

 This allows the processing of later instructions. 

 

 Pseudo-retired stores communicate their data to       
dependent loads. 

 
 



Store/Load Handling in Runahead Mode 

Compute 

Load 1 Miss 

Runahead 

Miss 1 

 A pseudo-retired store writes its data and INV status to a  
dedicated memory, called runahead cache.  

 

 Purpose: Data communication through memory in runahead mode. 

 

 A dependent load reads its data from the runahead cache. 

 

 Does not need to be always correct  Size of runahead cache is 
very small. 



Branch Handling in Runahead Mode 

Compute 

Load 1 Miss 

Runahead 

Miss 1 

 INV branches cannot be resolved. 

 A mispredicted INV branch causes the processor to stay on the wrong 

program path until the end of runahead execution. 

 

 VALID branches are resolved and initiate recovery if mispredicted. 

 



Runahead Execution Pros and Cons  

 Advantages: 
+ Very accurate prefetches for data/instructions (all cache levels) 

    + Follows the program path 

+ Simple to implement, most of the hardware is already built in 

+ Versus other pre-execution based prefetching mechanisms: 

 + Uses the same thread context as main thread, no waste of context 

 + No need to construct a pre-execution thread 

 

 Disadvantages/Limitations: 
-- Extra executed instructions 

-- Limited by branch prediction accuracy 

-- Cannot prefetch dependent cache misses. Solution? 

-- Effectiveness limited by available “memory-level parallelism” (MLP) 

-- Prefetch distance limited by memory latency 
 

  Implemented in IBM POWER6, Sun “Rock” 
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Runahead Execution vs. Large Windows 
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Runahead vs. A Real Large Window 

 When is one beneficial, when is the other? 

 Pros and cons of each 
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Runahead on In-order vs. Out-of-order 
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Effect of Runahead in Sun ROCK 

 Shailender Chaudhry talk, Aug 2008. 
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Runahead Enhancements 

 

 

 

 



Readings 

 Required 

 Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003. 

 

 Recommended 

 

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006. 

 

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005. 

 

 Armstrong et al., “Wrong Path Events,” MICRO 2004. 
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Limitations of the Baseline Runahead Mechanism 

 Energy Inefficiency 

 A large number of instructions are speculatively executed 

 Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06] 

 

 Ineffectiveness for pointer-intensive applications 

 Runahead cannot parallelize dependent L2 cache misses 

 Address-Value Delta (AVD) Prediction [MICRO’05] 

 

 Irresolvable branch mispredictions in runahead mode 

 Cannot recover from a mispredicted L2-miss dependent branch 

 Wrong Path Events [MICRO’04] 

 

 



The Efficiency Problem 
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Causes of Inefficiency 

 Short runahead periods 

 

 

 Overlapping runahead periods 

 

 

 Useless runahead periods 

 

 

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top 
Picks 2006. 



Short Runahead Periods 

 Processor can initiate runahead mode due to an already in-flight L2 
miss generated by 

 the prefetcher, wrong-path, or a previous runahead period 

 

 

 

 

 

 

 

 Short periods   

 are less likely to generate useful L2 misses 

 have high overhead due to the flush penalty at runahead exit 

 

Compute 

Load 1 Miss 

Runahead 

Load 2 Miss Load 2 Miss 

Miss 1 

Miss 2 

Load 1 Hit 



Overlapping Runahead Periods 

Compute 

Load 1 Miss 

Miss 1 

Runahead 

Load 2 Miss 

Miss 2 

Load 2 INV Load 1 Hit 

OVERLAP OVERLAP 

 Two runahead periods that execute the same instructions 

 

 

 

 

 

 

 

 Second period is inefficient 

 



Useless Runahead Periods 

 Periods that do not result in prefetches for normal mode  

 

 

 

 

 

 They exist due to the lack of memory-level parallelism 

 Mechanism to eliminate useless periods: 

 Predict if a period will generate useful L2 misses 

 Estimate a period to be useful if it generated an L2 miss that 
cannot be captured by the instruction window 

 Useless period predictors are trained based on this estimation 

Compute 

Load 1 Miss 

Runahead 

Miss 1 

Load 1 Hit 
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Overall Impact on IPC 
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Taking Advantage of Pure Speculation 

 Runahead mode is purely speculative 

 

 The goal is to find and generate cache misses that would 
otherwise stall execution later on 

 

 How do we achieve this goal most efficiently and with the 
highest benefit? 

 

 Idea: Find and execute only those instructions that will lead 
to cache misses (that cannot already be captured by the 
instruction window) 

 

 How? 
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Limitations of the Baseline Runahead Mechanism 

 Energy Inefficiency 

 A large number of instructions are speculatively executed 

 Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06] 

 

 Ineffectiveness for pointer-intensive applications 

 Runahead cannot parallelize dependent L2 cache misses 

 Address-Value Delta (AVD) Prediction [MICRO’05] 

 

 Irresolvable branch mispredictions in runahead mode 

 Cannot recover from a mispredicted L2-miss dependent branch 

 Wrong Path Events [MICRO’04] 

 

 



 

 

 

 

 

 

 

 

 Runahead execution cannot parallelize dependent misses 

 wasted opportunity to improve performance 

 wasted energy (useless pre-execution) 

 

 Runahead performance would improve by 25% if this 
limitation were ideally overcome 

 

 

 

The Problem: Dependent Cache Misses 

Compute 

Load 1 Miss 

Miss 1 

Load 2 Miss 

Miss 2 

Load 2 Load 1 Hit 

Runahead: Load 2 is dependent on Load 1 

Runahead 

Cannot Compute Its Address! 

INV 



Parallelizing Dependent Cache Misses 

 Idea: Enable the parallelization of dependent L2 cache 
misses in runahead mode with a low-cost mechanism 

 

 

 How: Predict the values of L2-miss address (pointer) 
loads 

 Address load: loads an address into its destination register, 
which is later used to calculate the address of another load 

 as opposed to data load 

 

 Read: 

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005. 

 

 



Parallelizing Dependent Cache Misses 

Compute 

Load 1 Miss 

Miss 1 

Load 2 Hit 

Miss 2 

Load 2 Load 1 Hit 

Value Predicted 

Runahead 
Saved Cycles 

Can Compute Its Address 

Compute 

Load 1 Miss 

Miss 1 

Load 2 Miss 

Miss 2 

Load 2 INV Load 1 Hit 

Runahead 

Cannot Compute Its Address! 

Saved Speculative 

Instructions 
Miss 



AVD Prediction [MICRO’05] 

 Address-value delta (AVD) of a load instruction defined as: 

       AVD = Effective Address of Load – Data Value of Load 

 

 For some address loads, AVD is stable 

 An AVD predictor keeps track of the AVDs of address loads 

 When a load is an L2 miss in runahead mode, AVD 
predictor is consulted 

 

 If the predictor returns a stable (confident) AVD for that 
load, the value of the load is predicted 

       Predicted Value = Effective Address – Predicted AVD 

 

 

 

 



Why Do Stable AVDs Occur? 

 Regularity in the way data structures are  

 allocated in memory AND 

 traversed 

 

 Two types of loads can have stable AVDs 

 Traversal address loads 

 Produce addresses consumed by address loads 

 Leaf address loads 

 Produce addresses consumed by data loads 



Traversal Address Loads 

Regularly-allocated linked list: 

A 

A+k 

A+2k 

A+3k ... 

A traversal address load loads the 

pointer to next node: 

node = nodenext 

Effective Addr Data Value AVD 

A A+k -k 

A+k A+2k -k 

A+2k A+3k -k 

Stable AVD Striding 

data value 

AVD = Effective Addr – Data Value 



Leaf Address Loads 

Sorted dictionary in parser:           

Nodes point to strings (words)        

String and node allocated consecutively             

 

A+k 

A 
C+k 

C 

B+k 

B 

D+k E+k F+k G+k 

D E F G 

Dictionary looked up for an input word.  

A leaf address load loads the pointer to 

the string of each node:  

Effective Addr Data Value AVD 

A+k A k 

C+k C k 

F+k F k 

lookup (node, input) {     // ...                               

 ptr_str = nodestring;                         
 m = check_match(ptr_str, input);             

 // …                                                       

} 

Stable AVD No stride! 

AVD = Effective Addr – Data Value string 

node 



AVD Prediction 52 

Identifying Address Loads in Hardware 

 Insight:  

 If the AVD is too large, the value that is loaded is likely not an 
address 

 

 Only keep track of loads that satisfy: 

                 -MaxAVD ≤ AVD ≤ +MaxAVD 

 

 This identification mechanism eliminates many loads from 
consideration 

 Enables the AVD predictor to be small 
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Readings 

 Required 

 Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003. 

 

 Recommended 

 

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks 
2006. 

 

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO 
2005. 

 

 Armstrong et al., “Wrong Path Events,” MICRO 2004. 
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We did not cover the following slides in 

lecture. They are for your benefit. 

 

 

 

 



Wrong Path Events 

 

 

 

 



An Observation and A Question 

• In an out-of-order processor, some 
instructions are executed on the 
mispredicted path (wrong-path instructions). 

 

• Is the behavior of wrong-path instructions 
different from the behavior of correct-path 
instructions?  

– If so, we can use the difference in behavior for 
early misprediction detection and recovery. 



What is a Wrong Path Event? 

 

   An instance of illegal or unusual behavior 

that is more likely to occur on the wrong 

path than on the correct path. 

 

Wrong Path Event = WPE 

Probability (wrong path | WPE) ~ 1 

 

 

 



Why Does a WPE Occur? 

• A wrong-path instruction may be executed 

before the mispredicted branch is 

executed. 

– Because the mispredicted branch may be 

dependent on a long-latency instruction. 

 

• The wrong-path instruction may consume 

a data value that is not properly initialized. 



WPE Example from eon:  

NULL pointer dereference 

 

1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Beginning of the loop 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 0 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



First iteration 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 0 
ptr = x8ABCD0 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



First iteration 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 0 
ptr = x8ABCD0 

*ptr 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Loop branch correctly predicted 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 1 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Second iteration 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 1 
ptr = xEFF8B0 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Second iteration 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 1 
ptr = xEFF8B0 

*ptr 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Loop exit branch mispredicted 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 2  

 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Third iteration on wrong path 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

i = 2 

ptr = 0 

 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Wrong Path Event 

xEFF8B0 x8ABCD0 x0 x0 

Array boundary 

Array of pointers 

to structs 

NULL pointer dereference! 

i = 2 

ptr = 0 

*ptr 

 
1  :   for (int i=0 ; i< length(); i++) {  

2  :         structure *ptr = array[i];          

3  :         if (ptr->x) {         

4  :               // . . . 

5  :         }  

6  :   }  

 



Types of WPEs 

• Due to memory instructions 

– NULL pointer dereference 

– Write to read-only page 

– Unaligned access (illegal in the Alpha ISA) 

– Access to an address out of segment range 

– Data access to code segment 

– Multiple concurrent TLB misses 

 



Types of WPEs (continued) 

• Due to control-flow instructions 
– Misprediction under misprediction  

• If three branches are executed and resolved as mispredicts 
while there are older unresolved branches in the processor, it 
is almost certain that one of the older unresolved branches is 
mispredicted. 

– Return address stack underflow 

– Unaligned instruction fetch address (illegal in Alpha) 

 

• Due to arithmetic instructions 
– Some arithmetic exceptions 

• e.g. Divide by zero 

 

 



Two Empirical Questions 

 

1. How often do WPEs occur? 

 

 

2. When do WPEs occur on the wrong path? 



More on Runahead Enhancements 

 

 

 

 



Eliminating Short Periods 

 Mechanism to eliminate short periods: 

 Record the number of cycles C an L2-miss has been in flight 

 If C is greater than a threshold T for an L2 miss, disable entry 
into runahead mode due to that miss 

 T can be determined statically (at design time) or dynamically 

 

 T=400 for a minimum main memory latency of 500 cycles 
works well 
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Eliminating Overlapping Periods 

 Overlapping periods are not necessarily useless 

 The availability of a new data value can result in the 
generation of useful L2 misses 

 But, this does not happen often enough 

 

 Mechanism to eliminate overlapping periods: 

 Keep track of the number of pseudo-retired instructions R 
during a runahead period 

 Keep track of the number of fetched instructions N since the 
exit from last runahead period 

 If N < R, do not enter runahead mode  
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AVD Prediction 76 

 Stable AVDs can be captured with a stride value predictor 

 Stable AVDs disappear with the re-organization of the data 
structure (e.g., sorting) 

 

 

 

 

 

 

 Stability of AVDs is dependent on the behavior of the 
memory allocator 

 Allocation of contiguous, fixed-size chunks is useful 

 

 

Properties of Traversal-based AVDs 

A 

A+k 

A+2k 

A+3k 

A+3k 

A+k 

A 

A+2k 

Sorting 

Distance between 

nodes NOT constant!  
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Properties of Leaf-based AVDs 

 Stable AVDs cannot be captured with a stride value predictor 

 Stable AVDs do not disappear with the re-organization of  
the data structure (e.g., sorting) 

 

 

 

 

 

 

 Stability of AVDs is dependent on the behavior of the  
memory allocator 

 

 

 

A+k 

A 

B+k 

B C 

C+k 
Sorting 

Distance between 

node and string 

still constant! 

C+k 

C 

A+k 

A B 

B+k 
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An Implementable AVD Predictor 

 Set-associative prediction table 

 Prediction table entry consists of 

 Tag (Program Counter of the load) 

 Last AVD seen for the load 

 Confidence counter for the recorded AVD 

 

 Updated when an address load is retired in normal mode 

 Accessed when a load misses in L2 cache in runahead mode 

 Recovery-free: No need to recover the state of the processor 
or the predictor on misprediction 

 Runahead mode is purely speculative 
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AVD Update Logic 



AVD Prediction 80 

AVD Prediction Logic 



AVD Prediction 81 

Baseline Processor 

 Execution-driven Alpha simulator 

 8-wide superscalar processor 

 128-entry instruction window, 20-stage pipeline 

 64 KB, 4-way, 2-cycle L1 data and instruction caches 

 1 MB, 32-way, 10-cycle unified L2 cache 

 500-cycle minimum main memory latency 

 32 DRAM banks, 32-byte wide processor-memory bus (4:1 
frequency ratio), 128 outstanding misses 

 Detailed memory model 

 

 Pointer-intensive benchmarks from Olden and SPEC INT00 
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AVD vs. Stride VP Performance 
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