
18-447  

Computer Architecture 

Lecture 21: Advanced Caching and 

Memory-Level Parallelism 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

Spring 2013, 3/24/2014 

 

 

 



Reminders 

 Homework 5: Due March 26 

 

 Lab 5: Due April 6 

 Branch prediction and caching (high-level simulation) 

 

2 



Cache Performance 

 

 

 

 



Cache Parameters vs. Miss Rate 

 Cache size 

 

 Block size 

 

 Associativity 

 

 Replacement policy 

 Insertion/Placement policy 

4 



Cache Size 

 Cache size: total data (not including tag) capacity 

  bigger can exploit temporal locality better 

  not ALWAYS better 

 Too large a cache adversely affects hit and miss latency 

  smaller is faster => bigger is slower 

  access time may degrade critical path 

 Too small a cache 

  doesn’t exploit temporal locality well 

  useful data replaced often 

 

 Working set: the whole set of data                                                    
the executing application references  

 Within a time interval  

 5 

hit rate 

cache size 

“working set” 

 size 



Block Size 

 Block size is the data that is associated with an address tag  

  not necessarily the unit of transfer between hierarchies 

 Sub-blocking: A block divided into multiple pieces (each with V bit) 

 Can improve “write” performance 

 

 Too small blocks 

  don’t exploit spatial locality well 

  have larger tag overhead 

 

 Too large blocks 

 too few total # of blocks  less 

temporal locality exploitation 

 waste of cache space and bandwidth/energy  

    if spatial locality is not high 
6 

hit rate 

block 

size 



Large Blocks: Critical-Word and Subblocking 

 Large cache blocks can take a long time to fill into the cache 

 fill cache line critical word first  

 restart cache access before complete fill 

 

 Large cache blocks can waste bus bandwidth  

 divide a block into subblocks 

 associate separate valid bits for each subblock 

 When is this useful? 

 

7 

tag       subblock v       subblock v      subblock v d d d 



Associativity 

 How many blocks can map to the same index (or set)? 

 

 Larger associativity 

 lower miss rate, less variation among programs 

 diminishing returns, higher hit latency 

 

 Smaller associativity 

 lower cost 

 lower hit latency 

 Especially important for L1 caches 

 

 Power of 2 associativity? 

 

 8 

associativity 

hit rate 



Classification of Cache Misses 

 Compulsory miss  

 first reference to an address (block) always results in a miss 

 subsequent references should hit unless the cache block is 
displaced for the reasons below 

 dominates when locality is poor 

 

 Capacity miss  

 cache is too small to hold everything needed 

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity              

 Conflict miss  

 defined as any miss that is neither a compulsory nor a capacity 
miss  

9 



How to Reduce Each Miss Type 

 Compulsory 

 Caching cannot help 

 Prefetching 

 Conflict 

 More associativity 

 Other ways to get more associativity without making the 
cache associative 

 Victim cache 

 Hashing 

 Software hints? 

 Capacity 

 Utilize cache space better: keep blocks that will be referenced 

 Software management: divide working set such that each 
“phase” fits in cache 

10 



Improving Cache “Performance” 

 Remember  

 Average memory access time (AMAT) 

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 

 

 Reducing miss rate 

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted 

 

 Reducing miss latency/cost 

 

 Reducing hit latency 

 

 
11 



Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
12 



Victim Cache: Reducing Conflict Misses 

 

 

 

 

 
 

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990. 

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks  

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other) 

-- Increases miss latency if accessed serially with L2 

13 

Direct 

Mapped 

Cache 

Next Level 

Cache 

Victim 

cache 



Hashing and Pseudo-Associativity 

 Hashing: Better “randomizing” index functions   

+ can reduce conflict misses 

 by distributing the accessed memory blocks more evenly to sets 

 Example: stride where stride value equals cache size 

-- More complex to implement: can lengthen critical path 

 

 Pseudo-associativity (Poor Man’s associative cache) 

 Serial lookup: On a miss, use a different index function and 
access cache again 

 Given a direct-mapped array with K cache blocks 

 Implement K/N sets 

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}  

 

 14 



Skewed Associative Caches (I) 

 Basic 2-way associative cache structure 

15 

Way 0 Way 1 

Tag    Index    Byte in Block     

Same index function 

for each way 

=? =? 



Skewed Associative Caches (II) 

 Skewed associative caches 

 Each bank has a different index function 

16 

Way 0 Way 1 

   tag          index         byte in block    

f0 

same index 
same set 

same index 
redistributed to  
different sets 

=? =? 



Skewed Associative Caches (III) 

 Idea: Reduce conflict misses by using different index 
functions for each cache way 

 

 Benefit: indices are randomized 

 Less likely two blocks have same index 

 Reduced conflict misses 

 May be able to reduce associativity 

 

 Cost: additional latency of hash function 

 

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993. 

17 



Improving Hit Rate via Software (I) 

 Restructuring data layout 

 Example: If column-major 

 x[i+1,j] follows x[i,j] in memory 

 x[i,j+1] is far away from x[i,j] 

 

 

 

 

 

 This is called loop interchange 

 Other optimizations can also increase hit rate 

 Loop fusion, array merging, … 

 What if multiple arrays? Unknown array size at compile time? 
18 

Poor code   

for i = 1, rows 

      for j = 1, columns 

            sum = sum + x[i,j] 

Better code    

for j = 1, columns 

      for i = 1, rows 

           sum = sum + x[i,j] 



More on Data Structure Layout 

 Pointer based traversal 
(e.g., of a linked list) 

 Assume a huge linked 
list (1M nodes) and 
unique keys 

 Why does the code on 
the left have poor cache 
hit rate? 

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed! 

 

 

 19 

struct Node { 

     struct Node* node; 

     int key; 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access other fields of node 

      } 

      node = nodenext; 

} 

  



How Do We Make This Cache-Friendly? 

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure 

 

 Who should do this? 

 Programmer 

 Compiler  

 Profiling vs. dynamic 

 Hardware? 

 Who can determine what 
is frequently used? 

20 

struct Node { 

     struct Node* node; 

     int key; 

     struct Node-data* node-data; 

} 

 

struct Node-data { 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access nodenode-data 

      } 

      node = nodenext; 

} 

  



Improving Hit Rate via Software (II) 

 Blocking  

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache 

 Avoids cache conflicts between different chunks of 
computation 

 Essentially: Divide the working set so that each piece fits in 
the cache 

 

 

 But, there are still self-conflicts in a block 

1. there can be conflicts among different arrays 

2. array sizes may be unknown at compile/programming time 

21 



Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
22 



23 

Memory Level Parallelism (MLP)  

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98] 

 

 Several techniques to improve MLP (e.g., out-of-order execution) 
 

 MLP varies. Some misses are isolated and some parallel  
 

 How does this affect cache replacement? 

time 

A 
B 

C 

isolated miss parallel miss 



Traditional Cache Replacement Policies 

 Traditional cache replacement policies try to reduce miss 
count 

 

 Implicit assumption: Reducing miss count reduces memory-
related stall time  

 

 Misses with varying cost/MLP breaks this assumption! 

 

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss 

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss 

 
24 



25 

Misses to blocks P1, P2, P3, P4 can be parallel 
Misses to blocks S1, S2, and S3 are isolated 

Two replacement algorithms: 
1. Minimizes miss count (Belady’s OPT) 
2. Reduces isolated miss (MLP-Aware) 
 

For a fully associative cache containing 4 blocks 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

An Example 



Fewest Misses = Best Performance 

26 

P3  P2  P1  P4  

H  H  H  H M           H  H  H  M Hit/Miss 

Misses=4 
Stalls=4 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

  

Time stall 

Belady’s OPT replacement 

M           M           

MLP-Aware replacement 

Hit/Miss 

P3  P2  S1  P4  P3  P2  P1  P4  P3  P2  S2 P4  P3  P2  S3 P4  S1  S2  S3 P1  P3  P2  S3 P4  S1  S2  S3 P4  

H           H           H         

S1  S2  S3 P4  

H  M  M  M H  M  M  M 

Time stall Misses=6
Stalls=2 

Saved 
cycles 

Cache 



MLP-Aware Cache Replacement 

 How do we incorporate MLP into replacement decisions? 

 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” 
ISCA 2006. 

 Required reading for this week 

 

27 



Enabling Multiple Outstanding Misses 

 

 

 

 



Handling Multiple Outstanding Accesses  

 Non-blocking or lockup-free caches 

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache 
Organization," ISCA 1981. 

 Question: If the processor can generate multiple cache 
accesses, can the later accesses be handled while a 
previous miss is outstanding? 

 Idea: Keep track of the status/data of misses that are being 
handled in Miss Status Handling Registers (MSHRs) 

 A cache access checks MSHRs to see if a miss to the same 
block is already pending. 

 If pending,  a new request is not generated 

 If pending and the needed data available, data forwarded to later 
load 

 Requires buffering of outstanding miss requests 

29 



Non-Blocking Caches (and MLP) 

 Enable cache access when there is a pending miss 

 Enable multiple misses in parallel 

 Memory-level parallelism (MLP) 

 generating and servicing multiple memory accesses in parallel 

 Why generate multiple misses?  

 

 

 

 

 

 Enables latency tolerance: overlaps latency of different misses 

 How to generate multiple misses? 

 Out-of-order execution, multithreading, runahead, prefetching 

 

 
30 

time 

A 
C 

B 

isolated miss parallel miss 



Miss Status Handling Register 

 Also called “miss buffer” 

 Keeps track of 

 Outstanding cache misses 

 Pending load/store accesses that refer to the missing cache 
block 

 Fields of a single MSHR entry 

 Valid bit 

 Cache block address (to match incoming accesses) 

 Control/status bits (prefetch, issued to memory, which 
subblocks have arrived, etc) 

 Data for each subblock 

 For each pending load/store 

 Valid, type, data size, byte in block, destination register or store 
buffer entry address 

31 



Miss Status Handling Register Entry 

 

32 



MSHR Operation 

 On a cache miss: 

 Search MSHRs for a pending access to the same block 

 Found: Allocate a load/store entry in the same MSHR entry 

 Not found: Allocate a new MSHR 

 No free entry: stall 

 

 When a subblock returns from the next level in memory 

 Check which loads/stores waiting for it 

 Forward data to the load/store unit 

 Deallocate load/store entry in the MSHR entry 

 Write subblock in cache or MSHR 

 If last subblock, dellaocate MSHR (after writing the block in 
cache) 

 

33 



Non-Blocking Cache Implementation 

 When to access the MSHRs?  

 In parallel with the cache? 

 After cache access is complete? 

 

 MSHRs need not be on the critical path of hit requests 

 Which one below is the common case? 

 Cache miss, MSHR hit 

 Cache hit 

 

34 



Enabling High Bandwidth Caches  

(and Memories in General) 

 

 

 

 



Multiple Instructions per Cycle 

 Can generate multiple cache accesses per cycle 

 How do we ensure the cache can handle multiple accesses 
in the same clock cycle?  

 

 Solutions: 

 true multi-porting 

 virtual multi-porting (time sharing a port) 

 multiple cache copies 

 banking (interleaving) 

 

 

 

 
36 



Handling Multiple Accesses per Cycle (I) 

 True multiporting 

 Each memory cell has multiple read or write ports 

+ Truly concurrent accesses (no conflicts regardless of address) 

-- Expensive in terms of latency, power, area 

 What about read and write to the same location at the same 
time? 

 Peripheral logic needs to handle this 

 

 

37 



Peripheral Logic for True Multiporting 

38 



Peripheral Logic for True Multiporting 

39 



Handling Multiple Accesses per Cycle (I) 

 Virtual multiporting 

 Time-share a single port 

 Each access needs to be (significantly) shorter than clock cycle 

 Used in Alpha 21264 

 Is this scalable? 

 

40 



Cache 
Copy 1 

Handling Multiple Accesses per Cycle (II) 

 Multiple cache copies 

 Stores update both caches 

 Loads proceed in parallel 

 

 Used in Alpha 21164 

 

 Scalability? 

 Store operations form a 
bottleneck 

 Area proportional to “ports” 

 

 

41 

Port 1 

Load 

Store 

Port 1 

Data 

Cache 
Copy 2 Port 2 

Load 

Port 2 

Data 



Handling Multiple Accesses per Cycle (III) 

 Banking (Interleaving) 

 Bits in address determines which bank an address maps to 

 Address space partitioned into separate banks 

 Which bits to use for “bank address”? 

+ No increase in data store area 

-- Cannot satisfy multiple accesses  

    to the same bank 

-- Crossbar interconnect in input/output 

 

 Bank conflicts 

 Two accesses are to the same bank 

 How can these be reduced? 

 Hardware? Software? 

42 

Bank 0: 
Even  

addresses 

Bank 1: 
Odd 

addresses 



General Principle: Interleaving 

 Interleaving (banking) 

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

 

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

 

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 

 Each bank is smaller than the entire memory storage 

 Accesses to different banks can be overlapped 

 

 Issue: How do you map data to different banks? (i.e., how do 
you interleave data across banks?) 

43 



Further Readings on Caching and MLP 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” 
ISCA 2006. 

 

 Glew, “MLP Yes! ILP No!,” ASPLOS Wild and Crazy Ideas 
Session, 1998. 

 

 

44 


