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Extra Credit Recognition for Lab 3

1. John Greth (13157 ns) 

2. Kevin Bravo (91332 ns) 

3. Elon Bauer (103071 ns) 

4. Teng Fei Liao (111500 ns) 

5. Albert Cho (127904 ns) 

6. Bailey Forrest (130806 ns)  
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Reminders

 Lab 4: Due March 21

 Please try to do the extra credit as well!

 Homework 5: Due March 26

 The course will move quickly… Keep your pace. Talk with 
the TAs and me if you are concerned about your 
performance.
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Readings for Today and Next Lecture

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3 

 Memory/cache chapters from Hamacher+: 8.1-8.7 

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965. 
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Today

 The memory hierarchy

 Caches
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Idealism
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The Memory Hierarchy



Memory in a Modern System
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Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

 Ideal memory’s requirements oppose each other

 Bigger is slower

 Bigger  Takes longer to determine the location

 Faster is more expensive

 Memory technology: SRAM vs. DRAM

 Higher bandwidth is more expensive

 Need more banks, more ports, higher frequency, or faster 
technology
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Memory Technology: DRAM

 Dynamic random access memory

 Capacitor charge state indicates stored value

 Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

 1 capacitor

 1 access transistor

 Capacitor leaks through the RC path

 DRAM cell loses charge over time

 DRAM cell needs to be refreshed
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 Static random access memory

 Two cross coupled inverters store a single bit

 Feedback path enables the stored value to persist in the “cell”

 4 transistors for storage

 2 transistors for access

Memory Technology: SRAM
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Memory Bank Organization and Operation

 Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines

• For next access
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SRAM (Static Random Access Memory)
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Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines

(entire row is read together)

4. differential sensing and column select

(data is ready)

5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3

Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n



DRAM (Dynamic Random Access Memory)
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1~3 same as SRAM
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Destructive reads
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DRAM vs. SRAM

 DRAM

 Slower access (capacitor)

 Higher density (1T 1C cell)

 Lower cost

 Requires refresh (power, performance, circuitry)

 Manufacturing requires putting capacitor and logic together

 SRAM

 Faster access (no capacitor)

 Lower density (6T cell)

 Higher cost

 No need for refresh

 Manufacturing compatible with logic process (no capacitor)
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The Problem

 Bigger is slower

 SRAM, 512 Bytes, sub-nanosec

 SRAM,  KByte~MByte, ~nanosec

 DRAM, Gigabyte, ~50 nanosec

 Hard Disk, Terabyte, ~10 millisec

 Faster is more expensive (dollars and chip area)

 SRAM, < 10$ per Megabyte

 DRAM, < 1$ per Megabyte

 Hard Disk < 1$ per Gigabyte

 These sample values scale with time

 Other technologies have their place as well 

 Flash memory, Phase-change memory (not mature yet)
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Why Memory Hierarchy?

 We want both fast and large

 But we cannot achieve both with a single level of memory

 Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s)
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The Memory Hierarchy

19

fast
small

big but slow

move what you use here

backup
everything
here

With good locality of 
reference, memory 
appears as fast as
and as large as  

fa
st

er
 p

er
 b

yt
e

ch
e

ap
e

r 
p

er
 b

yt
e



Memory Hierarchy

 Fundamental tradeoff

 Fast memory: small

 Large memory: slow

 Idea: Memory hierarchy

 Latency, cost, size, 

bandwidth
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Locality

 One’s recent past is a very good predictor of his/her near 
future.

 Temporal Locality:  If you just did something, it is very 
likely that you will do the same thing again soon

 since you are here today, there is a good chance you will be 
here again and again regularly

 Spatial Locality:  If you did something, it is very likely you 
will do something similar/related (in space)

 every time I find you in this room, you are probably sitting 
close to the same people
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Memory Locality

 A “typical” program has a lot of locality in memory 
references

 typical programs are composed of “loops”

 Temporal: A program tends to reference the same memory 
location many times and all within a small window of time

 Spatial: A program tends to reference a cluster of memory 
locations at a time 

 most notable examples: 

 1. instruction memory references 

 2. array/data structure references
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Caching Basics: Exploit Temporal Locality

 Idea: Store recently accessed data in automatically 
managed fast memory (called cache)

 Anticipation: the data will be accessed again soon

 Temporal locality principle

 Recently accessed data will be again accessed in the near 
future

 This is what Maurice Wilkes had in mind:

 Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965.

 “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality

 Idea: Store addresses adjacent to the recently accessed 
one in automatically managed fast memory

 Logically divide memory into equal size blocks

 Fetch to cache the accessed block in its entirety

 Anticipation: nearby data will be accessed soon

 Spatial locality principle

 Nearby data in memory will be accessed in the near future

 E.g., sequential instruction access, array traversal

 This is what IBM 360/85 implemented

 16 Kbyte cache with 64 byte blocks

 Liptay, “Structural aspects of the System/360 Model 85 II: the 
cache,” IBM Systems Journal, 1968.
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The Bookshelf Analogy

 Book in your hand

 Desk

 Bookshelf

 Boxes at home

 Boxes in storage

 Recently-used books tend to stay on desk

 Comp Arch books, books for classes you are currently taking

 Until the desk gets full

 Adjacent books in the shelf needed around the same time

 If I have organized/categorized my books well in the shelf
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Caching in a Pipelined Design

 The cache needs to be tightly integrated into the pipeline 

 Ideally, access in 1-cycle so that dependent operations do not 
stall

 High frequency pipeline  Cannot make the cache large

 But, we want a large cache AND a pipelined design

 Idea: Cache hierarchy
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A Note on Manual vs. Automatic Management

 Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

“core” vs “drum” memory in the 50’s

still done in some embedded processors (on-chip scratch pad 
SRAM in lieu of a cache)

 Automatic: Hardware manages data movement across levels, 
transparently to the programmer

++ programmer’s life is easier

simple heuristic: keep most recently used items in cache

the average programmer doesn’t need to know about it

 You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?)
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Automatic Management in Memory Hierarchy

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.”
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A Modern Memory Hierarchy
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Hierarchical Latency Analysis

 For a given memory hierarchy level i it has a technology-intrinsic 
access time of ti, The perceived access time Ti is longer than ti

 Except for the outer-most hierarchy, when looking for a given 
address there is 

 a chance (hit-rate hi) you “hit” and access time is ti

 a chance (miss-rate mi) you “miss” and access time ti +Ti+1 

 hi + mi = 1

 Thus

Ti = hi·ti + mi·(ti + Ti+1)

Ti = ti + mi ·Ti+1 

keep in mind, hi and mi are defined to be the hit-rate

and miss-rate of just the references that missed at Li-1  
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Hierarchy Design Considerations

 Recursive latency equation

Ti = ti + mi ·Ti+1   

 The goal: achieve desired T1 within allowed cost

 Ti  ti is desirable

 Keep mi low

 increasing capacity Ci lowers mi, but beware of increasing ti

 lower mi by smarter management (replacement::anticipate what 
you don’t need, prefetching::anticipate what you will need)

 Keep Ti+1 low

 faster lower hierarchies, but beware of increasing cost

 introduce intermediate hierarchies as a compromise 
31



 90nm P4, 3.6 GHz

 L1 D-cache

 C1 = 16K

 t1 = 4 cyc int / 9 cycle fp 

 L2 D-cache

 C2 =1024 KB 

 t2 = 18 cyc int / 18 cyc fp

 Main memory

 t3 = ~ 50ns or 180 cyc

 Notice

 best case latency is not 1 

 worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example



Cache Basics and Operation



Cache

 Generically, any structure that “memoizes” frequently used 
results to avoid repeating the long-latency operations 
required to reproduce the results from scratch, e.g. a web 
cache

 Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM

 memoize in SRAM the most frequently accessed DRAM 
memory locations to avoid repeatedly paying for the DRAM 
access latency
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Caching Basics

 Block (line): Unit of storage in the cache

 Memory is logically divided into cache blocks that map to 
locations in the cache

 When data referenced

 HIT: If in cache, use cached data instead of accessing memory

 MISS: If not in cache, bring block into cache

 Maybe have to kick something else out to do it

 Some important cache design decisions

 Placement: where and how to place/find a block in cache?

 Replacement: what data to remove to make room in cache?

 Granularity of management: large, small, uniform blocks?

 Write policy: what do we do about writes?

 Instructions/data: Do we treat them separately?
35



Cache Abstraction and Metrics

 Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

 Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

 Aside: Can reducing AMAT reduce performance?
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Blocks and Addressing the Cache

 Memory is logically divided into cache blocks

 Each block maps to a location in the cache, determined by 
the index bits in the address

 used to index into the tag and data stores 

 Cache access: index into the tag and data stores with index 
bits in address, check valid bit in tag store, compare tag 
bits in address with the stored tag in tag store

 If a block is in the cache (cache hit), the tag store should 
have the tag of the block stored in the index of the block
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Direct-Mapped Cache: Placement and Access

 Assume byte-addressable memory:           
256 bytes, 8-byte blocks  32 blocks

 Assume cache: 64 bytes, 8 blocks

 Direct-mapped: A block can go to only one location

 Addresses with same index contend for the same location

 Cause conflict misses
38
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Direct-Mapped Caches

 Direct-mapped cache: Two blocks in memory that map to 
the same index in the cache cannot be present in the cache 
at the same time

 One index  one entry

 Can lead to 0% hit rate if more than one block accessed in 
an interleaved manner map to the same index 

 Assume addresses A and B have the same index bits but 
different tag bits

 A, B, A, B, A, B, A, B, …  conflict in the cache index

 All accesses are conflict misses
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Set Associativity

 Addresses 0 and 8 always conflict in direct mapped cache

 Instead of having one column of 8, have 2 columns of 4 blocks
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Higher Associativity

 4-way

-- More tag comparators and wider data mux; larger tags

+ Likelihood of conflict misses even lower

41

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?



Full Associativity

 Fully associative cache

 A block can be placed in any cache location
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Associativity (and Tradeoffs)

 How many blocks can map to the same index (or set)?

 Higher associativity

++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)

-- More expensive hardware (more comparators)

 Diminishing returns from higher

associativity
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Set-Associative Caches (I)

 Diminishing returns in hit rate from higher associativity

 Longer access time with higher associativity

 Which block in the set to replace on a cache miss?

 Any invalid block first

 If all are valid, consult the replacement policy

 Random

 FIFO

 Least recently used (how to implement?)

 Not most recently used

 Least frequently used?

 Least costly to re-fetch?

 Why would memory accesses have different cost?

 Hybrid replacement policies

 Optimal replacement policy? 
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Implementing LRU

 Idea: Evict the least recently accessed block

 Problem: Need to keep track of access ordering of blocks

 Question: 2-way set associative cache:

 What do you need to implement LRU?

 Question: 4-way set associative cache: 

 How many different orderings possible for the 4 blocks in the 
set? 

 How many bits needed to encode the LRU order of a block?

 What is the logic needed to determine the LRU victim?

45



Approximations of LRU

 Most modern processors do not implement “true LRU” in 
highly-associative caches

 Why?

 True LRU is complex

 LRU is an approximation to predict locality anyway (i.e., not 
the best possible replacement policy)

 Examples:

 Not MRU (not most recently used)

 Hierarchical LRU: divide the 4-way set into 2-way “groups”, 
track the MRU group and the MRU way in each group

 Victim-NextVictim Replacement: Only keep track of the victim 
and the next victim
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Hierarchical LRU (not MRU)

 Divide a set into multiple groups

 Keep track of the MRU group

 Keep track of the MRU block in each group

 On replacement, select victim as:

 A not-MRU block in one of the not-MRU groups
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Hierarchical LRU (not MRU) Example
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Hierarchical LRU (not MRU) Example
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Hierarchical LRU (not MRU): Questions

 8-way cache

 2 4-way groups

 What is an access pattern that performs worse than true 
LRU?

 What is an access pattern that performs better than true 
LRU?
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Victim/Next-Victim Policy

 Only 2 blocks’ status tracked in each set: 

 victim (V), next victim (NV)

 all other blocks denoted as (O) – Ordinary block

 On a cache miss

 Replace V

 Promote NV to V

 Randomly pick an O block as NV

 On a cache hit to V

 Promote NV to V

 Randomly pick an O block as NV

 Turn V to O
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Victim/Next-Victim Policy (II)

 On a cache hit to NV

 Randomly pick an O block as NV

 Turn NV to O

 On a cache hit to O

 Do nothing
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Victim/Next-Victim Example
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Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is 
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E 

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the 
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory 
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate
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What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches
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Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence 
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes
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Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them 
individually to next level

+ Simpler because write misses can be treated the same way as 
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate)
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Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read? 

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads

60
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Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., split I and D 
caches)

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access?

 First level caches are almost always split 

 Mainly for the last reason above

 Second and higher levels are almost always unified
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Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter
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Virtual Memory and Cache Interaction



Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or 
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data
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Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why? 

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why? 

 Different pages can share the same physical frame within or 
across processes

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

 Do homonyms and synonyms create problems when we 
have a cache?

 Is the cache virtually or physically addressed?
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Cache-VM Interaction
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Physical Cache
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Virtual Cache
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Virtual-Physical Cache
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Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only 
from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end
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Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?
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Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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An Exercise

 Problem 5 from 

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf
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An Exercise (I)
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An Exercise (II)
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An Exercise (Concluded)
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Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your 
homeworks…
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Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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Some Questions to Ponder

 At what cache level should we worry about the synonym 
and homonym problems?

 What levels of the memory hierarchy does the system 
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page 
coloring?
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Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in 
DRAM

 Operating system can control which bank/channel/rank a 
virtual page is mapped to. 

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference
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Cache Performance



Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy
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Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data                                                    
the executing application references 

 Within a time interval 
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Block Size

 Block size is the data that is associated with an address tag 

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed
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Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first 

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth 

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?

86
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Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?
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Classification of Cache Misses

 Compulsory miss 

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is 
displaced for the reasons below

 dominates when locality is poor

 Capacity miss 

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity           

 Conflict miss 

 defined as any miss that is neither a compulsory nor a capacity 
miss
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How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the 
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each 
“phase” fits in cache
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Improving Cache “Performance”

 Remember 

 Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks 

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other)

-- Increases miss latency if accessed serially with L2
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Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions  

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and 
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]} 
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Skewed Associative Caches (I)

 Basic 2-way associative cache structure
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Way 0 Way 1

Tag    Index    Byte in Block    

Same index function

for each way

=? =?



Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function
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Way 0 Way 1

tag          index         byte in block   

f0

same index
same set

same index
redistributed to 
different sets
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Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index 
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.
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Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
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Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]



More on Data Structure Layout

 Pointer based traversal 
(e.g., of a linked list)

 Assume a huge linked 
list (1M nodes) and 
unique keys

 Why does the code on 
the left have poor cache 
hit rate?

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed!
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struct Node {

struct Node* node;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}



How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure

 Who should do this?

 Programmer

 Compiler 

 Profiling vs. dynamic

 Hardware?

 Who can determine what 
is frequently used?
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struct Node {

struct Node* node;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}



Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of 
computation

 Essentially: Divide the working set so that each piece fits in 
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Memory Level Parallelism (MLP) 

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss



Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss 
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time 

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss
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Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example



Fewest Misses = Best Performance
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P3 P2 P1 P4 

H  H  H  H M          H  H  H MHit/Miss

Misses=4 
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M          M          

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4 

H           H           H

S1 S2 S3P4 

H  M  M  M H  M  M  M

Time stall Misses=6
Stalls=2

Saved 
cycles

Cache



MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week
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