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Announcements 

 Homework 5 due date pushed out by two days 

 March 28 is the new due date 

 

 Get started early on Lab 5 

 Due April 6 

 

 Upcoming events that I encourage you all to attend 

 Computer Architecture Seminars on Memory (April 3) 

 Carnegie Mellon Cloud Workshop (April 4) 
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Computer Architecture Seminars 

 Seminars relevant to many topics covered in 447 

 Caching 

 DRAM  

 

 List of past and upcoming seminars are here:  

 https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:sem
inars 

 You can subscribe to receive Computer Architecture related 
event announcements here: 

 https://sos.ece.cmu.edu/mailman/listinfo/calcm-list  
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Upcoming Seminar on DRAM (April 3) 

 April 3, Thursday, 4pm, this room (CIC Panther Hollow) 

 Prof. Rajeev Balasubramonian, Univ. of Utah 

 Memory Architectures for Emerging Technologies and 
Workloads  

 The memory system will be a growing bottleneck for many 
workloads running on high-end servers.  Performance improvements 
from technology scaling are also expected to decline in the coming 
decade. Therefore, new capabilities will be required in memory 
devices and memory controllers to achieve the next big leaps in 
performance and energy efficiency.  Some of these capabilities will 
be inspired by emerging workloads (e.g., in-memory big-data, 
approximate computing, co-scheduled VMs), some will be inspired by 
new memory technologies (e.g., 3D stacking).  The talk will discuss 
multiple early-stage projects in the Utah Arch lab that focus on 
DRAM parameter variation, near-data processing, and memory 
security. 
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Cloud Workshop All Day on April 4 

 http://www.industry-academia.org/event-carnegie-mellon-
cloud-workshop.html 

 You need to register to attend. Gates 6115. Many talks: 
 Keynote: Prof. Onur Mutlu – Carnegie Mellon – "Rethinking Memory System Design for Data-

Intensive Computing"  

 Prof. Rajeev Balasubramonian – Utah – “Practical Approaches to Memory Security in the Cloud”  

 Bryan Chin  – Cavium  –  “Head in the Clouds - Building a Chip for Scale-out Computing”  

 Dr. Joon Kim - SK Hynix – “The Future of NVM Memories”  

 Prof. Andy Pavlo - Carnegie Mellon – “OLTP on NVM: YMMV"   

 Dr. John Busch – SanDisk – “The Impact of Flash Memory on the Future of Cloud Computing” 

 Keynote: Prof. Greg Ganger – Carnegie Mellon – “Scheduling Heterogeneous Resources in Cloud 
Datacenters” 

 Paul Rad – Rackspace – “OpenStack-Based High Performance Cloud Architecture”  

 Charles Butler – Ubuntu  – “Cloud Service Orchestration with JuJu” 

 Prof. Mor Harchol-Balter -  Carnegie Mellon – “Dynamic Power Management in Data Centers”  

 Prof. Eric Xing – Carnegie Mellon – “Petuum: A New Platform for Cloud-based Machine Learning to 
Efficiently Solve Big Data Problems”  

 Majid Bemanian – Imagination Technologies – “Security in the Cloud and Virtualized Mobile Devices”  

 Robert Broberg – Cisco –  “Cloud Security Challenges and Solutions” 
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Cloud Career Fair on April 4 

 http://www.industry-academia.org/event-carnegie-mellon-
cloud-workshop.html 

 Gates 6121, 11am-3pm 

 Runs in Room 6121 in parallel to the Tech Forum, from 
11am to 3PM. IAP members will have 
informational/recruiting tables on site.  During the breaks in 
the technical presentations and lunch, the Tech Forum 
attendees can network on lining up an internship or that 
first full-time engineering job. Students who are only 
interested and/or able to attend the Career Fair are 
welcome to do so, but please indicate this specific interest 
on your registration application (see the “Register Here” 
button below). 
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Enabling High Bandwidth Memories 

 

 

 

 



Multiple Instructions per Cycle 

 Can generate multiple cache/memory accesses per cycle 

 How do we ensure the cache/memory can handle multiple 
accesses in the same clock cycle?  

 

 Solutions: 

 true multi-porting 

 virtual multi-porting (time sharing a port) 

 multiple cache copies 

 banking (interleaving) 
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Handling Multiple Accesses per Cycle (I) 

 True multiporting 

 Each memory cell has multiple read or write ports 

+ Truly concurrent accesses (no conflicts on read accesses) 

-- Expensive in terms of latency, power, area 

 What about read and write to the same location at the same 
time? 

 Peripheral logic needs to handle this 
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Peripheral Logic for True Multiporting 
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Peripheral Logic for True Multiporting 
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Handling Multiple Accesses per Cycle (II) 

 Virtual multiporting 

 Time-share a single port 

 Each access needs to be (significantly) shorter than clock cycle 

 Used in Alpha 21264 

 Is this scalable? 
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Cache 
Copy 1 

Handling Multiple Accesses per Cycle (III) 

 Multiple cache copies 

 Stores update both caches 

 Loads proceed in parallel 

 

 Used in Alpha 21164 

 

 Scalability? 

 Store operations form a 
bottleneck 

 Area proportional to “ports” 
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Handling Multiple Accesses per Cycle (III) 

 Banking (Interleaving) 

 Bits in address determines which bank an address maps to 

 Address space partitioned into separate banks 

 Which bits to use for “bank address”? 

+ No increase in data store area 

-- Cannot satisfy multiple accesses  

    to the same bank 

-- Crossbar interconnect in input/output 

 

 Bank conflicts 

 Two accesses are to the same bank 

 How can these be reduced? 

 Hardware? Software? 
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General Principle: Interleaving 

 Interleaving (banking) 

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

 

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

 

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 

 Each bank is smaller than the entire memory storage 

 Accesses to different banks can be overlapped 

 

 A Key Issue: How do you map data to different banks? (i.e., 
how do you interleave data across banks?) 

15 



Further Readings on Caching and MLP 

 Required: Qureshi et al., “A Case for MLP-Aware Cache 
Replacement,” ISCA 2006. 

 

 Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas 
Session, 1998. 

 

 Mutlu et al., “Runahead Execution: An Effective Alternative 
to Large Instruction Windows,” IEEE Micro 2003. 
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Main Memory 

 

 

 

 



Main Memory in the System 
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The Memory Chip/System Abstraction 
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Review: Memory Bank Organization 
 Read access sequence: 

 

 1. Decode row address 
& drive word-lines 

  

      2. Selected bits drive 
bit-lines 

     • Entire row read 

       

      3. Amplify row data 

       

      4. Decode column 
address & select subset 
of row 

         • Send to output 

       

      5. Precharge bit-lines 

        • For next access 
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Review: SRAM (Static Random Access Memory) 
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 Read Sequence 

1. address decode 

2. drive row select 

3. selected bit-cells drive bitlines 

   (entire row is read together) 

4. diff. sensing and col. select 

     (data is ready) 

5. precharge all bitlines 

     (for next read or write) 

   

 Access latency dominated by steps 2 and 3 

 Cycling time dominated by steps 2, 3 and 5 

- step 2 proportional to 2m 

- step 3 and 5 proportional to 2n 



Review: DRAM (Dynamic Random Access Memory) 
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overall latency) 
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2m 
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RAS 

CAS 

A DRAM die comprises  
of multiple such arrays 

Bits stored as charges on node 

capacitance (non-restorative) 

- bit cell loses charge when read 

- bit cell loses charge over time 

Read Sequence 

1~3 same as SRAM 

4. a “flip-flopping” sense amp 
amplifies and regenerates the 
bitline, data bit is mux’ed out 

5. precharge all bitlines 

 

Refresh: A DRAM controller must 

periodically read all rows within the 

allowed refresh time (10s of ms) 

such that charge is restored in cells 

 

 



Review: DRAM vs. SRAM 

 DRAM 

 Slower access (capacitor) 

 Higher density (1T 1C cell) 

 Lower cost 

 Requires refresh (power, performance, circuitry) 

 Manufacturing requires putting capacitor and logic together 

 

 SRAM 

 Faster access (no capacitor) 

 Lower density (6T cell) 

 Higher cost 

 No need for refresh 

 Manufacturing compatible with logic process (no capacitor) 
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Some Fundamental Concepts (I) 

 Physical address space 

 Maximum size of main memory: total number of uniquely 
identifiable locations 
 

 Physical addressability  

 Minimum size of data in memory can be addressed 

 Byte-addressable, word-addressable, 64-bit-addressable 

 Microarchitectural addressability depends on the abstraction 
level of the implementation 
 

 Alignment 

 Does the hardware support unaligned access transparently to 
software? 
 

 Interleaving 
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Some Fundamental Concepts (II) 

 Interleaving (banking) 

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

 

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

 

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 

 Each bank is smaller than the entire memory storage 

 Accesses to different banks can be overlapped 

 

 A Key Issue: How do you map data to different banks? (i.e., 
how do you interleave data across banks?) 
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Interleaving 
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Interleaving Options 
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Some Questions/Concepts 

 Remember CRAY-1 with 16 banks 

 11 cycle bank latency 

 Consecutive words in memory in consecutive banks (word 
interleaving) 

 1 access can be started (and finished) per cycle 

 

 Can banks be operated fully in parallel? 

 Multiple accesses started per cycle? 

 

 What is the cost of this? 

 We have seen it earlier (today) 

 

 Modern superscalar processors have L1 data caches with 
multiple, fully-independent banks; DRAM banks share buses 
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The Bank Abstraction 
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The DRAM Subsystem 

 

 

 

 



DRAM Subsystem Organization 

 

 Channel 

 DIMM 

 Rank 

 Chip 

 Bank 

 Row/Column 
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The DRAM Bank Structure 
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Page Mode DRAM 

 A DRAM bank is a 2D array of cells: rows x columns 

 A “DRAM row” is also called a “DRAM page” 

 “Sense amplifiers” also called “row buffer” 

 

 Each address is a <row,column> pair 

 Access to a “closed row” 

 Activate command opens row (placed into row buffer) 

 Read/write command reads/writes column in the row buffer 

 Precharge command closes the row and prepares the bank for 
next access 

 Access to an “open row” 

 No need for activate command 
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DRAM Bank Operation 
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The DRAM Chip 

 Consists of multiple banks (2-16 in Synchronous DRAM) 

 Banks share command/address/data buses 

 The chip itself has a narrow interface (4-16 bits per read) 
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128M x 8-bit DRAM Chip 
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DRAM Rank and Module 

 Rank: Multiple chips operated together to form a wide 
interface 

 All chips comprising a rank are controlled at the same time 

 Respond to a single command 

 Share address and command buses, but provide different data 

 

 A DRAM module consists of one or more ranks 

 E.g., DIMM (dual inline memory module) 

 This is what you plug into your motherboard 

 

 If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM 
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A 64-bit Wide DIMM (One Rank) 
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A 64-bit Wide DIMM (One Rank) 

 Advantages: 
 Acts like a high-

capacity DRAM chip 
with a wide 
interface 

 Flexibility: memory 
controller does not 
need to deal with 
individual chips 

 

 Disadvantages: 
 Granularity: 

Accesses cannot be 
smaller than the 
interface width 
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Multiple DIMMs 
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 Advantages: 

 Enables even 
higher capacity 

 

 Disadvantages: 

 Interconnect 
complexity and 
energy 
consumption 
can be high 

 

 

 



DRAM Channels 

 

 

 

 

 

 

 

 

 

 2 Independent Channels: 2 Memory Controllers (Above) 

 2 Dependent/Lockstep Channels: 1 Memory Controller with 
wide interface (Not Shown above) 
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Generalized Memory Structure 
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Generalized Memory Structure 
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The DRAM Subsystem 

The Top Down View 

 

 

 

 



DRAM Subsystem Organization 

 

 Channel 

 DIMM 

 Rank 

 Chip 

 Bank 

 Row/Column 
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The DRAM subsystem 

Memory channel Memory channel 

DIMM (Dual in-line memory module) 

Processor 

“Channel” 



Breaking down a DIMM 

DIMM (Dual in-line memory module) 

Side view 

Front of DIMM Back of DIMM 



Breaking down a DIMM 

DIMM (Dual in-line memory module) 

Side view 

Front of DIMM Back of DIMM 

Rank 0: collection of 8 chips Rank 1 
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Breaking down a Rank 
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Breaking down a Chip 
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DRAM Subsystem Organization 

 

 Channel 

 DIMM 

 Rank 

 Chip 

 Bank 

 Row/Column 

 

54 



Example: Transferring a cache block 
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Example: Transferring a cache block 
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Example: Transferring a cache block 
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Example: Transferring a cache block 

0xFFFF…F 

0x00 

0x40 

..
. 

64B  
cache block 

Physical memory space 

Rank 0 
Chip 0 Chip 1 Chip 7 

<0
:7

>
 

<8
:1

5
> 

<5
6

:6
3

> 

Data <0:63> 

8B 

Row 0 
Col 1 

. . . 



Example: Transferring a cache block 
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Example: Transferring a cache block 
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Latency Components: Basic DRAM Operation 

 CPU → controller transfer time 

 Controller latency 

 Queuing & scheduling delay at the controller 

 Access converted to basic commands 

 Controller → DRAM transfer time 

 DRAM bank latency 

 Simple CAS (column address strobe) if row is “open” OR 

 RAS (row address strobe) + CAS if array precharged OR 

 PRE + RAS + CAS (worst case) 

 DRAM → Controller transfer time 

 Bus latency (BL) 

 Controller to CPU transfer time 
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Multiple Banks (Interleaving) and Channels 

 Multiple banks 

 Enable concurrent DRAM accesses 

 Bits in address determine which bank an address resides in 

 Multiple independent channels serve the same purpose 

 But they are even better because they have separate data buses 

 Increased bus bandwidth 

 

 Enabling more concurrency requires reducing 

 Bank conflicts 

 Channel conflicts 

 How to select/randomize bank/channel indices in address? 

 Lower order bits have more entropy 

 Randomizing hash functions (XOR of different address bits) 
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How Multiple Banks/Channels Help 
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Multiple Channels 

 Advantages 

 Increased bandwidth 

 Multiple concurrent accesses (if independent channels) 

 

 Disadvantages 

 Higher cost than a single channel 

 More board wires 

 More pins (if on-chip memory controller) 
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Address Mapping (Single Channel) 

 Single-channel system with 8-byte memory bus 

 2GB memory, 8 banks, 16K rows & 2K columns per bank 
 

 Row interleaving 

 Consecutive rows of memory in consecutive banks 

 

 

 Accesses to consecutive cache blocks serviced in a pipelined manner 
 

 Cache block interleaving 

 Consecutive cache block addresses in consecutive banks 

 64 byte cache blocks 

 

 

 Accesses to consecutive cache blocks can be serviced in parallel 
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Bank Mapping Randomization 

 DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely 
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Address Mapping (Multiple Channels) 

 

 

 

 

 Where are consecutive cache blocks? 
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Interaction with VirtualPhysical Mapping 

 Operating System influences where an address maps to in 
DRAM 

 

 

 

 

 Operating system can influence which bank/channel/rank a 
virtual page is mapped to.  

 It can perform page coloring to  

 Minimize bank conflicts 

 Minimize inter-application interference [Muralidhara+ MICRO’11] 
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Memory Controllers 

 

 

 

 



DRAM versus Other Types of Memories 

 Long latency memories have similar characteristics that 
need to be controlled. 

 

 The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories 

 Flash memory 

 Other emerging memory technologies 

 Phase Change Memory 

 Spin-Transfer Torque Magnetic Memory 

 These other technologies can place other demands on the 
controller 
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DRAM Controller: Functions 

 Ensure correct operation of DRAM (refresh and timing) 

 

 Service DRAM requests while obeying timing constraints of 
DRAM chips 

 Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays 

 Translate requests to DRAM command sequences 

 

 Buffer and schedule requests to improve performance 

 Reordering, row-buffer, bank, rank, bus management 

 

 Manage power consumption and thermals in DRAM 

 Turn on/off DRAM chips, manage power modes 
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DRAM Controller: Where to Place 

 In chipset 

+ More flexibility to plug different DRAM types into the system 

    + Less power density in the CPU chip 

 

 On CPU chip 

+ Reduced latency for main memory access 

+ Higher bandwidth between cores and controller 

 More information can be communicated (e.g. request’s 
importance in the processing core) 
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A Modern DRAM Controller (I) 
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A Modern DRAM Controller (II) 



DRAM Scheduling Policies (I) 

 FCFS (first come first served) 

 Oldest request first 

 

 FR-FCFS (first ready, first come first served) 

1. Row-hit first 

2. Oldest first 

Goal: Maximize row buffer hit rate  maximize DRAM throughput 

 

 Actually, scheduling is done at the command level 

 Column commands (read/write) prioritized over row commands 
(activate/precharge) 

 Within each group, older commands prioritized over younger ones 

 

 

 
76 



DRAM Scheduling Policies (II) 

 A scheduling policy is essentially a prioritization order 

 

 Prioritization can be based on 

 Request age 

 Row buffer hit/miss status 

 Request type (prefetch, read, write) 

 Requestor type (load miss or store miss) 

 Request criticality 

 Oldest miss in the core? 

 How many instructions in core are dependent on it? 
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