
18-447

Computer Architecture

Lecture 22: Main Memory

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/26/2014

Announcements

 Homework 5 due date pushed out by two days

 March 28 is the new due date

 Get started early on Lab 5

 Due April 6

 Upcoming events that I encourage you all to attend

 Computer Architecture Seminars on Memory (April 3)

 Carnegie Mellon Cloud Workshop (April 4)

2

Computer Architecture Seminars

 Seminars relevant to many topics covered in 447

 Caching

 DRAM

 List of past and upcoming seminars are here:

 https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:sem
inars

 You can subscribe to receive Computer Architecture related
event announcements here:

 https://sos.ece.cmu.edu/mailman/listinfo/calcm-list

3

https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars
https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars
https://www.ece.cmu.edu/~calcm/doku.php?id=seminars:seminars
https://sos.ece.cmu.edu/mailman/listinfo/calcm-list
https://sos.ece.cmu.edu/mailman/listinfo/calcm-list
https://sos.ece.cmu.edu/mailman/listinfo/calcm-list

Upcoming Seminar on DRAM (April 3)

 April 3, Thursday, 4pm, this room (CIC Panther Hollow)

 Prof. Rajeev Balasubramonian, Univ. of Utah

 Memory Architectures for Emerging Technologies and
Workloads

 The memory system will be a growing bottleneck for many
workloads running on high-end servers. Performance improvements
from technology scaling are also expected to decline in the coming
decade. Therefore, new capabilities will be required in memory
devices and memory controllers to achieve the next big leaps in
performance and energy efficiency. Some of these capabilities will
be inspired by emerging workloads (e.g., in-memory big-data,
approximate computing, co-scheduled VMs), some will be inspired by
new memory technologies (e.g., 3D stacking). The talk will discuss
multiple early-stage projects in the Utah Arch lab that focus on
DRAM parameter variation, near-data processing, and memory
security.

4

Cloud Workshop All Day on April 4

 http://www.industry-academia.org/event-carnegie-mellon-
cloud-workshop.html

 You need to register to attend. Gates 6115. Many talks:
 Keynote: Prof. Onur Mutlu – Carnegie Mellon – "Rethinking Memory System Design for Data-

Intensive Computing"

 Prof. Rajeev Balasubramonian – Utah – “Practical Approaches to Memory Security in the Cloud”

 Bryan Chin – Cavium – “Head in the Clouds - Building a Chip for Scale-out Computing”

 Dr. Joon Kim - SK Hynix – “The Future of NVM Memories”

 Prof. Andy Pavlo - Carnegie Mellon – “OLTP on NVM: YMMV"

 Dr. John Busch – SanDisk – “The Impact of Flash Memory on the Future of Cloud Computing”

 Keynote: Prof. Greg Ganger – Carnegie Mellon – “Scheduling Heterogeneous Resources in Cloud
Datacenters”

 Paul Rad – Rackspace – “OpenStack-Based High Performance Cloud Architecture”

 Charles Butler – Ubuntu – “Cloud Service Orchestration with JuJu”

 Prof. Mor Harchol-Balter - Carnegie Mellon – “Dynamic Power Management in Data Centers”

 Prof. Eric Xing – Carnegie Mellon – “Petuum: A New Platform for Cloud-based Machine Learning to
Efficiently Solve Big Data Problems”

 Majid Bemanian – Imagination Technologies – “Security in the Cloud and Virtualized Mobile Devices”

 Robert Broberg – Cisco – “Cloud Security Challenges and Solutions”

5

http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html

Cloud Career Fair on April 4

 http://www.industry-academia.org/event-carnegie-mellon-
cloud-workshop.html

 Gates 6121, 11am-3pm

 Runs in Room 6121 in parallel to the Tech Forum, from
11am to 3PM. IAP members will have
informational/recruiting tables on site. During the breaks in
the technical presentations and lunch, the Tech Forum
attendees can network on lining up an internship or that
first full-time engineering job. Students who are only
interested and/or able to attend the Career Fair are
welcome to do so, but please indicate this specific interest
on your registration application (see the “Register Here”
button below).

6

http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html
http://www.industry-academia.org/event-carnegie-mellon-cloud-workshop.html

Enabling High Bandwidth Memories

Multiple Instructions per Cycle

 Can generate multiple cache/memory accesses per cycle

 How do we ensure the cache/memory can handle multiple
accesses in the same clock cycle?

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)

8

Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts on read accesses)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same
time?

 Peripheral logic needs to handle this

9

Peripheral Logic for True Multiporting

10

Peripheral Logic for True Multiporting

11

Handling Multiple Accesses per Cycle (II)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?

12

Cache
Copy 1

Handling Multiple Accesses per Cycle (III)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations form a
bottleneck

 Area proportional to “ports”

13

Port 1

Load

Store

Port 1

Data

Cache
Copy 2 Port 2

Load

Port 2

Data

Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Bits in address determines which bank an address maps to

 Address space partitioned into separate banks

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses

 to the same bank

-- Crossbar interconnect in input/output

 Bank conflicts

 Two accesses are to the same bank

 How can these be reduced?

 Hardware? Software?

14

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

15

Further Readings on Caching and MLP

 Required: Qureshi et al., “A Case for MLP-Aware Cache
Replacement,” ISCA 2006.

 Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas
Session, 1998.

 Mutlu et al., “Runahead Execution: An Effective Alternative
to Large Instruction Windows,” IEEE Micro 2003.

16

Main Memory

Main Memory in the System

18

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY

CONTROLLER

The Memory Chip/System Abstraction

19

Review: Memory Bank Organization
 Read access sequence:

 1. Decode row address
& drive word-lines

 2. Selected bits drive
bit-lines

 • Entire row read

 3. Amplify row data

 4. Decode column
address & select subset
of row

 • Send to output

 5. Precharge bit-lines

 • For next access

20

Review: SRAM (Static Random Access Memory)

21

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m diff pairs

2n n

m

1

row select

b
it
lin

e

_
b
it
lin

e

n+m

 Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines

 (entire row is read together)

4. diff. sensing and col. select

 (data is ready)

5. precharge all bitlines

 (for next read or write)

 Access latency dominated by steps 2 and 3

 Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

Review: DRAM (Dynamic Random Access Memory)

22

row enable
_
b
it
lin

e

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m

2n n

m

1

RAS

CAS

A DRAM die comprises
of multiple such arrays

Bits stored as charges on node

capacitance (non-restorative)

- bit cell loses charge when read

- bit cell loses charge over time

Read Sequence

1~3 same as SRAM

4. a “flip-flopping” sense amp
amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Refresh: A DRAM controller must

periodically read all rows within the

allowed refresh time (10s of ms)

such that charge is restored in cells

Review: DRAM vs. SRAM

 DRAM

 Slower access (capacitor)

 Higher density (1T 1C cell)

 Lower cost

 Requires refresh (power, performance, circuitry)

 Manufacturing requires putting capacitor and logic together

 SRAM

 Faster access (no capacitor)

 Lower density (6T cell)

 Higher cost

 No need for refresh

 Manufacturing compatible with logic process (no capacitor)

23

Some Fundamental Concepts (I)

 Physical address space

 Maximum size of main memory: total number of uniquely
identifiable locations

 Physical addressability

 Minimum size of data in memory can be addressed

 Byte-addressable, word-addressable, 64-bit-addressable

 Microarchitectural addressability depends on the abstraction
level of the implementation

 Alignment

 Does the hardware support unaligned access transparently to
software?

 Interleaving
24

Some Fundamental Concepts (II)

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 A Key Issue: How do you map data to different banks? (i.e.,
how do you interleave data across banks?)

25

Interleaving

26

Interleaving Options

27

Some Questions/Concepts

 Remember CRAY-1 with 16 banks

 11 cycle bank latency

 Consecutive words in memory in consecutive banks (word
interleaving)

 1 access can be started (and finished) per cycle

 Can banks be operated fully in parallel?

 Multiple accesses started per cycle?

 What is the cost of this?

 We have seen it earlier (today)

 Modern superscalar processors have L1 data caches with
multiple, fully-independent banks; DRAM banks share buses

28

The Bank Abstraction

29

30

Rank

The DRAM Subsystem

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

32

The DRAM Bank Structure

33

Page Mode DRAM

 A DRAM bank is a 2D array of cells: rows x columns

 A “DRAM row” is also called a “DRAM page”

 “Sense amplifiers” also called “row buffer”

 Each address is a <row,column> pair

 Access to a “closed row”

 Activate command opens row (placed into row buffer)

 Read/write command reads/writes column in the row buffer

 Precharge command closes the row and prepares the bank for
next access

 Access to an “open row”

 No need for activate command

34

DRAM Bank Operation

35

Row Buffer

(Row 0, Column 0)

R
o
w

 d
e
c
o
d
e
r

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
o
w

s

 Access Address:

The DRAM Chip

 Consists of multiple banks (2-16 in Synchronous DRAM)

 Banks share command/address/data buses

 The chip itself has a narrow interface (4-16 bits per read)

36

128M x 8-bit DRAM Chip

37

DRAM Rank and Module

 Rank: Multiple chips operated together to form a wide
interface

 All chips comprising a rank are controlled at the same time

 Respond to a single command

 Share address and command buses, but provide different data

 A DRAM module consists of one or more ranks

 E.g., DIMM (dual inline memory module)

 This is what you plug into your motherboard

 If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

 38

A 64-bit Wide DIMM (One Rank)

39

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

DRAM

Chip

Command Data

A 64-bit Wide DIMM (One Rank)

 Advantages:
 Acts like a high-

capacity DRAM chip
with a wide
interface

 Flexibility: memory
controller does not
need to deal with
individual chips

 Disadvantages:
 Granularity:

Accesses cannot be
smaller than the
interface width

 40

Multiple DIMMs

41

 Advantages:

 Enables even
higher capacity

 Disadvantages:

 Interconnect
complexity and
energy
consumption
can be high

DRAM Channels

 2 Independent Channels: 2 Memory Controllers (Above)

 2 Dependent/Lockstep Channels: 1 Memory Controller with
wide interface (Not Shown above)

42

Generalized Memory Structure

43

Generalized Memory Structure

44

The DRAM Subsystem

The Top Down View

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

46

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63> CS <0:1> Addr/Cmd

<0:63> <0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

C
h

ip
 0

C
h

ip
 1

C
h

ip
 7

 . . .

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Breaking down a Chip

C
h

ip
 0

<0

:7
>

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7

>
 row 0

row 16k-1

...
2kB

1B

1B (column)

1B

Row-buffer

1B

...
<0

:7
>

DRAM Subsystem Organization

 Channel

 DIMM

 Rank

 Chip

 Bank

 Row/Column

54

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

..
.

64B
cache block

Physical memory space

Rank 0
Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5
>

<5
6

:6
3

>

Data <0:63>

8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

 CPU → controller transfer time

 Controller latency

 Queuing & scheduling delay at the controller

 Access converted to basic commands

 Controller → DRAM transfer time

 DRAM bank latency

 Simple CAS (column address strobe) if row is “open” OR

 RAS (row address strobe) + CAS if array precharged OR

 PRE + RAS + CAS (worst case)

 DRAM → Controller transfer time

 Bus latency (BL)

 Controller to CPU transfer time

62

Multiple Banks (Interleaving) and Channels

 Multiple banks

 Enable concurrent DRAM accesses

 Bits in address determine which bank an address resides in

 Multiple independent channels serve the same purpose

 But they are even better because they have separate data buses

 Increased bus bandwidth

 Enabling more concurrency requires reducing

 Bank conflicts

 Channel conflicts

 How to select/randomize bank/channel indices in address?

 Lower order bits have more entropy

 Randomizing hash functions (XOR of different address bits)

63

How Multiple Banks/Channels Help

64

Multiple Channels

 Advantages

 Increased bandwidth

 Multiple concurrent accesses (if independent channels)

 Disadvantages

 Higher cost than a single channel

 More board wires

 More pins (if on-chip memory controller)

65

Address Mapping (Single Channel)

 Single-channel system with 8-byte memory bus

 2GB memory, 8 banks, 16K rows & 2K columns per bank

 Row interleaving

 Consecutive rows of memory in consecutive banks

 Accesses to consecutive cache blocks serviced in a pipelined manner

 Cache block interleaving

 Consecutive cache block addresses in consecutive banks

 64 byte cache blocks

 Accesses to consecutive cache blocks can be serviced in parallel

66

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)

3 bits 8 bits

Bank Mapping Randomization

 DRAM controller can randomize the address mapping to
banks so that bank conflicts are less likely

67

Column (11 bits) 3 bits Byte in bus (3 bits)

XOR

Bank index

(3 bits)

Address Mapping (Multiple Channels)

 Where are consecutive cache blocks?

68

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)

3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)

3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)

3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)

3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)

3 bits 8 bits

C

Interaction with VirtualPhysical Mapping

 Operating System influences where an address maps to in
DRAM

 Operating system can influence which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to

 Minimize bank conflicts

 Minimize inter-application interference [Muralidhara+ MICRO’11]

69

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits) Physical Frame number (19 bits)

Page offset (12 bits) Virtual Page number (52 bits) VA

PA

PA

Memory Controllers

DRAM versus Other Types of Memories

 Long latency memories have similar characteristics that
need to be controlled.

 The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories

 Flash memory

 Other emerging memory technologies

 Phase Change Memory

 Spin-Transfer Torque Magnetic Memory

 These other technologies can place other demands on the
controller

71

DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to improve performance

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes

 72

DRAM Controller: Where to Place

 In chipset

+ More flexibility to plug different DRAM types into the system

 + Less power density in the CPU chip

 On CPU chip

+ Reduced latency for main memory access

+ Higher bandwidth between cores and controller

 More information can be communicated (e.g. request’s
importance in the processing core)

73

A Modern DRAM Controller (I)

74

75

A Modern DRAM Controller (II)

DRAM Scheduling Policies (I)

 FCFS (first come first served)

 Oldest request first

 FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate  maximize DRAM throughput

 Actually, scheduling is done at the command level

 Column commands (read/write) prioritized over row commands
(activate/precharge)

 Within each group, older commands prioritized over younger ones

76

DRAM Scheduling Policies (II)

 A scheduling policy is essentially a prioritization order

 Prioritization can be based on

 Request age

 Row buffer hit/miss status

 Request type (prefetch, read, write)

 Requestor type (load miss or store miss)

 Request criticality

 Oldest miss in the core?

 How many instructions in core are dependent on it?

77

