18-447

Computer Architecture
Lecture 21: Advanced Caching and
Memory-Level Parallelism

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2013, 3/24/2014

Reminders

Homework 5: Due March 26

Lab 5: Due April 6
a Branch prediction and caching (high-level simulation)

Cache Performance

Cache Parameters vs. Miss/Hit Rate

Cache size
Block size
Associativity

Replacement policy
Insertion/Placement policy

Cache Size

Cache size: total data (not including tag) capacity

o bigger can exploit temporal locality better

o nhot ALWAYS better

Too large a cache adversely affects hit and miss latency
o smaller is faster => bigger is slower

o access time may degrade critical path
Too small a cache |
o doesn’ t exploit temporal locality well

hit rate

f size

o useful data replaced often “working set”

Working set: the whole set of data

the executing application references O .
cache size

o Within a time interval
5

Block Size

Block size is the data that is associated with an address tag

o not necessarily the unit of transfer between hierarchies

Sub-blocking: A block divided into multiple pieces (each with V bit)
o Can improve “write” performance

Too small blocks hit rate
o don't exploit spatial locality well
o have larger tag overhead

Too large blocks

o too few total # of blocks - less
temporal locality exploitation

o waste of cache space and bandwidth/energy
if spatial locality is not high

block
size

Large Blocks: Critical-Word and Subblocking

Large cache blocks can take a long time to fill into the cache
a fill cache line critical word first
o restart cache access before complete fill

Large cache blocks can waste bus bandwidth
o divide a block into subblocks

o associate separate valid bits for each subblock
o When is this useful?

v|d| subblock |v|d|subblock e e 00 |y|d]subblock tag

Associativity

How many blocks can map to the same index (or set)?

Larger associativity
o lower miss rate, less variation among programs
o diminishing returns, higher hit latency

hit rate
Smaller associativity
o lower cost

o lower hit latency
Especially important for L1 caches

Power of 2 associativity required? associativity

Classification of Cache Misses

Compulsory miss
o first reference to an address (block) always results in a miss

o subsequent references should hit unless the cache block is
displaced for the reasons below

o dominates when locality is poor

Capacity miss
o cache is too small to hold everything needed

o defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

Conflict miss

o defined as any miss that is neither a compulsory nor a capacity
miss
9

How to Reduce Each Miss Type

Compulsory
o Caching cannot help
o Prefetching

Conflict
o More associativity

o Other ways to get more associativity without making the
cache associative
Victim cache
Hashing
Software hints?

Capacity
a Utilize cache space better: keep blocks that will be referenced

o Software management: divide working set such that each

“phase” fits in cache
10

’

. 14 y
Improving Cache Performance

Remember

o Average memory access time (AMAT)
= (hit-rate * hit-latency) + (miss-rate * miss-latency)

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency/cost

Reducing hit latency/cost

11

Improving Basic Cache Performance
Reducing miss rate

Q

Q

Q

Q

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Better replacement/insertion policies
Software approaches

Reducing miss latency/cost

OO O 0O 0O 0O 0O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

12

Cheap Ways of Reducing Contlict Misses

Instead of building highly-associative caches:

Victim Caches

Hashed/randomized Index Functions
Pseudo Associativity

Skewed Associative Caches

13

Victim Cache: Reducing Contlict Misses

Victim
Direct sache Next Level
Mapped
CaFZ:FEI e Cache

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity

14

Hashing and Pseudo-Associativity

Hashing: Better “randomizing” index functions

+ can reduce conflict misses
by distributing the accessed memory blocks more evenly to sets

Example of conflicting accesses: strided access pattern where
stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

Pseudo-associativity (Poor Man’ s associative cache)

o Serial lookup: On a miss, use a different index function and
access cache again
o Given a direct-mapped array with K cache blocks

Implement K/N sets

Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[Ig(K/N)-1: 0]}, ..., {N-1,Addr[lg(K/N)-1: 0]}

15

Skewed Associative Caches

Idea: Reduce conflict misses by using different index
functions for each cache way

Seznec, “A Case for Two-Way Skewed-Associative Caches,”
ISCA 1993.

16

Skewed Associative Caches (1)

= Basic 2-way associative cache structure

Way O Way 1
Same index function

for each way

I

<.

[
.\) N
[
N

Tag Index ByteinBlock

<
<.

Skewed Associative Caches (I1)

= Skewed associative caches
o Each bank has a different index function

same index ,
redistributed to Same index
Way O different sets same set Way 1

T~

=

il

il

T 17]
tag index byte in block =7

[
)

e
é_

18

Skewed Associative Caches (111

Idea: Reduce conflict misses by using different index
functions for each cache way

Benefit: indices are more randomized (memory blocks are
better distributed across sets)

o Less likely two blocks have same index
Reduced conflict misses

o May be able to reduce associativity

Cost: additional latency of hash function

Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

19

Sottware Approaches tor Higher Hit Rate

Restructuring data access patterns
Restructuring data layout

Loop interchange
Data structure separation/merging
Blocking

20

Restructuring Data Access Patterns (I)

Idea: Restructure data layout or data access patterns
Example: If column-major

o Xx[i+1,j] follows x[i,j] in memory

a X[i,j+1] is far away from x[i,j]

Poor code Better code
fori=1, rows forj =1, columns
forj =1, columns fori=1, rows
sum = sum + X[i,j] sum = sum + X]i,j]

This is called loop interchange

Other optimizations can also increase hit rate
o Loop fusion, array merging, ...

What if multiple arrays? Unknown array size at compile time?

21

Restructuring Data Access Patterns (1)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time

22

Restructuring Data Layout (I)

struct Node {
struct Node* node;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (node—>key == input-key) {
/[access other fields of node

}

node = node—->next;

}

Pointer based traversal
(e.g., of a linked list)

Assume a huge linked

list (1M nodes) and

unique keys

Why does the code on

the left have poor cache

hit rate?

a “Other fields” occupy
most of the cache line

even though rarely
accessed!

23

Restructuring Data Layout (11)

struct Node { = Idea: separate frequently-
?’”‘LCt Node* node; used fields of a data
Int key;
struct Node-data* node-data; .StrUCture anc pack them
) into a separate data
structure
struct Node-data {
char [256] name; :
char %256} school: = Who should do this?
} o Programmer
o Compiler

while (node) {

if (node>key == input-key) { = Profiling vs. dynamic

/| access node—~>node-data o Hardware?
} o Who can determine what
node = node—>next, is frequently used?

24

Improving Basic Cache Performance
Reducing miss rate

Q

Q

Q

Q

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Better replacement/insertion policies
Software approaches

Reducing miss latency/cost

OO O 0O 0O 0O 0O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

25

Miss Latency/Cost

What is miss latency or miss cost affected by?

a Where does the miss hit?
Local vs. remote memory
What level of cache in the hierarchy?

Row hit versus row miss
Queueing delays in the memory controller and the interconnect

o How much does the miss stall the processor?
Is it overlapped with other latencies?
Is the data immediately needed?

26

Memory Level Parallelism (MLP)

isolated miss parallel miss

/]
A \\ B /|
C /

, time

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’ 98]

Several techniques to improve MLP (e.g., out-of-order execution)
MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

27

Traditional Cache Replacement Policies

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

Eliminating an isolated miss helps performance more than
eliminating a parallel miss

Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

28

An Example

P4 P3 P2 P] {Pl P2 P3 P4 @

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’ s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

29

&

&

Fewest Misses = Best Performance

P4 |S1Qache

S3

P1

S

1

P3 |P2P4

P3 |P2 |S3

P4

1(S2 |S3P{P4 |S1 |S2 |S3
P

P3 P2 PIH 1 P2 P3 P4J4>‘—>‘—>‘—&

Hit/Miss HHH M

Time Misses
TIEEN T T e =4

HHHH M

Belady’ s OPT replacement

M

M
=4

Hit/Miss H M M M HMMM H H H
Time SR — Misses=6
cycies Stalls=2

MLP-Aware replacement

30

MILP-Aware Cache Replacement

How do we incorporate MLP into replacement decisions?

Qureshi et al., “"A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

o Required reading for this week

31

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses

Non-blocking or lockup-free caches

a Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

Question: If the processor can generate multiple cache

accesses, can the later accesses be handled while a
previous miss is outstanding?

Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRS)
o A cache access checks MSHRs to see if a miss to the same
block is already pending.
If pending, a new request is not generated

If pending and the needed data available, data forwarded to later
load

o Requires buffering of outstanding miss requests

33

Non-Blocking Caches (and MLP)

Enable cache access when there is a pending miss

Enable multiple misses in parallel

o Memory-level parallelism (MLP)
generating and servicing multiple memory accesses in parallel

o Why generate multiple misses?

isolated miss y parallel miss
AN C 7
A = /
B v

, time

Enables latency tolerance: overlaps latency of different misses

o How to generate multiple misses?
Out-of-order execution, multithreading, runahead, prefetching

34

Miss Status Handling Register

Also called “miss buffer”
Keeps track of

Q

Q

Outstanding cache misses

Pending load/store accesses that refer to the missing cache
block

Fields of a single MSHR entry

Q

Q

Q

Valid bit
Cache block address (to match incoming accesses)

Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

Data for each subblock

For each pending load/store

Valid, type, data size, byte in block, destination register or store
buffer entry address
35

Miss Status Handling Register Entry

1 27 1 1 3 5 5
Valid | Block Address (Issued| |Valid| Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination

Load/store O
Load/store 1

Load/store 2

Load/store 3

36

MSHR Operation

On a cache miss:

o Search MSHRs for a pending access to the same block
Found: Allocate a load/store entry in the same MSHR entry
Not found: Allocate a new MSHR
No free entry: stall

When a subblock returns from the next level in memory

o Check which loads/stores waiting for it
Forward data to the load/store unit
Deallocate load/store entry in the MSHR entry

a Write subblock in cache or MSHR

o If last subblock, dellaocate MSHR (after writing the block in
cache)

37

Non-Blocking Cache Implementation

When to access the MSHRs?
o In parallel with the cache?
o After cache access is complete?

MSHRs need not be on the critical path of hit requests

2 Which one below is the common case?
Cache miss, MSHR hit
Cache hit

38

