
18-447

Computer Architecture

Lecture 20: Better Caching

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/21/2014

Reminders

 Lab 4: Due March 21 (today!)

 Please try to do the extra credit as well!

 Homework 5: Due March 26

 The course will move quickly… Keep your pace. Talk with
the TAs and me if you are concerned about your
performance.

2

Readings for Today and Next Lecture

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3

 Memory/cache chapters from Hamacher+: 8.1-8.7

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

3

Cache Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

4

Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

5

Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate

6

What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches

7

Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes

8

Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them
individually to next level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially
better cache hit rate)

9

Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read?

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads

10

tagsubblockvsubblockv subblockvd d d

Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that
might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

 First level caches are almost always split

 Mainly for the last reason above

 Second and higher levels are almost always unified

11

Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter

12

Virtual Memory and Cache Interaction

Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical
address  same physical address can be present in multiple
locations in the cache  can lead to inconsistency in data

14

Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why?

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why?

 Different pages can share the same physical frame within or
across processes

 Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

 Do homonyms and synonyms create problems when we
have a cache?

 Is the cache virtually or physically addressed?

15

Cache-VM Interaction

16

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

17

Virtual Cache

18

Virtual-Physical Cache

19

Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only
from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end

20

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?

21

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

a

Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

22

An Exercise

 Problem 5 from

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

23

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

24

25

An Exercise (II)

26

An Exercise (Concluded)

27

Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your
homeworks…

28

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf

Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

29

Some Questions to Ponder

 At what cache level should we worry about the synonym
and homonym problems?

 What levels of the memory hierarchy does the system
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page
coloring?

30

Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in
DRAM

 Operating system can control which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference

31

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

Cache Performance

Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy

33

Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data
the executing application references

 Within a time interval

34

hit rate

cache size

“working set”
size

Block Size

 Block size is the data that is associated with an address tag

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed

35

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?

36

tagsubblockvsubblockv subblockvd d d

Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?

37

associativity

hit rate

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 dominates when locality is poor

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a capacity
miss

38

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each
“phase” fits in cache

39

Improving Cache “Performance”

 Remember

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency

40

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
41

Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same
set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2

42

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

43

Skewed Associative Caches (I)

 Basic 2-way associative cache structure

44

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function

45

Way 0 Way 1

tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

46

Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
47

Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

More on Data Structure Layout

 Pointer based traversal
(e.g., of a linked list)

 Assume a huge linked
list (1M nodes) and
unique keys

 Why does the code on
the left have poor cache
hit rate?

 “Other fields” occupy
most of the cache line
even though rarely
accessed!

48

struct Node {

struct Node* node;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}

How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

 Who should do this?

 Programmer

 Compiler

 Profiling vs. dynamic

 Hardware?

 Who can determine what
is frequently used?

49

struct Node {

struct Node* node;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}

Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of
computation

 Essentially: Divide the working set so that each piece fits in
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

50

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
51

52

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

53

54

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

55

P3 P2 P1 P4

H H H H M H H H MHit/Miss

Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week

56

Enabling Multiple Outstanding Misses

Handling Multiple Outstanding Accesses

 Non-blocking or lockup-free caches

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache
Organization," ISCA 1981.

 Question: If the processor can generate multiple cache
accesses, can the later accesses be handled while a
previous miss is outstanding?

 Idea: Keep track of the status/data of misses that are being
handled in Miss Status Handling Registers (MSHRs)

 A cache access checks MSHRs to see if a miss to the same
block is already pending.

 If pending, a new request is not generated

 If pending and the needed data available, data forwarded to later
load

 Requires buffering of outstanding miss requests

58

Non-Blocking Caches (and MLP)

 Enable cache access when there is a pending miss

 Enable multiple misses in parallel

 Memory-level parallelism (MLP)

 generating and servicing multiple memory accesses in parallel

 Why generate multiple misses?

 Enables latency tolerance: overlaps latency of different misses

 How to generate multiple misses?

 Out-of-order execution, multithreading, runahead, prefetching

59

time

A
C

B

isolated miss parallel miss

Miss Status Handling Register

 Also called “miss buffer”

 Keeps track of

 Outstanding cache misses

 Pending load/store accesses that refer to the missing cache
block

 Fields of a single MSHR entry

 Valid bit

 Cache block address (to match incoming accesses)

 Control/status bits (prefetch, issued to memory, which
subblocks have arrived, etc)

 Data for each subblock

 For each pending load/store

 Valid, type, data size, byte in block, destination register or store
buffer entry address

60

Miss Status Handling Register Entry

61

MSHR Operation

 On a cache miss:

 Search MSHRs for a pending access to the same block

 Found: Allocate a load/store entry in the same MSHR entry

 Not found: Allocate a new MSHR

 No free entry: stall

 When a subblock returns from the next level in memory

 Check which loads/stores waiting for it

 Forward data to the load/store unit

 Deallocate load/store entry in the MSHR entry

 Write subblock in cache or MSHR

 If last subblock, dellaocate MSHR (after writing the block in
cache)

62

Non-Blocking Cache Implementation

 When to access the MSHRs?

 In parallel with the cache?

 After cache access is complete?

 MSHRs need not be on the critical path of hit requests

 Which one below is the common case?

 Cache miss, MSHR hit

 Cache hit

63

Enabling High Bandwidth Caches

(and Memories in General)

Multiple Instructions per Cycle

 Can generate multiple cache accesses per cycle

 How do we ensure the cache can handle multiple accesses
in the same clock cycle?

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)

65

Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same
time?

 Peripheral logic needs to handle this

66

Peripheral Logic for True Multiporting

67

Peripheral Logic for True Multiporting

68

Handling Multiple Accesses per Cycle (I)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?

69

Cache
Copy 1

Handling Multiple Accesses per Cycle (II)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations form a
bottleneck

 Area proportional to “ports”

70

Port 1

Load

Store

Port 1

Data

Cache
Copy 2Port 2

Load

Port 2

Data

Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Bits in address determines which bank an address maps to

 Address space partitioned into separate banks

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses

to the same bank

-- Crossbar interconnect in input/output

 Bank conflicts

 Two accesses are to the same bank

 How can these be reduced?

 Hardware? Software?

71

Bank 0:
Even

addresses

Bank 1:
Odd

addresses

General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 Issue: How do you map data to different banks? (i.e., how do
you interleave data across banks?)

72

