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Last Two Lectures 

 Main Memory 

 Organization and DRAM Operation 

 Memory Controllers 

 

 DRAM Design and Enhancements 

 More Detailed DRAM Design: Subarrays 

 RowClone and In-DRAM Computation 

 Tiered-Latency DRAM 

 

 Memory Access Scheduling 

 FR-FCFS – row-hit-first scheduling 
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Today 

 Row Buffer Management Policies 

 

 Memory Interference (and Techniques to Manage It) 

 With a focus on Memory Request Scheduling 
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Review: DRAM Scheduling Policies (I) 

 FCFS (first come first served) 

 Oldest request first 

 

 FR-FCFS (first ready, first come first served) 

1. Row-hit first 

2. Oldest first 

Goal: Maximize row buffer hit rate  maximize DRAM throughput 

 

 Actually, scheduling is done at the command level 

 Column commands (read/write) prioritized over row commands 
(activate/precharge) 

 Within each group, older commands prioritized over younger ones 
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Review: DRAM Scheduling Policies (II) 

 A scheduling policy is essentially a prioritization order 

 

 Prioritization can be based on 

 Request age 

 Row buffer hit/miss status 

 Request type (prefetch, read, write) 

 Requestor type (load miss or store miss) 

 Request criticality 

 Oldest miss in the core? 

 How many instructions in core are dependent on it? 
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Row Buffer Management Policies 

 Open row 
 Keep the row open after an access 

+ Next access might need the same row  row hit 

-- Next access might need a different row  row conflict, wasted energy 

 

 Closed row 
 Close the row after an access (if no other requests already in the request 

buffer need the same row) 

+ Next access might need a different row  avoid a row conflict 

-- Next access might need the same row  extra activate latency 

 

 Adaptive policies 

 Predict whether or not the next access to the bank will be to 
the same row 
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Open vs. Closed Row Policies 

Policy First access Next access Commands 
needed for next 
access 

Open row Row 0 Row 0 (row hit) Read  

Open row Row 0 Row 1 (row 
conflict) 

Precharge + 
Activate Row 1 + 
Read 

Closed row Row 0 Row 0 – access in 
request buffer  
(row hit) 

Read 

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed) 

Activate Row 0 + 
Read + Precharge 

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge 
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Memory Interference and Scheduling 

in Multi-Core Systems 
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Review: A Modern DRAM Controller 



Review: DRAM Bank Operation 
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Scheduling Policy for Single-Core Systems 

 A row-conflict memory access takes significantly longer than a 
row-hit access 

 Current controllers take advantage of the row buffer 

 

 FR-FCFS (first ready, first come first served) scheduling policy 

1. Row-hit first 

2. Oldest first 

 

Goal 1: Maximize row buffer hit rate  maximize DRAM throughput 

Goal 2: Prioritize older requests  ensure forward progress 

 

 Is this a good policy in a multi-core system? 
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Trend: Many Cores on Chip 

 Simpler and lower power than a single large core 

 Large scale parallelism on chip 
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IBM Cell BE 
8+1 cores 

Intel Core i7 
8 cores 

Tilera TILE Gx 
100 cores, networked 

IBM POWER7 
8 cores 

Intel SCC 
48 cores, networked 

Nvidia Fermi 
448 “cores” 

AMD Barcelona 
4 cores 

Sun Niagara II 
8 cores 



Many Cores on Chip 

 What we want: 

 N times the system performance with N times the cores 

 

 What do we get today? 
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(Un)expected Slowdowns in Multi-Core 

14 

Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 
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Uncontrolled Interference: An Example 

CORE 1 CORE 2 

    L2  

CACHE 

    L2  

CACHE 

DRAM MEMORY CONTROLLER 

DRAM  

Bank 0 

DRAM  

Bank 1 

DRAM  

Bank 2 

Shared DRAM 

Memory System 

 

Multi-Core 

Chip 

unfairness 

INTERCONNECT 

stream random 

DRAM  

Bank 3 



// initialize large arrays A, B 

 

for (j=0; j<N; j++) { 

     index = rand(); 

     A[index] = B[index]; 

     … 

} 
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A Memory Performance Hog 

STREAM 

- Sequential memory access  

- Very high row buffer locality (96% hit rate) 

- Memory intensive 

RANDOM 

- Random memory access 

- Very low row buffer locality (3% hit rate) 

- Similarly memory intensive 

// initialize large arrays A, B 

 

for (j=0; j<N; j++) { 

     index = j*linesize; 

     A[index] = B[index]; 

     … 

} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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What Does the Memory Hog Do? 
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T0: STREAM 
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Problems due to Uncontrolled Interference 
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 Unfair slowdown of different threads  

 Low system performance  

 Vulnerability to denial of service  

 Priority inversion: unable to enforce priorities/SLAs  

 

Cores make  

very slow  

progress 

Memory performance hog Low priority 

High priority 
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Main memory is the only shared resource 



Problems due to Uncontrolled Interference 
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 Unfair slowdown of different threads  

 Low system performance  

 Vulnerability to denial of service  

 Priority inversion: unable to enforce priorities/SLAs  

 Poor performance predictability (no performance isolation) 

 Uncontrollable, unpredictable system 



Inter-Thread Interference in Memory 

 Memory controllers, pins, and memory banks are shared 

 

 Pin bandwidth is not increasing as fast as number of cores 

 Bandwidth per core reducing 

 

 Different threads executing on different cores interfere with 
each other in the main memory system 

 

 Threads delay each other by causing resource contention: 

 Bank, bus, row-buffer conflicts  reduced DRAM throughput 

 Threads can also destroy each other’s DRAM bank 
parallelism  

 Otherwise parallel requests can become serialized  
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Effects of Inter-Thread Interference in DRAM 

 Queueing/contention delays 

 Bank conflict, bus conflict, channel conflict, … 

 

 Additional delays due to DRAM constraints 

 Called “protocol overhead” 

 Examples 

 Row conflicts 

 Read-to-write and write-to-read delays 

 

 Loss of intra-thread parallelism 

 A thread’s concurrent requests are serviced serially instead of 
in parallel 
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Problem: QoS-Unaware Memory Control  

 Existing DRAM controllers are unaware of inter-thread 
interference in DRAM system 

 

 They simply aim to maximize DRAM throughput 

 Thread-unaware and thread-unfair 

 No intent to service each thread’s requests in parallel 

 FR-FCFS policy: 1) row-hit first, 2) oldest first 

 Unfairly prioritizes threads with high row-buffer locality  

 Unfairly prioritizes threads that are memory intensive (many outstanding 
memory accesses) 
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Solution: QoS-Aware Memory Request Scheduling 

 

 

 

 

 

 How to schedule requests to provide 

 High system performance 

 High fairness to applications 

 Configurability to system software  

 

 Memory controller needs to be aware of threads 
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Memory 
Controller 

Core Core 

Core Core 

Memory 

Resolves memory contention 
by scheduling requests 



Stall-Time Fair Memory Scheduling 

 

 

 

 

Onur Mutlu and Thomas Moscibroda,  

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"  

40th International Symposium on Microarchitecture (MICRO),  

pages 146-158, Chicago, IL, December 2007. Slides (ppt)  

STFM Micro 2007 Talk 

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/mutlu_micro07_talk.ppt


The Problem: Unfairness 

 Vulnerable to denial of service  

 Unable to enforce priorities or service-level agreements 

 Low system performance 
 

Uncontrollable, unpredictable system 
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How Do We Solve the Problem? 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 

 Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone  

fair scheduling 

 Also improves overall system performance by ensuring cores 
make “proportional” progress 

 

 Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns 

 

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007.  
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Stall-Time Fairness in Shared DRAM Systems 

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system 

 

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory 

 STshared: DRAM-related stall-time when the thread runs with other threads 

 STalone:  DRAM-related stall-time when the thread runs alone 

 Memory-slowdown = STshared/STalone    
 Relative increase in stall-time 

 

 Stall-Time Fair Memory scheduler (STFM) aims to equalize             
Memory-slowdown for interfering threads, without sacrificing performance 

 Considers inherent DRAM performance of each thread 

 Aims to allow proportional progress of threads 
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STFM Scheduling Algorithm [MICRO’07] 

 
 For each thread, the DRAM controller 

 Tracks STshared  

 Estimates STalone  

 

 Each cycle, the DRAM controller 

 Computes Slowdown = STshared/STalone for threads with legal requests 

 Computes unfairness = MAX Slowdown / MIN Slowdown 

 

 If unfairness <  

 Use DRAM throughput oriented scheduling policy 

 If unfairness ≥  

 Use fairness-oriented scheduling policy  

 (1) requests from thread with MAX Slowdown first  

 (2) row-hit first , (3) oldest-first 
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How Does STFM Prevent Unfairness? 
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STFM Pros and Cons 

 Upsides:  

 First algorithm for fair multi-core memory scheduling 

 Provides a mechanism to estimate memory slowdown of a 
thread 

 Good at providing fairness 

 Being fair can improve performance  

 

 Downsides: 

 Does not handle all types of interference 

 (Somewhat) complex to implement 

 Slowdown estimations can be incorrect 

 

 

31 



Parallelism-Aware Batch Scheduling 

 

 

 

 

Onur Mutlu and Thomas Moscibroda,  

"Parallelism-Aware Batch Scheduling: Enhancing both  

Performance and Fairness of Shared DRAM Systems” 

35th International Symposium on Computer Architecture (ISCA),  

pages 63-74, Beijing, China, June 2008. Slides (ppt) 

PAR-BS ISCA 2008 Talk 

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt


Another Problem due to Interference 

 Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests 

 Memory-Level Parallelism (MLP)  

 Out-of-order execution, non-blocking caches, runahead execution 

 

 Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks 

 

 Multiple threads share the DRAM controller 

 DRAM controllers are not aware of a thread’s MLP 

 Can service each thread’s outstanding requests serially, not in parallel 
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Bank Parallelism of a Thread 
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Thread A: Bank 0, Row 1 

Thread A: Bank 1, Row 1 

Bank access latencies of the two requests overlapped 

Thread stalls for ~ONE bank access latency 

Thread A : 
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Bank 1 
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Compute 
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Bank Parallelism Interference in DRAM 
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Parallelism-Aware Batch Scheduling (PAR-BS) 

 Principle 1: Parallelism-awareness 

 Schedule requests from a thread (to 
different banks) back to back 

 Preserves each thread’s bank parallelism 

 But, this can cause starvation… 

 

 Principle 2: Request Batching 

 Group a fixed number of oldest requests 
from each thread into a “batch” 

 Service the batch before all other requests 

 Form a new batch when the current one is done 

 Eliminates starvation, provides fairness 

 Allows parallelism-awareness within a batch 
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 



PAR-BS Components 

 Request batching 
 

 

 

 Within-batch scheduling 
 Parallelism aware 
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Request Batching 

 Each memory request has a bit (marked) associated with it 

 

 Batch formation: 

 Mark up to Marking-Cap oldest requests per bank for each thread 

 Marked requests constitute the batch 

 Form a new batch when no marked requests are left 

 

 Marked requests are prioritized over unmarked ones 

 No reordering of requests across batches: no starvation, high fairness 

 

 How to prioritize requests within a batch? 
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Within-Batch Scheduling 

 Can use any existing DRAM scheduling policy 

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality 

 But, we also want to preserve intra-thread bank parallelism 

 Service each thread’s requests back to back 

 

 

 Scheduler computes a ranking of threads when the batch is 
formed 

 Higher-ranked threads are prioritized over lower-ranked ones 

 Improves the likelihood that requests from a thread are serviced in 
parallel by different banks 

 Different threads prioritized in the same order across ALL banks 

 

 
40 

HOW? 



How to Rank Threads within a Batch 

 Ranking scheme affects system throughput and fairness 
 

 Maximize system throughput 

 Minimize average stall-time of threads within the batch 

 Minimize unfairness (Equalize the slowdown of threads) 

 Service threads with inherently low stall-time early in the batch 

 Insight: delaying memory non-intensive threads results in high 
slowdown 

 

 Shortest stall-time first (shortest job first) ranking 

 Provides optimal system throughput [Smith, 1956]* 

 Controller estimates each thread’s stall-time within the batch 

 Ranks threads with shorter stall-time higher 
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* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956. 



 Maximum number of marked requests to any bank (max-bank-load) 

 Rank thread with lower max-bank-load higher (~ low stall-time) 

 Total number of marked requests (total-load) 

 Breaks ties: rank thread with lower total-load higher 

 

Shortest Stall-Time First Ranking 

42 

T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 
max-bank-load total-load 

T0 1 3 

T1 2 4 

T2 2 6 

T3 5 9 

Ranking: 

T0 > T1 > T2 > T3 



7 

5 

3 

Example Within-Batch Scheduling Order 

43 

T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 Baseline Scheduling  

Order (Arrival order) 

PAR-BS Scheduling 

Order 

T2 

T3 

T1 T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 

T1 

T3 T2 T2 

T1 T2 T1 

T0 

T2 

T0 

T3 T2 

T3 

T3 

T3 

T3 

T0 T1 T2 T3 

4 4 5 7 

AVG: 5 bank access latencies AVG: 3.5 bank access latencies 

Stall times 

T0 T1 T2 T3 

1 2 4 7 Stall times 

T
im

e
 

1 

2 

4 

6 

Ranking: T0 > T1 > T2 > T3 

1 

2 

3 

4 

5 

6 

7 

T
im

e
 



Putting It Together: PAR-BS Scheduling Policy 

 PAR-BS Scheduling Policy 

  (1) Marked requests first 

  (2) Row-hit requests first 

  (3) Higher-rank thread first (shortest stall-time first) 

  (4) Oldest first 
 

 Three properties: 

 Exploits row-buffer locality and intra-thread bank parallelism  

 Work-conserving 

 Services unmarked requests to banks without marked requests  

 Marking-Cap is important 

 Too small cap: destroys row-buffer locality 

 Too large cap: penalizes memory non-intensive threads    

 

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 
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Hardware Cost 

 <1.5KB storage cost for 

 8-core system with 128-entry memory request buffer 

 

 No complex operations (e.g., divisions) 

 

 Not on the critical path 

 Scheduler makes a decision only every DRAM cycle 

 

45 



46 

Unfairness on 4-, 8-, 16-core Systems 
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System Performance 
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PAR-BS Pros and Cons 

 Upsides:  

 First scheduler to address bank parallelism destruction across 
multiple threads 

 Simple mechanism (vs. STFM) 

 Batching provides fairness 

 Ranking enables parallelism awareness 

 

 Downsides: 

 Implementation in multiple controllers needs coordination for 
best performance  too frequent coordination since batching 

is done frequently 

 Does not always prioritize the latency-sensitive applications 
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TCM: 

Thread Cluster Memory Scheduling 

 

 

 

 

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling:  

Exploiting Differences in Memory Access Behavior"  
43rd International Symposium on Microarchitecture (MICRO),  
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)  

TCM Micro 2010 Talk 

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx


No previous memory scheduling algorithm provides 
both the best fairness and system throughput 
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Weighted Speedup 
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24 cores, 4 memory controllers, 96 workloads  

Throughput vs. Fairness 



Take turns accessing memory 

Throughput vs. Fairness 
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Fairness biased approach 
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Achieving the Best of Both Worlds 

52 

thread 

thread 

higher 
priority 

thread 

thread 

thread  

thread 

thread 

thread 

Prioritize memory-non-intensive threads 

For Throughput 

Unfairness caused by memory-intensive 
being prioritized over each other  

• Shuffle thread ranking 
 

Memory-intensive threads have  
different vulnerability to interference 

• Shuffle asymmetrically 

For Fairness 

thread 

thread 

thread 

thread 



Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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Clustering Threads 

Step1 Sort threads by MPKI (misses per kiloinstruction) 
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TCM: Quantum-Based Operation 
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Time 

Previous quantum 
(~1M cycles) 

During quantum: 
• Monitor thread behavior 

1. Memory intensity 
2. Bank-level parallelism 
3. Row-buffer locality 

Beginning of quantum: 
• Perform clustering 
• Compute niceness of 

intensive threads 

Current quantum 
(~1M cycles) 

Shuffle interval 
(~1K cycles) 



TCM: Scheduling Algorithm 

1. Highest-rank: Requests from higher ranked threads prioritized 

• Non-Intensive cluster > Intensive cluster 

• Non-Intensive cluster: lower intensity  higher rank 

• Intensive cluster: rank shuffling 

 

 

2.Row-hit: Row-buffer hit requests are prioritized 

 

3.Oldest: Older requests are prioritized 
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TCM: Throughput and Fairness 
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Weighted Speedup 
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24 cores, 4 memory controllers, 96 workloads  

TCM, a heterogeneous scheduling policy, 
provides best fairness and system throughput 



TCM: Fairness-Throughput Tradeoff 
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TCM Pros and Cons 

 Upsides: 

 Provides both high fairness and high performance 

 Caters to the needs for different types of threads (latency vs. 
bandwidth sensitive) 

 (Relatively) simple 

 

 Downsides: 

 Scalability to large buffer sizes? 

 Robustness of clustering and shuffling algorithms? 
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Other Ways of Handling Interference 

 

 

 

 



Fundamental Interference Control Techniques 

 Goal: to reduce/control interference 

 

 

1. Prioritization or request scheduling 

 

2. Data mapping to banks/channels/ranks 

 

3. Core/source throttling  

 

4. Application/thread scheduling 
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 Memory Channel Partitioning 

 Idea: Map badly-interfering applications’ pages to different 
channels [Muralidhara+, MICRO’11] 

 

 

 

 

 

 

 

 

 Separate data of low/high intensity and low/high row-locality applications 

 Especially effective in reducing interference of threads with “medium” and 
“heavy” memory intensity  

Memory Channel Partitioning 
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Core 1 
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Channel 0 
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Channel 1 
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Conventional Page Mapping 
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Muralidhara et al., “Memory Channel Partitioning,” MICRO’11. 



Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 

2. Classify applications into groups 

3. Partition channels between application groups 

4. Assign a preferred channel to each application 

5. Allocate application pages to preferred channel 
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Observations 

 

 Applications with very low memory-intensity rarely 
access memory                                                         
 Dedicating channels to them results in precious 
memory bandwidth waste 

 

 They have the most potential to keep their cores busy  
 We would really like to prioritize them 

 

 They interfere minimally with other applications            
 Prioritizing them does not hurt others 
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Integrated Memory Partitioning and Scheduling (IMPS) 

 

 Always prioritize very low memory-intensity 
applications in the memory scheduler 

 

 

 Use memory channel partitioning to mitigate 
interference between other applications 
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Fundamental Interference Control Techniques 

 Goal: to reduce/control interference 

 

 

1. Prioritization or request scheduling 

 

2. Data mapping to banks/channels/ranks 

 

3. Core/source throttling  

 

4. Application/thread scheduling 
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An Alternative Approach: Source Throttling 

 Manage inter-thread interference at the cores (sources), 
not at the shared resources 
 

 Dynamically estimate unfairness in the memory system  

 Feed back this information into a controller 

 Throttle cores’ memory access rates accordingly 

 Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

 E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

 

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 

 
67 



68 

Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
    (limit injection rate and parallelism) 

 2-Throttle up App-slowest 
} 

FST 

Unfairness Estimate 

App-slowest 

App-interfering 

⎪
 

⎨
 

⎪
 

⎧
 

⎩
 

Slowdown 
Estimation 

Time 
Interval 1 Interval 2 Interval 3 

Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

Fairness via Source Throttling (FST) [ASPLOS’10] 



Core (Source) Throttling 

 Idea: Estimate the slowdown due to (DRAM) interference 
and throttle down threads that slow down others 

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable 
and High-Performance Fairness Substrate for Multi-Core 
Memory Systems,” ASPLOS 2010. 

 

 Advantages 

+ Core/request throttling is easy to implement: no need to 
change the memory scheduling algorithm 

+ Can be a general way of handling shared resource contention 

 

 Disadvantages 

- Requires interference/slowdown estimations 

- Thresholds can become difficult to optimize  throughput loss 
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Fundamental Interference Control Techniques 

 Goal: to reduce/control interference 

 

 

1. Prioritization or request scheduling 

 

2. Data mapping to banks/channels/ranks 

 

3. Core/source throttling  

 

4. Application/thread scheduling 

    Idea: Pick threads that do not badly interfere with each 
other to be scheduled together on cores sharing the memory 
system 
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Handling Interference in Parallel Applications 

 Threads in a multithreaded application are inter-dependent 

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

 

 Hardware/software cooperative limiter thread estimation: 

 Thread executing the most contended critical section 

 Thread that is falling behind the most in a parallel for loop 
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Summary: Fundamental Interference Control Techniques 

 Goal: to reduce/control interference 

 

 

1. Prioritization or request scheduling 

 

2. Data mapping to banks/channels/ranks 

 

3. Core/source throttling  

 

4. Application/thread scheduling 

 

Best is to combine all. How would you do that? 
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We will likely not cover the following 

slides in lecture. These are for your 

benefit. 

 

 

 

 



ATLAS Memory Scheduler 

 

 

 

 

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter, 

"ATLAS: A Scalable and High-Performance  

Scheduling Algorithm for Multiple Memory Controllers"  

16th International Symposium on High-Performance Computer Architecture (HPCA),  

Bangalore, India, January 2010. Slides (pptx)  

ATLAS HPCA 2010 Talk 

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_hpca10_talk.pptx


Rethinking Memory Scheduling 

A thread alternates between two states (episodes) 

 Compute episode: Zero outstanding memory requests  High IPC 

Memory episode: Non-zero outstanding memory requests  Low IPC 
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Goal: Minimize time spent in memory episodes 
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How to Minimize Memory Episode Time 

  Minimizes time spent in memory episodes across all threads 

  Supported by queueing theory: 

 Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  
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Predicting Memory Episode Lengths 

Large attained service  Large expected remaining service 

 

Q: Why? 

A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 
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Pareto Distribution of Memory Episode Lengths 
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Memory episode lengths of  
SPEC benchmarks 

Pareto distribution 

Attained service correlates with 
remaining service 

The longer an episode has lasted 
 The longer it will last further 



Prioritize the job with  
shortest-remaining-processing-time 

 
Provably optimal 

 Remaining service: Correlates with attained service 
 
 Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 



Long-Term Thread Behavior 
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Quantum-Based Attained Service of a Thread 
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LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 
 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 
 

TotalASi = α · TotalASi-1 + (1- α) · ASi 

High α  More bias towards history 
 

Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
 Adaptive per-Thread Least Attained Service 

 

 Request prioritization order 

 1. Prevent starvation: Over threshold request 

 2. Maximize performance: Higher LAS rank 

 3. Exploit locality: Row-hit request 

 4. Tie-breaker: Oldest request 
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How to coordinate MCs to agree upon a consistent ranking? 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 
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ATLAS Pros and Cons 

 Upsides: 

 Good at improving performance 

 Low complexity 

 Coordination among controllers happens infrequently 

 

 Downsides: 

 Lowest ranked threads get delayed significantly  high 

unfairness 
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Emerging Non-Volatile Memory 

Technologies 

 

 

 

 



Aside: Non-Volatile Memory 

 If memory were non-volatile…  

 there would be no need for refresh… 

 we would not lose data on power loss… 

 

 Problem: non-volatile has traditionally been much slower 
than DRAM 

 Think hard disks… Even flash memory… 

 

 Opportunity: there are some emerging memory 
technologies that are relatively fast, and non-volatile. 

 And, they seem more scalable than DRAM  

 

 Question: Can we have emerging technologies as part of 
main memory? 
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Emerging Memory Technologies 

 Some emerging resistive memory technologies seem more 
scalable than DRAM (and they are non-volatile) 

 

 Example: Phase Change Memory 

 Data stored by changing phase of material  

 Data read by detecting material’s resistance 

 Expected to scale to 9nm (2022 [ITRS]) 

 Prototyped at 20nm (Raoux+, IBM JRD 2008) 

 Expected to be denser than DRAM: can store multiple bits/cell 

 

 But, emerging technologies have (many) shortcomings 

 Can they be enabled to replace/augment/surpass DRAM? 
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Emerging Resistive Memory Technologies 

 PCM 

 Inject current to change material phase 

 Resistance determined by phase 

 

 STT-MRAM 

 Inject current to change magnet polarity 

 Resistance determined by polarity 

 

 Memristors 

 Inject current to change atomic structure 

 Resistance determined by atom distance 
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What is Phase Change Memory? 

 Phase change material (chalcogenide glass) exists in two states: 

 Amorphous: Low optical reflexivity and high electrical resistivity 

 Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 

PCM cell can be switched between states reliably and quickly 



How Does PCM Work? 

 Write: change phase via current injection 

 SET: sustained current to heat cell above Tcryst  

 RESET: cell heated above Tmelt and quenched 

 Read: detect phase via material resistance  

 amorphous/crystalline 
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Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 



Phase Change Memory: Pros and Cons 
 

 Pros over DRAM 

 Better technology scaling (capacity and cost) 

 Non volatility 

 Low idle power (no refresh) 
 

 Cons 

 Higher latencies: ~4-15x DRAM (especially write) 

 Higher active energy: ~2-50x DRAM (especially write) 

 Lower endurance (a cell dies after ~108 writes) 

 

 Challenges in enabling PCM as DRAM replacement/helper: 

 Mitigate PCM shortcomings 

 Find the right way to place PCM in the system 
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PCM-based Main Memory (I) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 
 

 

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  

 How to partition/migrate data between PCM and DRAM 
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PCM-based Main Memory (II) 

 How should PCM-based (main) memory be organized? 

 

 

 

 

 

 

 

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

 How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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PCM-Based Memory Systems: Research Challenges  

 Partitioning 

 Should DRAM be a cache or main memory, or configurable? 

 What fraction? How many controllers? 
 

 Data allocation/movement (energy, performance, lifetime) 

 Who manages allocation/movement? 

 What are good control algorithms? 

 How do we prevent degradation of service due to wearout? 
 

 Design of cache hierarchy, memory controllers, OS 

 Mitigate PCM shortcomings, exploit PCM advantages 
 

 Design of PCM/DRAM chips and modules 

 Rethink the design of PCM/DRAM with new requirements 
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An Initial Study: Replace DRAM with PCM 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 

 Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 

 Replace DRAM with PCM in a 4-core, 4MB L2 system 

 PCM organized the same as DRAM: row buffers, banks, peripherals 

 1.6x delay, 2.2x energy, 500-hour average lifetime 

 

 

 

 

 

 

 

 

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009. 
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Architecting PCM to Mitigate Shortcomings 

 Idea 1: Use multiple narrow row buffers in each PCM chip 

 Reduces array reads/writes  better endurance, latency, energy 

 

 Idea 2: Write into array at 

    cache block or word  

    granularity 

  Reduces unnecessary wear   
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DRAM PCM 



Results: Architected PCM as Main Memory  

 1.2x delay, 1.0x energy, 5.6-year average lifetime 

 Scaling improves energy, endurance, density 

 

 

 

 

 

 

 

 

 Caveat 1: Worst-case lifetime is much shorter (no guarantees) 

 Caveat 2: Intensive applications see large performance and energy hits 

 Caveat 3: Optimistic PCM parameters? 
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Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 

 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 

 PCM is main memory; DRAM caches memory rows/blocks 

 Benefits: Reduced latency on DRAM cache hit; write filtering 

 Memory controller hardware manages the DRAM cache 

 Benefit: Eliminates system software overhead 

 

 Three issues: 

 What data should be placed in DRAM versus kept in PCM? 

 What is the granularity of data movement? 

 How to design a low-cost hardware-managed DRAM cache? 

 

 Two idea directions: 

 Locality-aware data placement [Yoon+ , ICCD 2012] 

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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