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Reminders

 Lab 4: Due March 21 (today!)

 Please try to do the extra credit as well!

 Homework 5: Due March 26

 The course will move quickly… Keep your pace. Talk with 
the TAs and me if you are concerned about your 
performance.
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Readings for Today and Next Lecture

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3 

 Memory/cache chapters from Hamacher+: 8.1-8.7 

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965. 
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Cache Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is 
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E 

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the 
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory 
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate
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What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches
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Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence 
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes
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Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them 
individually to next level

+ Simpler because write misses can be treated the same way as 
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate)
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Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read? 

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads
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Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., split I and D 
caches)

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access?

 First level caches are almost always split 

 Mainly for the last reason above

 Second and higher levels are almost always unified
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Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter
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Virtual Memory and Cache Interaction



Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or 
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data
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Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why? 

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why? 

 Different pages can share the same physical frame within or 
across processes

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

 Do homonyms and synonyms create problems when we 
have a cache?

 Is the cache virtually or physically addressed?
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Cache-VM Interaction
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Physical Cache
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Virtual Cache
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Virtual-Physical Cache
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Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only 
from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end
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Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?
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Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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An Exercise

 Problem 5 from 

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

23

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf


An Exercise (I)
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An Exercise (II)
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An Exercise (Concluded)
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Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your 
homeworks…
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Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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Some Questions to Ponder

 At what cache level should we worry about the synonym 
and homonym problems?

 What levels of the memory hierarchy does the system 
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page 
coloring?
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Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in 
DRAM

 Operating system can control which bank/channel/rank a 
virtual page is mapped to. 

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference
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Cache Performance



Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy
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Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data                                                    
the executing application references 

 Within a time interval 
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Block Size

 Block size is the data that is associated with an address tag 

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed
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Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first 

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth 

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?
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Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?
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Classification of Cache Misses

 Compulsory miss 

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is 
displaced for the reasons below

 dominates when locality is poor

 Capacity miss 

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity           

 Conflict miss 

 defined as any miss that is neither a compulsory nor a capacity 
miss
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How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the 
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each 
“phase” fits in cache

39



Improving Cache “Performance”

 Remember 

 Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
41



Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks 

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other)

-- Increases miss latency if accessed serially with L2
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Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions  

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and 
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]} 
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Skewed Associative Caches (I)

 Basic 2-way associative cache structure
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Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function
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Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index 
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.
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Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
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Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]



More on Data Structure Layout

 Pointer based traversal 
(e.g., of a linked list)

 Assume a huge linked 
list (1M nodes) and 
unique keys

 Why does the code on 
the left have poor cache 
hit rate?

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed!
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struct Node {

struct Node* node;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}



How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure

 Who should do this?

 Programmer

 Compiler 

 Profiling vs. dynamic

 Hardware?

 Who can determine what 
is frequently used?
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struct Node {

struct Node* node;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}



Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of 
computation

 Essentially: Divide the working set so that each piece fits in 
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Memory Level Parallelism (MLP) 

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time
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Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss 
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time 

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss
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Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example



Fewest Misses = Best Performance
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P3 P2 P1 P4 
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M          M          
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Hit/Miss
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cycles

Cache



MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week
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Enabling Multiple Outstanding Misses



Handling Multiple Outstanding Accesses 

 Non-blocking or lockup-free caches

 Kroft, “Lockup-Free Instruction Fetch/Prefetch Cache 
Organization," ISCA 1981.

 Question: If the processor can generate multiple cache 
accesses, can the later accesses be handled while a 
previous miss is outstanding?

 Idea: Keep track of the status/data of misses that are being 
handled in Miss Status Handling Registers (MSHRs)

 A cache access checks MSHRs to see if a miss to the same 
block is already pending.

 If pending, a new request is not generated

 If pending and the needed data available, data forwarded to later 
load

 Requires buffering of outstanding miss requests
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Non-Blocking Caches (and MLP)

 Enable cache access when there is a pending miss

 Enable multiple misses in parallel

 Memory-level parallelism (MLP)

 generating and servicing multiple memory accesses in parallel

 Why generate multiple misses? 

 Enables latency tolerance: overlaps latency of different misses

 How to generate multiple misses?

 Out-of-order execution, multithreading, runahead, prefetching
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Miss Status Handling Register

 Also called “miss buffer”

 Keeps track of

 Outstanding cache misses

 Pending load/store accesses that refer to the missing cache 
block

 Fields of a single MSHR entry

 Valid bit

 Cache block address (to match incoming accesses)

 Control/status bits (prefetch, issued to memory, which 
subblocks have arrived, etc)

 Data for each subblock

 For each pending load/store

 Valid, type, data size, byte in block, destination register or store 
buffer entry address
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Miss Status Handling Register Entry
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MSHR Operation

 On a cache miss:

 Search MSHRs for a pending access to the same block

 Found: Allocate a load/store entry in the same MSHR entry

 Not found: Allocate a new MSHR

 No free entry: stall

 When a subblock returns from the next level in memory

 Check which loads/stores waiting for it

 Forward data to the load/store unit

 Deallocate load/store entry in the MSHR entry

 Write subblock in cache or MSHR

 If last subblock, dellaocate MSHR (after writing the block in 
cache)
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Non-Blocking Cache Implementation

 When to access the MSHRs? 

 In parallel with the cache?

 After cache access is complete?

 MSHRs need not be on the critical path of hit requests

 Which one below is the common case?

 Cache miss, MSHR hit

 Cache hit
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Enabling High Bandwidth Caches 

(and Memories in General)



Multiple Instructions per Cycle

 Can generate multiple cache accesses per cycle

 How do we ensure the cache can handle multiple accesses 
in the same clock cycle? 

 Solutions:

 true multi-porting

 virtual multi-porting (time sharing a port)

 multiple cache copies

 banking (interleaving)
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Handling Multiple Accesses per Cycle (I)

 True multiporting

 Each memory cell has multiple read or write ports

+ Truly concurrent accesses (no conflicts regardless of address)

-- Expensive in terms of latency, power, area

 What about read and write to the same location at the same 
time?

 Peripheral logic needs to handle this
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Peripheral Logic for True Multiporting
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Peripheral Logic for True Multiporting
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Handling Multiple Accesses per Cycle (I)

 Virtual multiporting

 Time-share a single port

 Each access needs to be (significantly) shorter than clock cycle

 Used in Alpha 21264

 Is this scalable?
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Cache
Copy 1

Handling Multiple Accesses per Cycle (II)

 Multiple cache copies

 Stores update both caches

 Loads proceed in parallel

 Used in Alpha 21164

 Scalability?

 Store operations form a 
bottleneck

 Area proportional to “ports”
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Handling Multiple Accesses per Cycle (III)

 Banking (Interleaving)

 Bits in address determines which bank an address maps to

 Address space partitioned into separate banks

 Which bits to use for “bank address”?

+ No increase in data store area

-- Cannot satisfy multiple accesses 

to the same bank

-- Crossbar interconnect in input/output

 Bank conflicts

 Two accesses are to the same bank

 How can these be reduced?

 Hardware? Software?

71

Bank 0:
Even 

addresses

Bank 1:
Odd

addresses



General Principle: Interleaving

 Interleaving (banking)

 Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel

 Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

 Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles)

 Each bank is smaller than the entire memory storage

 Accesses to different banks can be overlapped

 Issue: How do you map data to different banks? (i.e., how do 
you interleave data across banks?)
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