
18-447

Computer Architecture

Lecture 19: Memory Hierarchy and Caches

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/18/2014

Extra Credit Recognition for Lab 3

1. John Greth (13157 ns)

2. Kevin Bravo (91332 ns)

3. Elon Bauer (103071 ns)

4. Teng Fei Liao (111500 ns)

5. Albert Cho (127904 ns)

6. Bailey Forrest (130806 ns)

2

Reminders

 Lab 4: Due March 21

 Please try to do the extra credit as well!

 Homework 5: Due March 26

 The course will move quickly… Keep your pace. Talk with
the TAs and me if you are concerned about your
performance.

3

Readings for Today and Next Lecture

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3

 Memory/cache chapters from Hamacher+: 8.1-8.7

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

4

Today

 The memory hierarchy

 Caches

5

Idealism

6

Instruction

Supply

Pipeline

(Instruction

execution)

Data

Supply

- Zero-cycle latency

- Infinite capacity

- Zero cost

- Perfect control flow

- No pipeline stalls

-Perfect data flow

(reg/memory dependencies)

- Zero-cycle interconnect

(operand communication)

- Enough functional units

- Zero latency compute

- Zero-cycle latency

- Infinite capacity

- Infinite bandwidth

- Zero cost

The Memory Hierarchy

Memory in a Modern System

8

CORE 1

L
2
 C

A
C

H
E

 0

S
H

A
R

E
D

 L
3
 C

A
C

H
E

D
R

A
M

 IN
T

E
R

F
A

C
E

CORE 0

CORE 2 CORE 3
L

2
 C

A
C

H
E

 1

L
2
 C

A
C

H
E

 2

L
2
 C

A
C

H
E

 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY

CONTROLLER

Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)

9

The Problem

 Ideal memory’s requirements oppose each other

 Bigger is slower

 Bigger  Takes longer to determine the location

 Faster is more expensive

 Memory technology: SRAM vs. DRAM

 Higher bandwidth is more expensive

 Need more banks, more ports, higher frequency, or faster
technology

10

Memory Technology: DRAM

 Dynamic random access memory

 Capacitor charge state indicates stored value

 Whether the capacitor is charged or discharged indicates
storage of 1 or 0

 1 capacitor

 1 access transistor

 Capacitor leaks through the RC path

 DRAM cell loses charge over time

 DRAM cell needs to be refreshed

11

row enable

_
b
it
lin

e

 Static random access memory

 Two cross coupled inverters store a single bit

 Feedback path enables the stored value to persist in the “cell”

 4 transistors for storage

 2 transistors for access

Memory Technology: SRAM

12

row select

b
it
lin

e

_
b
it
lin

e

Memory Bank Organization and Operation

 Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines

• For next access

13

SRAM (Static Random Access Memory)

14

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m diff pairs

2n
n

m

1

row select

b
it
lin

e

_
b
it
lin

e

n+m

Read Sequence

1. address decode

2. drive row select

3. selected bit-cells drive bitlines

(entire row is read together)

4. differential sensing and column select

(data is ready)

5. precharge all bitlines

(for next read or write)

Access latency dominated by steps 2 and 3

Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

DRAM (Dynamic Random Access Memory)

15

row enable
_
b
it
lin

e

bit-cell array

2n row x 2m-col

(nm to minimize
overall latency)

sense amp and mux
2m

2n
n

m

1

RAS

CAS

A DRAM die comprises
of multiple such arrays

Bits stored as charges on node

capacitance (non-restorative)

- bit cell loses charge when read

- bit cell loses charge over time

Read Sequence

1~3 same as SRAM

4. a “flip-flopping” sense amp
amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Destructive reads

Charge loss over time

Refresh: A DRAM controller must

periodically read each row within

the allowed refresh time (10s of

ms) such that charge is restored

DRAM vs. SRAM

 DRAM

 Slower access (capacitor)

 Higher density (1T 1C cell)

 Lower cost

 Requires refresh (power, performance, circuitry)

 Manufacturing requires putting capacitor and logic together

 SRAM

 Faster access (no capacitor)

 Lower density (6T cell)

 Higher cost

 No need for refresh

 Manufacturing compatible with logic process (no capacitor)

16

The Problem

 Bigger is slower

 SRAM, 512 Bytes, sub-nanosec

 SRAM, KByte~MByte, ~nanosec

 DRAM, Gigabyte, ~50 nanosec

 Hard Disk, Terabyte, ~10 millisec

 Faster is more expensive (dollars and chip area)

 SRAM, < 10$ per Megabyte

 DRAM, < 1$ per Megabyte

 Hard Disk < 1$ per Gigabyte

 These sample values scale with time

 Other technologies have their place as well

 Flash memory, Phase-change memory (not mature yet)

17

Why Memory Hierarchy?

 We want both fast and large

 But we cannot achieve both with a single level of memory

 Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

18

The Memory Hierarchy

19

fast
small

big but slow

move what you use here

backup
everything
here

With good locality of
reference, memory
appears as fast as
and as large as

fa
st

er
 p

er
 b

yt
e

ch
e

ap
e

r
p

er
 b

yt
e

Memory Hierarchy

 Fundamental tradeoff

 Fast memory: small

 Large memory: slow

 Idea: Memory hierarchy

 Latency, cost, size,

bandwidth

20

CPU

Main

Memory

(DRAM)RF

Cache

Hard Disk

Locality

 One’s recent past is a very good predictor of his/her near
future.

 Temporal Locality: If you just did something, it is very
likely that you will do the same thing again soon

 since you are here today, there is a good chance you will be
here again and again regularly

 Spatial Locality: If you did something, it is very likely you
will do something similar/related (in space)

 every time I find you in this room, you are probably sitting
close to the same people

21

Memory Locality

 A “typical” program has a lot of locality in memory
references

 typical programs are composed of “loops”

 Temporal: A program tends to reference the same memory
location many times and all within a small window of time

 Spatial: A program tends to reference a cluster of memory
locations at a time

 most notable examples:

 1. instruction memory references

 2. array/data structure references

22

Caching Basics: Exploit Temporal Locality

 Idea: Store recently accessed data in automatically
managed fast memory (called cache)

 Anticipation: the data will be accessed again soon

 Temporal locality principle

 Recently accessed data will be again accessed in the near
future

 This is what Maurice Wilkes had in mind:

 Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

 “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

23

Caching Basics: Exploit Spatial Locality

 Idea: Store addresses adjacent to the recently accessed
one in automatically managed fast memory

 Logically divide memory into equal size blocks

 Fetch to cache the accessed block in its entirety

 Anticipation: nearby data will be accessed soon

 Spatial locality principle

 Nearby data in memory will be accessed in the near future

 E.g., sequential instruction access, array traversal

 This is what IBM 360/85 implemented

 16 Kbyte cache with 64 byte blocks

 Liptay, “Structural aspects of the System/360 Model 85 II: the
cache,” IBM Systems Journal, 1968.

24

The Bookshelf Analogy

 Book in your hand

 Desk

 Bookshelf

 Boxes at home

 Boxes in storage

 Recently-used books tend to stay on desk

 Comp Arch books, books for classes you are currently taking

 Until the desk gets full

 Adjacent books in the shelf needed around the same time

 If I have organized/categorized my books well in the shelf

25

Caching in a Pipelined Design

 The cache needs to be tightly integrated into the pipeline

 Ideally, access in 1-cycle so that dependent operations do not
stall

 High frequency pipeline  Cannot make the cache large

 But, we want a large cache AND a pipelined design

 Idea: Cache hierarchy

26

CPU

Main

Memory

(DRAM)
RF

Level1

Cache

Level 2

Cache

A Note on Manual vs. Automatic Management

 Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

“core” vs “drum” memory in the 50’s

still done in some embedded processors (on-chip scratch pad
SRAM in lieu of a cache)

 Automatic: Hardware manages data movement across levels,
transparently to the programmer

++ programmer’s life is easier

simple heuristic: keep most recently used items in cache

the average programmer doesn’t need to know about it

 You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

27

Automatic Management in Memory Hierarchy

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

28

A Modern Memory Hierarchy

29

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

Hierarchical Latency Analysis

 For a given memory hierarchy level i it has a technology-intrinsic
access time of ti, The perceived access time Ti is longer than ti

 Except for the outer-most hierarchy, when looking for a given
address there is

 a chance (hit-rate hi) you “hit” and access time is ti

 a chance (miss-rate mi) you “miss” and access time ti +Ti+1

 hi + mi = 1

 Thus

Ti = hi·ti + mi·(ti + Ti+1)

Ti = ti + mi ·Ti+1

keep in mind, hi and mi are defined to be the hit-rate

and miss-rate of just the references that missed at Li-1

30

Hierarchy Design Considerations

 Recursive latency equation

Ti = ti + mi ·Ti+1

 The goal: achieve desired T1 within allowed cost

 Ti  ti is desirable

 Keep mi low

 increasing capacity Ci lowers mi, but beware of increasing ti

 lower mi by smarter management (replacement::anticipate what
you don’t need, prefetching::anticipate what you will need)

 Keep Ti+1 low

 faster lower hierarchies, but beware of increasing cost

 introduce intermediate hierarchies as a compromise
31

 90nm P4, 3.6 GHz

 L1 D-cache

 C1 = 16K

 t1 = 4 cyc int / 9 cycle fp

 L2 D-cache

 C2 =1024 KB

 t2 = 18 cyc int / 18 cyc fp

 Main memory

 t3 = ~ 50ns or 180 cyc

 Notice

 best case latency is not 1

 worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example

Cache Basics and Operation

Cache

 Generically, any structure that “memoizes” frequently used
results to avoid repeating the long-latency operations
required to reproduce the results from scratch, e.g. a web
cache

 Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM

 memoize in SRAM the most frequently accessed DRAM
memory locations to avoid repeatedly paying for the DRAM
access latency

34

Caching Basics

 Block (line): Unit of storage in the cache

 Memory is logically divided into cache blocks that map to
locations in the cache

 When data referenced

 HIT: If in cache, use cached data instead of accessing memory

 MISS: If not in cache, bring block into cache

 Maybe have to kick something else out to do it

 Some important cache design decisions

 Placement: where and how to place/find a block in cache?

 Replacement: what data to remove to make room in cache?

 Granularity of management: large, small, uniform blocks?

 Write policy: what do we do about writes?

 Instructions/data: Do we treat them separately?
35

Cache Abstraction and Metrics

 Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Aside: Can reducing AMAT reduce performance?

36

Address
Tag Store

(is the address

in the cache?

+ bookkeeping)

Data Store

Hit/miss? Data

Blocks and Addressing the Cache

 Memory is logically divided into cache blocks

 Each block maps to a location in the cache, determined by
the index bits in the address

 used to index into the tag and data stores

 Cache access: index into the tag and data stores with index
bits in address, check valid bit in tag store, compare tag
bits in address with the stored tag in tag store

 If a block is in the cache (cache hit), the tag store should
have the tag of the block stored in the index of the block

37

8-bit address

tag index byte in block

3 bits3 bits2b

Direct-Mapped Cache: Placement and Access

 Assume byte-addressable memory:
256 bytes, 8-byte blocks  32 blocks

 Assume cache: 64 bytes, 8 blocks

 Direct-mapped: A block can go to only one location

 Addresses with same index contend for the same location

 Cause conflict misses
38

Tag store Data store

Address

tag index byte in block

3 bits3 bits2b

V tag

=? MUX
byte in block

Hit? Data

Direct-Mapped Caches

 Direct-mapped cache: Two blocks in memory that map to
the same index in the cache cannot be present in the cache
at the same time

 One index  one entry

 Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index

 Assume addresses A and B have the same index bits but
different tag bits

 A, B, A, B, A, B, A, B, …  conflict in the cache index

 All accesses are conflict misses

39

Set Associativity

 Addresses 0 and 8 always conflict in direct mapped cache

 Instead of having one column of 8, have 2 columns of 4 blocks

40

Tag store Data store

V tag

=?

V tag

=?

Address

tag index byte in block

3 bits2 bits3b

Logic

MUX

MUX
byte in block

Associative memory within the set

-- More complex, slower access, larger tag store

+ Accommodates conflicts better (fewer conflict misses)

SET

Hit?

Higher Associativity

 4-way

-- More tag comparators and wider data mux; larger tags

+ Likelihood of conflict misses even lower

41

Tag store

Data store

=?=? =?=?

MUX

MUX
byte in block

Logic Hit?

Full Associativity

 Fully associative cache

 A block can be placed in any cache location

42

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Associativity (and Tradeoffs)

 How many blocks can map to the same index (or set)?

 Higher associativity

++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)

-- More expensive hardware (more comparators)

 Diminishing returns from higher

associativity

43

associativity

hit rate

Set-Associative Caches (I)

 Diminishing returns in hit rate from higher associativity

 Longer access time with higher associativity

 Which block in the set to replace on a cache miss?

 Any invalid block first

 If all are valid, consult the replacement policy

 Random

 FIFO

 Least recently used (how to implement?)

 Not most recently used

 Least frequently used?

 Least costly to re-fetch?

 Why would memory accesses have different cost?

 Hybrid replacement policies

 Optimal replacement policy?

44

Implementing LRU

 Idea: Evict the least recently accessed block

 Problem: Need to keep track of access ordering of blocks

 Question: 2-way set associative cache:

 What do you need to implement LRU?

 Question: 4-way set associative cache:

 How many different orderings possible for the 4 blocks in the
set?

 How many bits needed to encode the LRU order of a block?

 What is the logic needed to determine the LRU victim?

45

Approximations of LRU

 Most modern processors do not implement “true LRU” in
highly-associative caches

 Why?

 True LRU is complex

 LRU is an approximation to predict locality anyway (i.e., not
the best possible replacement policy)

 Examples:

 Not MRU (not most recently used)

 Hierarchical LRU: divide the 4-way set into 2-way “groups”,
track the MRU group and the MRU way in each group

 Victim-NextVictim Replacement: Only keep track of the victim
and the next victim

46

Hierarchical LRU (not MRU)

 Divide a set into multiple groups

 Keep track of the MRU group

 Keep track of the MRU block in each group

 On replacement, select victim as:

 A not-MRU block in one of the not-MRU groups

47

Hierarchical LRU (not MRU) Example

48

Hierarchical LRU (not MRU) Example

49

Hierarchical LRU (not MRU): Questions

 8-way cache

 2 4-way groups

 What is an access pattern that performs worse than true
LRU?

 What is an access pattern that performs better than true
LRU?

50

Victim/Next-Victim Policy

 Only 2 blocks’ status tracked in each set:

 victim (V), next victim (NV)

 all other blocks denoted as (O) – Ordinary block

 On a cache miss

 Replace V

 Promote NV to V

 Randomly pick an O block as NV

 On a cache hit to V

 Promote NV to V

 Randomly pick an O block as NV

 Turn V to O

51

Victim/Next-Victim Policy (II)

 On a cache hit to NV

 Randomly pick an O block as NV

 Turn NV to O

 On a cache hit to O

 Do nothing

52

Victim/Next-Victim Example

53

Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

54

Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

55

Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate

56

What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches

57

Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes

58

Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them
individually to next level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially
better cache hit rate)

59

Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read?

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads

60

tagsubblockvsubblockv subblockvd d d

Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that
might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

 First level caches are almost always split

 Mainly for the last reason above

 Second and higher levels are almost always unified

61

Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter

62

Virtual Memory and Cache Interaction

Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical
address  same physical address can be present in multiple
locations in the cache  can lead to inconsistency in data

64

Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why?

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why?

 Different pages can share the same physical frame within or
across processes

 Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

 Do homonyms and synonyms create problems when we
have a cache?

 Is the cache virtually or physically addressed?

65

Cache-VM Interaction

66

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

67

Virtual Cache

68

Virtual-Physical Cache

69

Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only
from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end

70

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?

71

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data=

cache hit?TLB hit?

a

Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

72

An Exercise

 Problem 5 from

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

73

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

74

75

An Exercise (II)

76

An Exercise (Concluded)

77

Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your
homeworks…

78

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf

Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

79

Some Questions to Ponder

 At what cache level should we worry about the synonym
and homonym problems?

 What levels of the memory hierarchy does the system
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page
coloring?

80

Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in
DRAM

 Operating system can control which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference

81

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA

PA

Cache Performance

Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy

83

Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data
the executing application references

 Within a time interval

84

hit rate

cache size

“working set”
size

Block Size

 Block size is the data that is associated with an address tag

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed

85

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?

86

tagsubblockvsubblockv subblockvd d d

Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?

87

associativity

hit rate

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 dominates when locality is poor

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a capacity
miss

88

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each
“phase” fits in cache

89

Improving Cache “Performance”

 Remember

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency

90

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
91

Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same
set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2

92

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

93

Skewed Associative Caches (I)

 Basic 2-way associative cache structure

94

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function

95

Way 0 Way 1

tag index byte in block

f0

same index
same set

same index
redistributed to
different sets

=? =?

Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

96

Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
97

Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]

More on Data Structure Layout

 Pointer based traversal
(e.g., of a linked list)

 Assume a huge linked
list (1M nodes) and
unique keys

 Why does the code on
the left have poor cache
hit rate?

 “Other fields” occupy
most of the cache line
even though rarely
accessed!

98

struct Node {

struct Node* node;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}

How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

 Who should do this?

 Programmer

 Compiler

 Profiling vs. dynamic

 Hardware?

 Who can determine what
is frequently used?

99

struct Node {

struct Node* node;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}

Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of
computation

 Essentially: Divide the working set so that each piece fits in
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

100

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
101

102

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

103

104

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

105

P3 P2 P1 P4

H H H H M H H H MHit/Miss

Misses=4
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4

H H H

S1 S2 S3P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week

106

