
18-447

Computer Architecture

Lecture 2: Fundamental Concepts and ISA

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 1/15/2014

Announcement

 Rachata’s Office Hours this week

 Today 4:30-5:30pm

 Sunday 4:30-5:30pm

2

Agenda for Today

 Finish up logistics from last lecture

 Why study computer architecture?

 Fundamental concepts

 ISA

3

Review: Comp. Arch. in Levels of Transformation

 Read: Patt, “Requirements, Bottlenecks, and Good Fortune: Agents for
Microprocessor Evolution,” Proceedings of the IEEE 2001.

4

Microarchitecture

ISA (Architecture)

Program/Language

Algorithm

Problem

Logic
 Circuits

Runtime System
(VM, OS, MM)

Electrons

Review: Levels of Transformation, Revisited

5

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 A user-centric view: computer designed for users

 The entire stack should be optimized for user

Logic
 Circuits

Electrons

What Will You Learn?

 Fundamental principles and tradeoffs in designing the
hardware/software interface and major components of a
modern programmable microprocessor

 Focus on state-of-the-art (and some recent research and trends)

 Trade-offs and how to make them

 How to design, implement, and evaluate a functional modern
processor

 Semester-long lab assignments

 A combination of RTL implementation and higher-level simulation

 Focus is on functionality (and some focus on “how to do even better”)

 How to dig out information, think critically and broadly

 How to work even harder!
6

Course Goals

 Goal 1: To familiarize those interested in computer system

design with both fundamental operation principles and design
tradeoffs of processor, memory, and platform architectures in
today’s systems.

 Strong emphasis on fundamentals and design tradeoffs.

 Goal 2: To provide the necessary background and experience to

design, implement, and evaluate a modern processor by
performing hands-on RTL and C-level implementation.

 Strong emphasis on functionality and hands-on design.

7

A Note on Hardware vs. Software

 This course is classified under “Computer Hardware”

 However, you will be much more capable if you master
both hardware and software (and the interface between
them)

 Can develop better software if you understand the underlying
hardware

 Can design better hardware if you understand what software
it will execute

 Can design a better computing system if you understand both

 This course covers the HW/SW interface and
microarchitecture

 We will focus on tradeoffs and how they affect software
8

What Do I Expect From You?

 Required background: 240 (digital logic, RTL implementation,
Verilog), 213/243 (systems, virtual memory, assembly)

 Learn the material thoroughly

 attend lectures, do the readings, do the homeworks

 Do the work & work hard

 Ask questions, take notes, participate

 Perform the assigned readings

 Come to class on time

 Start early – do not procrastinate

 If you want feedback, come to office hours

 Remember “Chance favors the prepared mind.” (Pasteur)
9

What Do I Expect From You?

 How you prepare and manage your time is very important

 There will be an assignment due almost every week

 7 Labs and 7 Homework Assignments

 This will be a heavy course

 However, you will learn a lot of fascinating topics and
understand how a microprocessor actually works (and how it
can be made to work better)

10

More on Homeworks and Labs

 Homeworks

 Do them to truly understand the material, not to get the grade

 Content from lectures, readings, labs, discussions

 All homework writeups must be your own work, written up
individually and independently

 However, you can discuss with others

 No late homeworks accepted

 Labs

 These will take time.

 You need to start early and work hard.

 Labs will be done individually unless specified otherwise.

 A total of five late lab days per semester allowed.

11

Homeworks for Next Two Weeks

 Homework 0

 Due next Wednesday (Jan 22)

 Homework 1

 Due Wednesday Jan 29

 ARM warmup, ISA concepts, basic performance evaluation

12

Lab Assignment 1

 A functional C-level simulator for a subset of the ARM ISA

 Due Friday Jan 24, at the end of the Friday recitation session

 Start early, you will have a lot to learn

 Homework 1 and Lab 1 are synergistic

 Homework questions are meant to help you in the Lab

13

Readings for This Week

 Patt, “Requirements, Bottlenecks, and Good Fortune:
Agents for Microprocessor Evolution,” Proceedings of the
IEEE 2001.

 Mutlu and Moscibroda, “Memory Performance Attacks:
Denial of Memory Service in Multi-core Systems,” USENIX
Security Symposium 2007.

 P&P Chapter 1 (Fundamentals)

 P&H Chapters 1 and 2 (Intro, Abstractions, ISA, MIPS)

 Reference material throughout the course

 ARM Reference Manual

 x86 Reference Manual

 A note on optional/mentioned readings

14

A Note on Books

 None required

 But, I expect you to be resourceful in finding and doing the
readings…

15

Why Study Computer

Architecture?

16

What is Computer Architecture?

 The science and art of designing, selecting, and
interconnecting hardware components and designing the
hardware/software interface to create a computing system
that meets functional, performance, energy consumption,
cost, and other specific goals.

 We will soon distinguish between the terms architecture,
and microarchitecture.

17

An Enabler: Moore’s Law

18

Moore, “Cramming more components onto integrated circuits,”
Electronics Magazine, 1965. Component counts double every other year

Image source: Intel

19

Number of transistors on an integrated circuit doubles ~ every two years

Image source: Wikipedia

What Do We Use These Transistors for?

 Your readings for this week should give you an idea…

 Patt, “Requirements, Bottlenecks, and Good Fortune:
Agents for Microprocessor Evolution,” Proceedings of the
IEEE 2001.

 Mutlu and Moscibroda, “Memory Performance Attacks:
Denial of Memory Service in Multi-core Systems,” USENIX
Security Symposium 2007.

20

Why Study Computer Architecture?

 Enable better systems: make computers faster, cheaper,
smaller, more reliable, …

 By exploiting advances and changes in underlying technology/circuits

 Enable new applications

 Life-like 3D visualization 20 years ago?

 Virtual reality?

 Personal genomics?

 Enable better solutions to problems
 Software innovation is built into trends and changes in computer architecture

 > 50% performance improvement per year has enabled this innovation

 Understand why computers work the way they do
21

Computer Architecture Today (I)

 Today is a very exciting time to study computer architecture

 Industry is in a large paradigm shift (to multi-core and
beyond) – many different potential system designs possible

 Many difficult problems motivating and caused by the shift

 Power/energy constraints

 Complexity of design  multi-core?

 Difficulties in technology scaling  new technologies?

 Memory wall/gap

 Reliability wall/issues

 Programmability wall/problem

 No clear, definitive answers to these problems
22

Computer Architecture Today (II)

 These problems affect all parts of the computing stack – if
we do not change the way we design systems

 No clear, definitive answers to these problems
23

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

Logic
 Circuits

Electrons

Computer Architecture Today (III)

 You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

 You can invent new paradigms for computation,
communication, and storage

 Recommended book: Kuhn, “The Structure of Scientific
Revolutions” (1962)

 Pre-paradigm science: no clear consensus in the field

 Normal science: dominant theory used to explain things
(business as usual); exceptions considered anomalies

 Revolutionary science: underlying assumptions re-examined

24

… but, first …

 Let’s understand the fundamentals…

 You can change the world only if you understand it well
enough…

 Especially the past and present dominant paradigms

 And, their advantages and shortcomings -- tradeoffs

25

Fundamental Concepts

26

What is A Computer?

 Three key components

 Computation

 Communication

 Storage (memory)

27

What is A Computer?

 We will cover all three components

28

Memory
(program
and data)

I/O

Processing

control
(sequencing)

datapath

The Von Neumann Model/Architecture

 Also called stored program computer (instructions in
memory). Two key properties:

 Stored program

 Instructions stored in a linear memory array

 Memory is unified between instructions and data

 The interpretation of a stored value depends on the control
signals

 Sequential instruction processing

 One instruction processed (fetched, executed, and completed) at a
time

 Program counter (instruction pointer) identifies the current instr.

 Program counter is advanced sequentially except for control transfer
instructions

29

When is a value interpreted as an instruction?

The Von Neumann Model/Architecture

 Recommended reading

 Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

 Patt and Patel book, Chapter 4, “The von Neumann Model”

 Stored program

 Sequential instruction processing

30

The von Neumann Model (of a Computer)

31

CONTROL UNIT

IP Inst Register

PROCESSING UNIT

ALU TEMP

MEMORY

Mem Addr Reg

Mem Data Reg

INPUT OUTPUT

The Dataflow Model (of a Computer)

 Von Neumann model: An instruction is fetched and
executed in control flow order

 As specified by the instruction pointer

 Sequential unless explicit control flow instruction

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

 Potentially many instructions can execute at the same time

 Inherently more parallel
32

von Neumann vs Dataflow

 Consider a von Neumann program

 What is the significance of the program order?

 What is the significance of the storage locations?

 Which model is more natural to you as a programmer?

33

v <= a + b;
w <= b * 2;
x <= v - w
y <= v + w
z <= x * y

+ *2

- +

*

a b

z

Sequential

Dataflow

More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

34

Data Flow Nodes

35

An Example Data Flow Program

36

OUT

ISA-level Tradeoff: Instruction Pointer

 Do we need an instruction pointer in the ISA?

 Yes: Control-driven, sequential execution

 An instruction is executed when the IP points to it

 IP automatically changes sequentially (except for control flow
instructions)

 No: Data-driven, parallel execution

 An instruction is executed when all its operand values are
available (data flow)

 Tradeoffs: MANY high-level ones

 Ease of programming (for average programmers)?

 Ease of compilation?

 Performance: Extraction of parallelism?

 Hardware complexity?

37

ISA vs. Microarchitecture Level Tradeoff

 A similar tradeoff (control vs. data-driven execution) can be
made at the microarchitecture level

 ISA: Specifies how the programmer sees instructions to be
executed

 Programmer sees a sequential, control-flow execution order vs.

 Programmer sees a data-flow execution order

 Microarchitecture: How the underlying implementation
actually executes instructions

 Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

 Programmer should see the order specified by the ISA
38

Let’s Get Back to the Von Neumann Model

 But, if you want to learn more about dataflow…

 Dennis and Misunas, “A preliminary architecture for a basic
data-flow processor,” ISCA 1974.

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 A later 447 lecture, 740/742

 If you are really impatient:

 http://www.youtube.com/watch?v=D2uue7izU2c

 http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?medi
a=onur-740-fall13-module5.2.1-dataflow-part1.ppt

39

http://www.youtube.com/watch?v=D2uue7izU2c
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt
http://www.ece.cmu.edu/~ece740/f13/lib/exe/fetch.php?media=onur-740-fall13-module5.2.1-dataflow-part1.ppt

The Von-Neumann Model

 All major instruction set architectures today use this model

 x86, ARM, MIPS, SPARC, Alpha, POWER

 Underneath (at the microarchitecture level), the execution
model of almost all implementations (or, microarchitectures)
is very different

 Pipelined instruction execution: Intel 80486 uarch

 Multiple instructions at a time: Intel Pentium uarch

 Out-of-order execution: Intel Pentium Pro uarch

 Separate instruction and data caches

 But, what happens underneath that is not consistent with
the von Neumann model is not exposed to software

 Difference between ISA and microarchitecture

40

What is Computer Architecture?

 ISA+implementation definition: The science and art of
designing, selecting, and interconnecting hardware
components and designing the hardware/software interface
to create a computing system that meets functional,
performance, energy consumption, cost, and other specific
goals.

 Traditional (only ISA) definition: “The term
architecture is used here to describe the attributes of a
system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.” Gene Amdahl, IBM
Journal of R&D, April 1964

 41

ISA vs. Microarchitecture

 ISA

 Agreed upon interface between software
and hardware

 SW/compiler assumes, HW promises

 What the software writer needs to know
to write and debug system/user programs

 Microarchitecture

 Specific implementation of an ISA

 Not visible to the software

 Microprocessor

 ISA, uarch, circuits

 “Architecture” = ISA + microarchitecture
42

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

ISA vs. Microarchitecture

 What is part of ISA vs. Uarch?

 Gas pedal: interface for “acceleration”

 Internals of the engine: implement “acceleration”

 Implementation (uarch) can be various as long as it
satisfies the specification (ISA)

 Add instruction vs. Adder implementation

 Bit serial, ripple carry, carry lookahead adders are all part of
microarchitecture

 x86 ISA has many implementations: 286, 386, 486, Pentium,
Pentium Pro, Pentium 4, Core, …

 Microarchitecture usually changes faster than ISA

 Few ISAs (x86, ARM, SPARC, MIPS, Alpha) but many uarchs

 Why?
43

ISA

 Instructions
 Opcodes, Addressing Modes, Data Types

 Instruction Types and Formats

 Registers, Condition Codes

 Memory
 Address space, Addressability, Alignment

 Virtual memory management

 Call, Interrupt/Exception Handling

 Access Control, Priority/Privilege

 I/O: memory-mapped vs. instr.

 Task/thread Management

 Power and Thermal Management

 Multi-threading support, Multiprocessor support

44

Microarchitecture

 Implementation of the ISA under specific design constraints
and goals

 Anything done in hardware without exposure to software

 Pipelining

 In-order versus out-of-order instruction execution

 Memory access scheduling policy

 Speculative execution

 Superscalar processing (multiple instruction issue?)

 Clock gating

 Caching? Levels, size, associativity, replacement policy

 Prefetching?

 Voltage/frequency scaling?

 Error correction?

45

Property of ISA vs. Uarch?

 ADD instruction’s opcode

 Number of general purpose registers

 Number of ports to the register file

 Number of cycles to execute the MUL instruction

 Whether or not the machine employs pipelined instruction
execution

 Remember

 Microarchitecture: Implementation of the ISA under specific
design constraints and goals

46

We did not cover the following slides in lecture.

These are for your preparation for the next lecture.

Design Point

 A set of design considerations and their importance

 leads to tradeoffs in both ISA and uarch

 Considerations

 Cost

 Performance

 Maximum power consumption

 Energy consumption (battery life)

 Availability

 Reliability and Correctness

 Time to Market

 Design point determined by the “Problem” space
(application space), or the intended users/market

48

Microarchitecture

ISA

Program

Algorithm

Problem

Circuits

Electrons

Application Space

 Dream, and they will appear…

49

Tradeoffs: Soul of Computer Architecture

 ISA-level tradeoffs

 Microarchitecture-level tradeoffs

 System and Task-level tradeoffs

 How to divide the labor between hardware and software

 Computer architecture is the science and art of making the
appropriate trade-offs to meet a design point

 Why art?

 50

Why Is It (Somewhat) Art?

51

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 We do not (fully) know the future (applications, users, market)

Logic
 Circuits

Electrons

Why Is It (Somewhat) Art?

52

Microarchitecture

ISA

Program/Language

Algorithm

Problem

Runtime System
(VM, OS, MM)

User

 And, the future is not constant (it changes)!

Logic
 Circuits

Electrons

Analog from Macro-Architecture

 Future is not constant in macro-architecture, either

 Example: Can a power plant boiler room be later used as a
classroom?

53

Macro-Architecture: Boiler Room

54

