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Reminders

Homework 5: Due March 26

Lab 5: Due April 6
a Branch prediction and caching (high-level simulation)



Cache Performance




Cache Parameters vs. Miss/Hit Rate

Cache size
Block size
Associativity

Replacement policy
Insertion/Placement policy



Cache Size

Cache size: total data (not including tag) capacity

o bigger can exploit temporal locality better

o nhot ALWAYS better

Too large a cache adversely affects hit and miss latency
o smaller is faster => bigger is slower

o access time may degrade critical path
Too small a cache |
o doesn’ t exploit temporal locality well

hit rate

f size

o useful data replaced often “working set”

Working set: the whole set of data

the executing application references O .
cache size

o Within a time interval
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Block Size

Block size is the data that is associated with an address tag

o not necessarily the unit of transfer between hierarchies

Sub-blocking: A block divided into multiple pieces (each with V bit)
o Can improve “write” performance

Too small blocks hit rate
o don't exploit spatial locality well
o have larger tag overhead

Too large blocks

o too few total # of blocks - less
temporal locality exploitation

o waste of cache space and bandwidth/energy
if spatial locality is not high

block
size



Large Blocks: Critical-Word and Subblocking

Large cache blocks can take a long time to fill into the cache
a fill cache line critical word first
o restart cache access before complete fill

Large cache blocks can waste bus bandwidth
o divide a block into subblocks

o associate separate valid bits for each subblock
o When is this useful?

v|d| subblock |v|d|subblock e e 00 |y|d]subblock tag




Associativity

How many blocks can map to the same index (or set)?

Larger associativity
o lower miss rate, less variation among programs
o diminishing returns, higher hit latency

hit rate
Smaller associativity
o lower cost

o lower hit latency
Especially important for L1 caches

Power of 2 associativity required? associativity



Classification of Cache Misses

Compulsory miss
o first reference to an address (block) always results in a miss

o subsequent references should hit unless the cache block is
displaced for the reasons below

o dominates when locality is poor

Capacity miss
o cache is too small to hold everything needed

o defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

Conflict miss

o defined as any miss that is neither a compulsory nor a capacity
miss
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How to Reduce Each Miss Type

Compulsory
o Caching cannot help
o Prefetching

Conflict
o More associativity

o Other ways to get more associativity without making the
cache associative
Victim cache
Hashing
Software hints?

Capacity
a Utilize cache space better: keep blocks that will be referenced

o Software management: divide working set such that each

“phase” fits in cache
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Improving Cache Performance

Remember

o Average memory access time (AMAT)
= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

Reducing miss rate

o Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

Reducing miss latency/cost

Reducing hit latency/cost
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Improving Basic Cache Performance
Reducing miss rate

Q

Q

Q

Q

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Better replacement/insertion policies
Software approaches

Reducing miss latency/cost

OO O 0O 0O 0O 0O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches

12



Cheap Ways of Reducing Contlict Misses

Instead of building highly-associative caches:

Victim Caches

Hashed/randomized Index Functions
Pseudo Associativity

Skewed Associative Caches
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Victim Cache: Reducing Contlict Misses

Victim
Direct sache Next Level
Mapped
CaFZ:FEI e Cache

Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same set (if two

cache blocks continuously accessed in nearby time conflict with each
other)

-- Increases miss latency if accessed serially with L2; adds complexity
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Hashing and Pseudo-Associativity

Hashing: Better “randomizing” index functions

+ can reduce conflict misses
by distributing the accessed memory blocks more evenly to sets

Example of conflicting accesses: strided access pattern where
stride value equals number of sets in cache

-- More complex to implement: can lengthen critical path

Pseudo-associativity (Poor Man’ s associative cache)

o Serial lookup: On a miss, use a different index function and
access cache again
o Given a direct-mapped array with K cache blocks

Implement K/N sets

Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[Ig(K/N)-1: 0]}, ..., {N-1,Addr[lg(K/N)-1: 0]}
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Skewed Associative Caches

Idea: Reduce conflict misses by using different index
functions for each cache way

Seznec, “A Case for Two-Way Skewed-Associative Caches,”
ISCA 1993.
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Skewed Associative Caches (1)

= Basic 2-way associative cache structure

Way O Way 1
Same index function

for each way
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Skewed Associative Caches (I1)

= Skewed associative caches
o Each bank has a different index function

same index ,
redistributed to  Same index
Way O different sets same set Way 1
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Skewed Associative Caches (111

Idea: Reduce conflict misses by using different index
functions for each cache way

Benefit: indices are more randomized (memory blocks are
better distributed across sets)

o Less likely two blocks have same index
Reduced conflict misses

o May be able to reduce associativity

Cost: additional latency of hash function

Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.
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Sottware Approaches tor Higher Hit Rate

Restructuring data access patterns
Restructuring data layout

Loop interchange
Data structure separation/merging
Blocking
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Restructuring Data Access Patterns (I)

Idea: Restructure data layout or data access patterns
Example: If column-major

o Xx[i+1,j] follows x[i,j] in memory

a X[i,j+1] is far away from x[i,j]

Poor code Better code
fori=1, rows forj =1, columns
forj =1, columns fori=1, rows
sum = sum + X[i,j] sum = sum + X]i,j]

This is called loop interchange

Other optimizations can also increase hit rate
o Loop fusion, array merging, ...

What if multiple arrays? Unknown array size at compile time?
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Restructuring Data Access Patterns (1)

Blocking

o Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

o Avoids cache conflicts between different chunks of
computation

o Essentially: Divide the working set so that each piece fits in
the cache

But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming time
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Restructuring Data Layout (I)

struct Node {
struct Node* node;
int key;
char [256] name;
char [256] school;

}

while (node) {
if (node—>key == input-key) {
/[ access other fields of node

}

node = node—->next;

}

Pointer based traversal
(e.g., of a linked list)

Assume a huge linked

list (1M nodes) and

unique keys

Why does the code on

the left have poor cache

hit rate?

a “Other fields” occupy
most of the cache line

even though rarely
accessed!
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Restructuring Data Layout (11)

struct Node { = Idea: separate frequently-
?’”‘LCt Node* node; used fields of a data
Int key;
struct Node-data* node-data; .StrUCture anc pack them
) into a separate data
structure
struct Node-data {
char [256] name; :
char %256} school: = Who should do this?
} o Programmer
o Compiler

while (node) {

if (node>key == input-key) { = Profiling vs. dynamic

/| access node—~>node-data o Hardware?
} o Who can determine what
node = node—>next, is frequently used?
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Improving Basic Cache Performance
Reducing miss rate

Q

Q

Q

Q

More associativity
Alternatives/enhancements to associativity

Victim caches, hashing, pseudo-associativity, skewed associativity

Better replacement/insertion policies
Software approaches

Reducing miss latency/cost

OO O 0O 0O 0O 0O O

Multi-level caches

Critical word first

Subblocking/sectoring

Better replacement/insertion policies

Non-blocking caches (multiple cache misses in parallel)
Multiple accesses per cycle

Software approaches
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Miss Latency/Cost

What is miss latency or miss cost affected by?

a Where does the miss hit?
Local vs. remote memory
What level of cache in the hierarchy?

Row hit versus row miss
Queueing delays in the memory controller and the interconnect

o How much does the miss stall the processor?
Is it overlapped with other latencies?
Is the data immediately needed?
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Memory Level Parallelism (MLP)

isolated miss parallel miss

/]
A \\ B /|
C /

, time

Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’ 98]

Several techniques to improve MLP (e.g., out-of-order execution)
MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?
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Traditional Cache Replacement Policies

Traditional cache replacement policies try to reduce miss
count

Implicit assumption: Reducing miss count reduces memory-
related stall time

Misses with varying cost/MLP breaks this assumption!

Eliminating an isolated miss helps performance more than
eliminating a parallel miss

Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss
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An Example

P4 P3 P2 P] {Pl P2 P3 P4 @

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’ s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks
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Fewest Misses = Best Performance

P4 |S1Qache

S3

P1

S

1
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MLP-Aware replacement
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MILP-Aware Cache Replacement

How do we incorporate MLP into replacement decisions?

Qureshi et al., “"A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

o Required reading for this week
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Enabling Multiple Outstanding Misses




Handling Multiple Outstanding Accesses

Non-blocking or lockup-free caches

a Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

Question: If the processor can generate multiple cache

accesses, can the later accesses be handled while a
previous miss is outstanding?

Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRS)
o A cache access checks MSHRs to see if a miss to the same
block is already pending.
If pending, a new request is not generated

If pending and the needed data available, data forwarded to later
load

o Requires buffering of outstanding miss requests
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Non-Blocking Caches (and MLP)

Enable cache access when there is a pending miss

Enable multiple misses in parallel

o Memory-level parallelism (MLP)
generating and servicing multiple memory accesses in parallel

o Why generate multiple misses?

isolated miss y parallel miss
AN C 7
A = /
B v

, time

Enables latency tolerance: overlaps latency of different misses

o How to generate multiple misses?
Out-of-order execution, multithreading, runahead, prefetching
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Miss Status Handling Register

Also called “miss buffer”
Keeps track of

Q

Q

Outstanding cache misses

Pending load/store accesses that refer to the missing cache
block

Fields of a single MSHR entry

Q

Q

Q

Valid bit
Cache block address (to match incoming accesses)

Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

Data for each subblock

For each pending load/store

Valid, type, data size, byte in block, destination register or store
buffer entry address
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Miss Status Handling Register Entry

1 27 1 1 3 5 5
Valid | Block Address (Issued| |Valid| Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination

Load/store O
Load/store 1

Load/store 2

Load/store 3
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MSHR Operation

On a cache miss:

o Search MSHRs for a pending access to the same block
Found: Allocate a load/store entry in the same MSHR entry
Not found: Allocate a new MSHR
No free entry: stall

When a subblock returns from the next level in memory

o Check which loads/stores waiting for it
Forward data to the load/store unit
Deallocate load/store entry in the MSHR entry

a Write subblock in cache or MSHR

o If last subblock, dellaocate MSHR (after writing the block in
cache)

37



Non-Blocking Cache Implementation

When to access the MSHRs?
o In parallel with the cache?
o After cache access is complete?

MSHRs need not be on the critical path of hit requests

2 Which one below is the common case?
Cache miss, MSHR hit
Cache hit
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