
18-447

Computer Architecture

Lecture 24: Memory Scheduling

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 3/31/2014

Last Two Lectures

 Main Memory

 Organization and DRAM Operation

 Memory Controllers

 DRAM Design and Enhancements

 More Detailed DRAM Design: Subarrays

 RowClone and In-DRAM Computation

 Tiered-Latency DRAM

 Memory Access Scheduling

 FR-FCFS – row-hit-first scheduling

2

Today

 Row Buffer Management Policies

 Memory Interference (and Techniques to Manage It)

 With a focus on Memory Request Scheduling

3

Review: DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

4

Review: DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

5

Row Buffer Management Policies

 Open row
 Keep the row open after an access

+ Next access might need the same row row hit

-- Next access might need a different row row conflict, wasted energy

 Closed row
 Close the row after an access (if no other requests already in the request

buffer need the same row)

+ Next access might need a different row avoid a row conflict

-- Next access might need the same row extra activate latency

 Adaptive policies

 Predict whether or not the next access to the bank will be to
the same row

6

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

7

Memory Interference and Scheduling

in Multi-Core Systems

9

Review: A Modern DRAM Controller

Review: DRAM Bank Operation

10

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

 Access Address:

Scheduling Policy for Single-Core Systems

 A row-conflict memory access takes significantly longer than a
row-hit access

 Current controllers take advantage of the row buffer

 FR-FCFS (first ready, first come first served) scheduling policy

1. Row-hit first

2. Oldest first

Goal 1: Maximize row buffer hit rate maximize DRAM throughput

Goal 2: Prioritize older requests ensure forward progress

 Is this a good policy in a multi-core system?

11

Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

12

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?

13

(Un)expected Slowdowns in Multi-Core

14

Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

15

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2

CACHE

 L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

stream random

DRAM

Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {

 index = rand();

 A[index] = B[index];

 …

}

16

A Memory Performance Hog

STREAM

- Sequential memory access

- Very high row buffer locality (96% hit rate)

- Memory intensive

RANDOM

- Random memory access

- Very low row buffer locality (3% hit rate)

- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {

 index = j*linesize;

 A[index] = B[index];

 …

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

17

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e
c
o
d
e
r

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

18

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP

(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d
o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Problems due to Uncontrolled Interference

19

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

Cores make

very slow

progress

Memory performance hog Low priority

High priority
S

lo
w

d
o

w
n

Main memory is the only shared resource

Problems due to Uncontrolled Interference

20

 Unfair slowdown of different threads

 Low system performance

 Vulnerability to denial of service

 Priority inversion: unable to enforce priorities/SLAs

 Poor performance predictability (no performance isolation)

 Uncontrollable, unpredictable system

Inter-Thread Interference in Memory

 Memory controllers, pins, and memory banks are shared

 Pin bandwidth is not increasing as fast as number of cores

 Bandwidth per core reducing

 Different threads executing on different cores interfere with
each other in the main memory system

 Threads delay each other by causing resource contention:

 Bank, bus, row-buffer conflicts reduced DRAM throughput

 Threads can also destroy each other’s DRAM bank
parallelism

 Otherwise parallel requests can become serialized

 21

Effects of Inter-Thread Interference in DRAM

 Queueing/contention delays

 Bank conflict, bus conflict, channel conflict, …

 Additional delays due to DRAM constraints

 Called “protocol overhead”

 Examples

 Row conflicts

 Read-to-write and write-to-read delays

 Loss of intra-thread parallelism

 A thread’s concurrent requests are serviced serially instead of
in parallel

22

Problem: QoS-Unaware Memory Control

 Existing DRAM controllers are unaware of inter-thread
interference in DRAM system

 They simply aim to maximize DRAM throughput

 Thread-unaware and thread-unfair

 No intent to service each thread’s requests in parallel

 FR-FCFS policy: 1) row-hit first, 2) oldest first

 Unfairly prioritizes threads with high row-buffer locality

 Unfairly prioritizes threads that are memory intensive (many outstanding
memory accesses)

23

Solution: QoS-Aware Memory Request Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

24

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),

pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/mutlu_micro07_talk.ppt

The Problem: Unfairness

 Vulnerable to denial of service

 Unable to enforce priorities or service-level agreements

 Low system performance

Uncontrollable, unpredictable system

26

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone

fair scheduling

 Also improves overall system performance by ensuring cores
make “proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

27

28

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone
 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

29

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness <

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

30

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0 T0: Row 0

T1: Row 5

T0: Row 0 T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00 Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.03 1.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16 Row 111

STFM Pros and Cons

 Upsides:

 First algorithm for fair multi-core memory scheduling

 Provides a mechanism to estimate memory slowdown of a
thread

 Good at providing fairness

 Being fair can improve performance

 Downsides:

 Does not handle all types of interference

 (Somewhat) complex to implement

 Slowdown estimations can be incorrect

31

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both

Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),

pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt

Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel

33

Bank Parallelism of a Thread

34

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

35

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

36

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

37

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

38

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

39

Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

40

HOW?

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

41

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

42

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

43

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3 Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3 T2 T2

T1 T2 T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7 Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

 (1) Marked requests first

 (2) Row-hit requests first

 (3) Higher-rank thread first (shortest stall-time first)

 (4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

 44

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

45

46

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

47

System Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

PAR-BS Pros and Cons

 Upsides:

 First scheduler to address bank parallelism destruction across
multiple threads

 Simple mechanism (vs. STFM)

 Batching provides fairness

 Ranking enables parallelism awareness

 Downsides:

 Implementation in multiple controllers needs coordination for
best performance too frequent coordination since batching

is done frequently

 Does not always prioritize the latency-sensitive applications

48

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FCFS

FRFCFS

STFM

PAR-BS

ATLAS

50

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
e

ss

24 cores, 4 memory controllers, 96 workloads

Throughput vs. Fairness

Take turns accessing memory

Throughput vs. Fairness

51

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread B thread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

52

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

53

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

54

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad
 higher

MPKI

T
α < 10%

ClusterThreshold

Intensive
cluster αT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM: Quantum-Based Operation

55

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

56

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

57

Better system throughput

B
et

te
r

fa
ir

n
e

ss

24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

58

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss
 FRFCFS

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Caters to the needs for different types of threads (latency vs.
bandwidth sensitive)

 (Relatively) simple

 Downsides:

 Scalability to large buffer sizes?

 Robustness of clustering and shuffling algorithms?

59

Other Ways of Handling Interference

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

61

 Memory Channel Partitioning

 Idea: Map badly-interfering applications’ pages to different
channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications

 Especially effective in reducing interference of threads with “medium” and
“heavy” memory intensity

Memory Channel Partitioning

62

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

1 2 3 4 5

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

1 2 3 4 5

Channel 1

Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

63

Hardware

System

Software

Observations

 Applications with very low memory-intensity rarely
access memory
 Dedicating channels to them results in precious
memory bandwidth waste

 They have the most potential to keep their cores busy
 We would really like to prioritize them

 They interfere minimally with other applications
 Prioritizing them does not hurt others

64

Integrated Memory Partitioning and Scheduling (IMPS)

 Always prioritize very low memory-intensity
applications in the memory scheduler

 Use memory channel partitioning to mitigate
interference between other applications

65 Muralidhara et al., “Memory Channel Partitioning,” MICRO’11.

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

66

An Alternative Approach: Source Throttling

 Manage inter-thread interference at the cores (sources),
not at the shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

67

68

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 (limit injection rate and parallelism)

 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪

⎨

⎪

⎧

⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

Core (Source) Throttling

 Idea: Estimate the slowdown due to (DRAM) interference
and throttle down threads that slow down others

 Ebrahimi et al., “Fairness via Source Throttling: A Configurable
and High-Performance Fairness Substrate for Multi-Core
Memory Systems,” ASPLOS 2010.

 Advantages

+ Core/request throttling is easy to implement: no need to
change the memory scheduling algorithm

+ Can be a general way of handling shared resource contention

 Disadvantages

- Requires interference/slowdown estimations

- Thresholds can become difficult to optimize throughput loss
69

Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

 Idea: Pick threads that do not badly interfere with each
other to be scheduled together on cores sharing the memory
system

70

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 71

Summary: Fundamental Interference Control Techniques

 Goal: to reduce/control interference

1. Prioritization or request scheduling

2. Data mapping to banks/channels/ranks

3. Core/source throttling

4. Application/thread scheduling

Best is to combine all. How would you do that?

72

We will likely not cover the following

slides in lecture. These are for your

benefit.

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"

16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_hpca10_talk.pptx

Rethinking Memory Scheduling

A thread alternates between two states (episodes)

 Compute episode: Zero outstanding memory requests High IPC

Memory episode: Non-zero outstanding memory requests Low IPC

75

Goal: Minimize time spent in memory episodes

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

Memory episode Compute episode

How to Minimize Memory Episode Time

 Minimizes time spent in memory episodes across all threads

 Supported by queueing theory:

 Shortest-Remaining-Processing-Time scheduling is optimal in
single-server queue

Remaining length of a memory episode?

 Prioritize thread whose memory episode will end the soonest

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

How much longer?

76

Predicting Memory Episode Lengths

Large attained service Large expected remaining service

Q: Why?

A: Memory episode lengths are Pareto distributed…

77

We discovered: past is excellent predictor for future

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Remaining service
FUTURE

Attained service
PAST

Pareto Distribution of Memory Episode Lengths

78

401.bzip2

Favoring least-attained-service memory episode

 = Favoring memory episode which will end the soonest

P
r{

M
em

.
ep

is
o

d
e

>
 x

}

x (cycles)

Memory episode lengths of
SPEC benchmarks

Pareto distribution

Attained service correlates with
remaining service

The longer an episode has lasted
 The longer it will last further

Prioritize the job with
shortest-remaining-processing-time

Provably optimal

 Remaining service: Correlates with attained service

 Attained service: Tracked by per-thread counter

Least Attained Service (LAS) Memory Scheduling

79

Prioritize the memory episode with
least-remaining-service

Our Approach Queueing Theory

Least-attained-service (LAS) scheduling:

Minimize memory episode time

However, LAS does not consider
long-term thread behavior

Prioritize the memory episode with
least-attained-service

Long-Term Thread Behavior

80

Mem.
episode

Thread 1 Thread 2

Short-term
thread behavior

Mem.
episode

Long-term
thread behavior

Compute
episode

Compute
episode

>
priority

<
priority

Prioritizing Thread 2 is more beneficial:
results in very long stretches of compute episodes

Short memory episode Long memory episode

Quantum-Based Attained Service of a Thread

81

Time
O

u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s
Attained service

Short-term
thread behavior

We divide time into large, fixed-length intervals:
quanta (millions of cycles)

Attained service

Long-term
thread behavior

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

…

Quantum (millions of cycles)

LAS Thread Ranking

Each thread’s attained service (AS) is tracked by MCs

ASi = A thread’s AS during only the i-th quantum

Each thread’s TotalAS computed as:

TotalASi = α · TotalASi-1 + (1- α) · ASi

High α More bias towards history

Threads are ranked, favoring threads with lower TotalAS

Threads are serviced according to their ranking

During a quantum

End of a quantum

Next quantum

82

ATLAS Scheduling Algorithm

ATLAS
 Adaptive per-Thread Least Attained Service

 Request prioritization order

 1. Prevent starvation: Over threshold request

 2. Maximize performance: Higher LAS rank

 3. Exploit locality: Row-hit request

 4. Tie-breaker: Oldest request

83

How to coordinate MCs to agree upon a consistent ranking?

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st

em
 t

h
ro

u
gh

p
u

t

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

84

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of memory controllers

0

2

4

6

8

10

12

14

4 8 16 24 32

Cores

Sy
st

em
 t

h
ro

u
gh

p
u

t

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases ATLAS performance benefit increases

85

1.1%
3.5%

4.0%

8.4%

10.8%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of cores

ATLAS Pros and Cons

 Upsides:

 Good at improving performance

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest ranked threads get delayed significantly high

unfairness

86

Emerging Non-Volatile Memory

Technologies

Aside: Non-Volatile Memory

 If memory were non-volatile…

 there would be no need for refresh…

 we would not lose data on power loss…

 Problem: non-volatile has traditionally been much slower
than DRAM

 Think hard disks… Even flash memory…

 Opportunity: there are some emerging memory
technologies that are relatively fast, and non-volatile.

 And, they seem more scalable than DRAM

 Question: Can we have emerging technologies as part of
main memory?

88

Emerging Memory Technologies

 Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory

 Data stored by changing phase of material

 Data read by detecting material’s resistance

 Expected to scale to 9nm (2022 [ITRS])

 Prototyped at 20nm (Raoux+, IBM JRD 2008)

 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings

 Can they be enabled to replace/augment/surpass DRAM?

 89

Emerging Resistive Memory Technologies

 PCM

 Inject current to change material phase

 Resistance determined by phase

 STT-MRAM

 Inject current to change magnet polarity

 Resistance determined by polarity

 Memristors

 Inject current to change atomic structure

 Resistance determined by atom distance

90

What is Phase Change Memory?

 Phase change material (chalcogenide glass) exists in two states:

 Amorphous: Low optical reflexivity and high electrical resistivity

 Crystalline: High optical reflexivity and low electrical resistivity

91

PCM is resistive memory: High resistance (0), Low resistance (1)

PCM cell can be switched between states reliably and quickly

How Does PCM Work?

 Write: change phase via current injection

 SET: sustained current to heat cell above Tcryst

 RESET: cell heated above Tmelt and quenched

 Read: detect phase via material resistance

 amorphous/crystalline

92

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Phase Change Memory: Pros and Cons

 Pros over DRAM

 Better technology scaling (capacity and cost)

 Non volatility

 Low idle power (no refresh)

 Cons

 Higher latencies: ~4-15x DRAM (especially write)

 Higher active energy: ~2-50x DRAM (especially write)

 Lower endurance (a cell dies after ~108 writes)

 Challenges in enabling PCM as DRAM replacement/helper:

 Mitigate PCM shortcomings

 Find the right way to place PCM in the system

93

PCM-based Main Memory (I)

 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:

 How to partition/migrate data between PCM and DRAM

94

PCM-based Main Memory (II)

 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

 How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

95

PCM-Based Memory Systems: Research Challenges

 Partitioning

 Should DRAM be a cache or main memory, or configurable?

 What fraction? How many controllers?

 Data allocation/movement (energy, performance, lifetime)

 Who manages allocation/movement?

 What are good control algorithms?

 How do we prevent degradation of service due to wearout?

 Design of cache hierarchy, memory controllers, OS

 Mitigate PCM shortcomings, exploit PCM advantages

 Design of PCM/DRAM chips and modules

 Rethink the design of PCM/DRAM with new requirements

96

An Initial Study: Replace DRAM with PCM

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)

 Derived “average” PCM parameters for F=90nm

97

Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system

 PCM organized the same as DRAM: row buffers, banks, peripherals

 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

98

Architecting PCM to Mitigate Shortcomings

 Idea 1: Use multiple narrow row buffers in each PCM chip

 Reduces array reads/writes better endurance, latency, energy

 Idea 2: Write into array at

 cache block or word

 granularity

 Reduces unnecessary wear

99

DRAM PCM

Results: Architected PCM as Main Memory

 1.2x delay, 1.0x energy, 5.6-year average lifetime

 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)

 Caveat 2: Intensive applications see large performance and energy hits

 Caveat 3: Optimistic PCM parameters?
100

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 102

