
18-447

Computer Architecture

Lecture 26: Runahead Execution

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 4/7/2014

Today

 Start Memory Latency Tolerance

 Runahead Execution

 Prefetching

2

Readings

 Required

 Mutlu et al., “Runahead execution”, HPCA 2003.

 Srinath et al., “Feedback directed prefetching”, HPCA 2007.

 Optional

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

 Armstrong et al., “Wrong Path Events,” MICRO 2004.

3

Tolerating Memory Latency

Latency Tolerance

 An out-of-order execution processor tolerates latency of
multi-cycle operations by executing independent
instructions concurrently

 It does so by buffering instructions in reservation stations and
reorder buffer

 Instruction window: Hardware resources needed to buffer all
decoded but not yet retired/committed instructions

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

5

6

Stalls due to Long-Latency Instructions

 When a long-latency instruction is not complete,
it blocks instruction retirement.

 Because we need to maintain precise exceptions

 Incoming instructions fill the instruction window (reorder
buffer, reservation stations).

 Once the window is full, processor cannot place new
instructions into the window.

 This is called a full-window stall.

 A full-window stall prevents the processor from making
progress in the execution of the program.

7

ADD R2  R2, 64

STOR mem[R2]  R4

ADD R4  R4, R5

MUL R4  R4, R3

LOAD R3  mem[R2]

ADD R2  R2, 8

BEQ R1, R0, target

LOAD R1  mem[R5]

Full-window Stall Example

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,

executed out of program order,

but cannot be retired.

Younger instructions cannot be executed

 because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

 Long-latency cache misses are responsible for

 most full-window stalls.

LOAD R3  mem[R2]

8

Cache Misses Responsible for Many Stalls

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

How Do We Tolerate Stalls Due to Memory?

 Two major approaches

 Reduce/eliminate stalls

 Tolerate the effect of a stall when it happens

 Four fundamental techniques to achieve these

 Caching

 Prefetching

 Multithreading

 Out-of-order execution

 Many techniques have been developed to make these four
fundamental techniques more effective in tolerating
memory latency

9

10

Memory Latency Tolerance Techniques

 Caching [initially by Wilkes, 1965]
 Widely used, simple, effective, but inefficient, passive
 Not all applications/phases exhibit temporal or spatial locality

 Prefetching [initially in IBM 360/91, 1967]

 Works well for regular memory access patterns
 Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

 Multithreading [initially in CDC 6600, 1964]
 Works well if there are multiple threads
 Improving single thread performance using multithreading hardware is an

ongoing research effort

 Out-of-order execution [initially by Tomasulo, 1967]
 Tolerates irregular cache misses that cannot be prefetched
 Requires extensive hardware resources for tolerating long latencies
 Runahead execution alleviates this problem (as we will see today)

Runahead Execution

12

ADD R2  R2, 64

STOR mem[R2]  R4

ADD R4  R4, R5

MUL R4  R4, R3

LOAD R3  mem[R2]

ADD R2  R2, 8

BEQ R1, R0, target

LOAD R1  mem[R5]

Small Windows: Full-window Stalls

Oldest L2 Miss! Takes 100s of cycles.

8-entry instruction window:

Independent of the L2 miss,

executed out of program order,

but cannot be retired.

Younger instructions cannot be executed

 because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

 L2 cache misses are responsible for most full-window stalls.

LOAD R3  mem[R2]

13

Impact of L2 Cache Misses

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

512KB L2 cache, 500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

14

Impact of L2 Cache Misses

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window 2048-entry window

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Non-stall (compute) time

Full-window stall time

500-cycle DRAM latency, aggressive stream-based prefetcher

Data averaged over 147 memory-intensive benchmarks on a high-end x86 processor model

L2 Misses

15

The Problem

 Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

 As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

 Building a large instruction window is a challenging task
if we would like to achieve

 Low power/energy consumption (tag matching logic, ld/st
buffers)

 Short cycle time (access, wakeup/select latencies)

 Low design and verification complexity

Efficient Scaling of Instruction Window Size

 One of the major research issues in out of order execution

 How to achieve the benefits of a large window with a small
one (or in a simpler way)?

 How do we efficiently tolerate memory latency with the
machinery of out-of-order execution (and a small
instruction window)?

16

Memory Level Parallelism (MLP)

 Idea: Find and service multiple cache misses in parallel so
that the processor stalls only once for all misses

 Enables latency tolerance: overlaps latency of different misses

 How to generate multiple misses?

 Out-of-order execution, multithreading, prefetching, runahead

17

time

A
B

C

isolated miss parallel miss

Runahead Execution (I)

 A technique to obtain the memory-level parallelism benefits
of a large instruction window

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

 Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.

 18

Compute

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Hit Load 2 Hit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Perfect Caches:

Small Window:

Runahead:

Runahead Example

Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

 Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

 For both regular and irregular access patterns

 Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

 Hardware prefetcher and branch predictor tables are trained
using future access information.

Runahead Execution Mechanism

 Entry into runahead mode

 Checkpoint architectural register state

 Instruction processing in runahead mode

 Exit from runahead mode

 Restore architectural register state from checkpoint

Instruction Processing in Runahead Mode

Compute

Load 1 Miss

Runahead

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

 It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

 L2-miss dependent instructions are identified and treated
specially.
 They are quickly removed from the instruction window.

 Their results are not trusted.

L2-Miss Dependent Instructions

Compute

Load 1 Miss

Runahead

Miss 1

 Two types of results produced: INV and VALID

 INV = Dependent on an L2 miss

 INV results are marked using INV bits in the register file and
store buffer.

 INV values are not used for prefetching/branch resolution.

Removal of Instructions from Window

Compute

Load 1 Miss

Runahead

Miss 1

 Oldest instruction is examined for pseudo-retirement

 An INV instruction is removed from window immediately.

 A VALID instruction is removed when it completes execution.

 Pseudo-retired instructions free their allocated resources.

 This allows the processing of later instructions.

 Pseudo-retired stores communicate their data to
dependent loads.

Store/Load Handling in Runahead Mode

Compute

Load 1 Miss

Runahead

Miss 1

 A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

 Purpose: Data communication through memory in runahead mode.

 A dependent load reads its data from the runahead cache.

 Does not need to be always correct  Size of runahead cache is
very small.

Branch Handling in Runahead Mode

Compute

Load 1 Miss

Runahead

Miss 1

 INV branches cannot be resolved.

 A mispredicted INV branch causes the processor to stay on the wrong

program path until the end of runahead execution.

 VALID branches are resolved and initiate recovery if mispredicted.

Runahead Execution Pros and Cons

 Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)

 + Follows the program path

+ Simple to implement, most of the hardware is already built in

+ Versus other pre-execution based prefetching mechanisms:

 + Uses the same thread context as main thread, no waste of context

 + No need to construct a pre-execution thread

 Disadvantages/Limitations:
-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance limited by memory latency

 Implemented in IBM POWER6, Sun “Rock”

27

28

12%

35%

13%

15%

22% 12%

16% 52%

22%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

No prefetcher, no runahead

Only prefetcher (baseline)

Only runahead

Prefetcher + runahead

Performance of Runahead Execution

29

Runahead Execution vs. Large Windows

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

128-entry window (baseline)

128-entry window with Runahead
256-entry window

384-entry window
512-entry window

Runahead vs. A Real Large Window

 When is one beneficial, when is the other?

 Pros and cons of each

30

31

Runahead on In-order vs. Out-of-order

39%

50%28%

14%

20%

17%

73%

73%

15%

20%

47%15%

12%

22%

13%

16%

23%

10%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

in-order baseline

in-order + runahead

out-of-order baseline

out-of-order + runahead

Effect of Runahead in Sun ROCK

 Shailender Chaudhry talk, Aug 2008.

32

Runahead Enhancements

Readings

 Required

 Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

 Recommended

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

 Armstrong et al., “Wrong Path Events,” MICRO 2004.

34

Limitations of the Baseline Runahead Mechanism

 Energy Inefficiency

 A large number of instructions are speculatively executed

 Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

 Ineffectiveness for pointer-intensive applications

 Runahead cannot parallelize dependent L2 cache misses

 Address-Value Delta (AVD) Prediction [MICRO’05]

 Irresolvable branch mispredictions in runahead mode

 Cannot recover from a mispredicted L2-miss dependent branch

 Wrong Path Events [MICRO’04]

The Efficiency Problem

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
b

z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e
r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e
x

v
p

r

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

e
q

u
a

k
e

fa
c
e

re
c

fm
a
3

d

g
a

lg
e

l

lu
c
a

s

m
e

s
a

m
g

ri
d

s
ix

tr
a
c
k

s
w

im

w
u
p

w
is

e

A
V

G

% Increase in IPC

% Increase in Executed Instructions

235%

22%

27%

Causes of Inefficiency

 Short runahead periods

 Overlapping runahead periods

 Useless runahead periods

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.

Short Runahead Periods

 Processor can initiate runahead mode due to an already in-flight L2
miss generated by

 the prefetcher, wrong-path, or a previous runahead period

 Short periods

 are less likely to generate useful L2 misses

 have high overhead due to the flush penalty at runahead exit

Compute

Load 1 Miss

Runahead

Load 2 Miss Load 2 Miss

Miss 1

Miss 2

Load 1 Hit

Overlapping Runahead Periods

Compute

Load 1 Miss

Miss 1

Runahead

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

OVERLAP OVERLAP

 Two runahead periods that execute the same instructions

 Second period is inefficient

Useless Runahead Periods

 Periods that do not result in prefetches for normal mode

 They exist due to the lack of memory-level parallelism

 Mechanism to eliminate useless periods:

 Predict if a period will generate useful L2 misses

 Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

 Useless period predictors are trained based on this estimation

Compute

Load 1 Miss

Runahead

Miss 1

Load 1 Hit

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
b

z
ip

2

c
ra

ft
y

e
o

n

g
a

p

g
c
c

g
z
ip

m
c
f

p
a

rs
e
r

p
e

rl
b

m
k

tw
o

lf

v
o

rt
e
x

v
p

r

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

e
q

u
a

k
e

fa
c
e

re
c

fm
a
3

d

g
a

lg
e

l

lu
c
a

s

m
e

s
a

m
g

ri
d

s
ix

tr
a
c
k

s
w

im

w
u
p

w
is

e

A
V

G

In
c

re
a

s
e

 i
n

 E
x

e
c

u
te

d
 I
n

s
tr

u
c
ti

o
n

s

baseline runahead

all techniques

235%

Overall Impact on Executed Instructions

26.5%

6.2%

Overall Impact on IPC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%
b

z
ip

2

c
ra

ft
y

e
o
n

g
a
p

g
c
c

g
z
ip

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k

tw
o

lf

v
o

rt
e
x

v
p

r

a
m

m
p

a
p
p

lu

a
p
s
i

a
rt

e
q
u

a
k
e

fa
c
e

re
c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e

s
a

m
g

ri
d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

A
V

G

In
c

re
a

s
e

 i
n

 I
P

C

baseline runahead

all techniques

116%

22.6%

22.1%

Taking Advantage of Pure Speculation

 Runahead mode is purely speculative

 The goal is to find and generate cache misses that would
otherwise stall execution later on

 How do we achieve this goal most efficiently and with the
highest benefit?

 Idea: Find and execute only those instructions that will lead
to cache misses (that cannot already be captured by the
instruction window)

 How?

43

Limitations of the Baseline Runahead Mechanism

 Energy Inefficiency

 A large number of instructions are speculatively executed

 Efficient Runahead Execution [ISCA’05, IEEE Micro Top Picks’06]

 Ineffectiveness for pointer-intensive applications

 Runahead cannot parallelize dependent L2 cache misses

 Address-Value Delta (AVD) Prediction [MICRO’05]

 Irresolvable branch mispredictions in runahead mode

 Cannot recover from a mispredicted L2-miss dependent branch

 Wrong Path Events [MICRO’04]

 Runahead execution cannot parallelize dependent misses

 wasted opportunity to improve performance

 wasted energy (useless pre-execution)

 Runahead performance would improve by 25% if this
limitation were ideally overcome

The Problem: Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 Load 1 Hit

Runahead: Load 2 is dependent on Load 1

Runahead

Cannot Compute Its Address!

INV

Parallelizing Dependent Cache Misses

 Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

 How: Predict the values of L2-miss address (pointer)
loads

 Address load: loads an address into its destination register,
which is later used to calculate the address of another load

 as opposed to data load

 Read:

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

Parallelizing Dependent Cache Misses

Compute

Load 1 Miss

Miss 1

Load 2 Hit

Miss 2

Load 2 Load 1 Hit

Value Predicted

Runahead
Saved Cycles

Can Compute Its Address

Compute

Load 1 Miss

Miss 1

Load 2 Miss

Miss 2

Load 2 INV Load 1 Hit

Runahead

Cannot Compute Its Address!

Saved Speculative

Instructions
Miss

AVD Prediction [MICRO’05]

 Address-value delta (AVD) of a load instruction defined as:

 AVD = Effective Address of Load – Data Value of Load

 For some address loads, AVD is stable

 An AVD predictor keeps track of the AVDs of address loads

 When a load is an L2 miss in runahead mode, AVD
predictor is consulted

 If the predictor returns a stable (confident) AVD for that
load, the value of the load is predicted

 Predicted Value = Effective Address – Predicted AVD

Why Do Stable AVDs Occur?

 Regularity in the way data structures are

 allocated in memory AND

 traversed

 Two types of loads can have stable AVDs

 Traversal address loads

 Produce addresses consumed by address loads

 Leaf address loads

 Produce addresses consumed by data loads

Traversal Address Loads

Regularly-allocated linked list:

A

A+k

A+2k

A+3k ...

A traversal address load loads the

pointer to next node:

node = nodenext

Effective Addr Data Value AVD

A A+k -k

A+k A+2k -k

A+2k A+3k -k

Stable AVD Striding

data value

AVD = Effective Addr – Data Value

Leaf Address Loads

Sorted dictionary in parser:

Nodes point to strings (words)

String and node allocated consecutively

A+k

A
C+k

C

B+k

B

D+k E+k F+k G+k

D E F G

Dictionary looked up for an input word.

A leaf address load loads the pointer to

the string of each node:

Effective Addr Data Value AVD

A+k A k

C+k C k

F+k F k

lookup (node, input) { // ...

 ptr_str = nodestring;
 m = check_match(ptr_str, input);

 // …

}

Stable AVD No stride!

AVD = Effective Addr – Data Value string

node

AVD Prediction 52

Identifying Address Loads in Hardware

 Insight:

 If the AVD is too large, the value that is loaded is likely not an
address

 Only keep track of loads that satisfy:

 -MaxAVD ≤ AVD ≤ +MaxAVD

 This identification mechanism eliminates many loads from
consideration

 Enables the AVD predictor to be small

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

bi
so

rt

he
al

th
m

st

pe
rim

et
er

tre
ea

dd ts
p

vo
ro

no
i

m
cf

pa
rs

er

tw
ol

f
vp

r

AVG

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

 a
n

d
 E

x
e

c
u

te
d

 I
n

s
tr

u
c

ti
o

n
s

Execution Time

Executed Instructions

Performance of AVD Prediction

runahead

14.3%
15.5%

Readings

 Required

 Mutlu et al., “Runahead Execution”, HPCA 2003, Top Picks 2003.

 Recommended

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top Picks
2006.

 Mutlu et al., “Address-Value Delta (AVD) Prediction,” MICRO
2005.

 Armstrong et al., “Wrong Path Events,” MICRO 2004.

54

We did not cover the following slides in

lecture. They are for your benefit.

Wrong Path Events

An Observation and A Question

• In an out-of-order processor, some
instructions are executed on the
mispredicted path (wrong-path instructions).

• Is the behavior of wrong-path instructions
different from the behavior of correct-path
instructions?

– If so, we can use the difference in behavior for
early misprediction detection and recovery.

What is a Wrong Path Event?

 An instance of illegal or unusual behavior

that is more likely to occur on the wrong

path than on the correct path.

Wrong Path Event = WPE

Probability (wrong path | WPE) ~ 1

Why Does a WPE Occur?

• A wrong-path instruction may be executed

before the mispredicted branch is

executed.

– Because the mispredicted branch may be

dependent on a long-latency instruction.

• The wrong-path instruction may consume

a data value that is not properly initialized.

WPE Example from eon:

NULL pointer dereference

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Beginning of the loop

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

First iteration

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 0
ptr = x8ABCD0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

First iteration

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 0
ptr = x8ABCD0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Loop branch correctly predicted

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 1

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Second iteration

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 1
ptr = xEFF8B0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Second iteration

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 1
ptr = xEFF8B0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Loop exit branch mispredicted

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 2

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Third iteration on wrong path

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

i = 2

ptr = 0

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Wrong Path Event

xEFF8B0 x8ABCD0 x0 x0

Array boundary

Array of pointers

to structs

NULL pointer dereference!

i = 2

ptr = 0

*ptr

1 : for (int i=0 ; i< length(); i++) {

2 : structure *ptr = array[i];

3 : if (ptr->x) {

4 : // . . .

5 : }

6 : }

Types of WPEs

• Due to memory instructions

– NULL pointer dereference

– Write to read-only page

– Unaligned access (illegal in the Alpha ISA)

– Access to an address out of segment range

– Data access to code segment

– Multiple concurrent TLB misses

Types of WPEs (continued)

• Due to control-flow instructions
– Misprediction under misprediction

• If three branches are executed and resolved as mispredicts
while there are older unresolved branches in the processor, it
is almost certain that one of the older unresolved branches is
mispredicted.

– Return address stack underflow

– Unaligned instruction fetch address (illegal in Alpha)

• Due to arithmetic instructions
– Some arithmetic exceptions

• e.g. Divide by zero

Two Empirical Questions

1. How often do WPEs occur?

2. When do WPEs occur on the wrong path?

More on Runahead Enhancements

Eliminating Short Periods

 Mechanism to eliminate short periods:

 Record the number of cycles C an L2-miss has been in flight

 If C is greater than a threshold T for an L2 miss, disable entry
into runahead mode due to that miss

 T can be determined statically (at design time) or dynamically

 T=400 for a minimum main memory latency of 500 cycles
works well

74

Eliminating Overlapping Periods

 Overlapping periods are not necessarily useless

 The availability of a new data value can result in the
generation of useful L2 misses

 But, this does not happen often enough

 Mechanism to eliminate overlapping periods:

 Keep track of the number of pseudo-retired instructions R
during a runahead period

 Keep track of the number of fetched instructions N since the
exit from last runahead period

 If N < R, do not enter runahead mode

75

AVD Prediction 76

 Stable AVDs can be captured with a stride value predictor

 Stable AVDs disappear with the re-organization of the data
structure (e.g., sorting)

 Stability of AVDs is dependent on the behavior of the
memory allocator

 Allocation of contiguous, fixed-size chunks is useful

Properties of Traversal-based AVDs

A

A+k

A+2k

A+3k

A+3k

A+k

A

A+2k

Sorting

Distance between

nodes NOT constant! 

AVD Prediction 77

Properties of Leaf-based AVDs

 Stable AVDs cannot be captured with a stride value predictor

 Stable AVDs do not disappear with the re-organization of
the data structure (e.g., sorting)

 Stability of AVDs is dependent on the behavior of the
memory allocator

A+k

A

B+k

B C

C+k
Sorting

Distance between

node and string

still constant!

C+k

C

A+k

A B

B+k


AVD Prediction 78

An Implementable AVD Predictor

 Set-associative prediction table

 Prediction table entry consists of

 Tag (Program Counter of the load)

 Last AVD seen for the load

 Confidence counter for the recorded AVD

 Updated when an address load is retired in normal mode

 Accessed when a load misses in L2 cache in runahead mode

 Recovery-free: No need to recover the state of the processor
or the predictor on misprediction

 Runahead mode is purely speculative

AVD Prediction 79

AVD Update Logic

AVD Prediction 80

AVD Prediction Logic

AVD Prediction 81

Baseline Processor

 Execution-driven Alpha simulator

 8-wide superscalar processor

 128-entry instruction window, 20-stage pipeline

 64 KB, 4-way, 2-cycle L1 data and instruction caches

 1 MB, 32-way, 10-cycle unified L2 cache

 500-cycle minimum main memory latency

 32 DRAM banks, 32-byte wide processor-memory bus (4:1
frequency ratio), 128 outstanding misses

 Detailed memory model

 Pointer-intensive benchmarks from Olden and SPEC INT00

AVD Prediction 82

AVD vs. Stride VP Performance

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

16 entries 4096 entries

N
o

rm
a
li

z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e
 (

e
x
c
lu

d
in

g
 h

e
a
lt

h
)

AVD

stride

hybrid

5.1%

2.7%

6.5%
5.5%

4.7%

8.6%

16 entries 4096 entries

