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Extra Credit Recognition for Lab 3

1. John Greth (13157 ns) 

2. Kevin Bravo (91332 ns) 

3. Elon Bauer (103071 ns) 

4. Teng Fei Liao (111500 ns) 

5. Albert Cho (127904 ns) 

6. Bailey Forrest (130806 ns)  

2



Reminders

 Lab 4: Due March 21

 Please try to do the extra credit as well!

 Homework 5: Due March 26

 The course will move quickly… Keep your pace. Talk with 
the TAs and me if you are concerned about your 
performance.
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Readings for Today and Next Lecture

 Memory Hierarchy and Caches

 Cache chapters from P&H: 5.1-5.3 

 Memory/cache chapters from Hamacher+: 8.1-8.7 

 An early cache paper by Maurice Wilkes

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965. 
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Today

 The memory hierarchy

 Caches
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Idealism
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The Memory Hierarchy



Memory in a Modern System
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Ideal Memory

 Zero access time (latency)

 Infinite capacity

 Zero cost

 Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

 Ideal memory’s requirements oppose each other

 Bigger is slower

 Bigger  Takes longer to determine the location

 Faster is more expensive

 Memory technology: SRAM vs. DRAM

 Higher bandwidth is more expensive

 Need more banks, more ports, higher frequency, or faster 
technology
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Memory Technology: DRAM

 Dynamic random access memory

 Capacitor charge state indicates stored value

 Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

 1 capacitor

 1 access transistor

 Capacitor leaks through the RC path

 DRAM cell loses charge over time

 DRAM cell needs to be refreshed
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 Static random access memory

 Two cross coupled inverters store a single bit

 Feedback path enables the stored value to persist in the “cell”

 4 transistors for storage

 2 transistors for access

Memory Technology: SRAM
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Memory Bank Organization and Operation

 Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines

• For next access
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SRAM (Static Random Access Memory)
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1. address decode

2. drive row select
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DRAM (Dynamic Random Access Memory)
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DRAM vs. SRAM

 DRAM

 Slower access (capacitor)

 Higher density (1T 1C cell)

 Lower cost

 Requires refresh (power, performance, circuitry)

 Manufacturing requires putting capacitor and logic together

 SRAM

 Faster access (no capacitor)

 Lower density (6T cell)

 Higher cost

 No need for refresh

 Manufacturing compatible with logic process (no capacitor)
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The Problem

 Bigger is slower

 SRAM, 512 Bytes, sub-nanosec

 SRAM,  KByte~MByte, ~nanosec

 DRAM, Gigabyte, ~50 nanosec

 Hard Disk, Terabyte, ~10 millisec

 Faster is more expensive (dollars and chip area)

 SRAM, < 10$ per Megabyte

 DRAM, < 1$ per Megabyte

 Hard Disk < 1$ per Gigabyte

 These sample values scale with time

 Other technologies have their place as well 

 Flash memory, Phase-change memory (not mature yet)

17



Why Memory Hierarchy?

 We want both fast and large

 But we cannot achieve both with a single level of memory

 Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s)
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The Memory Hierarchy
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Memory Hierarchy

 Fundamental tradeoff

 Fast memory: small

 Large memory: slow

 Idea: Memory hierarchy

 Latency, cost, size, 

bandwidth
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Locality

 One’s recent past is a very good predictor of his/her near 
future.

 Temporal Locality:  If you just did something, it is very 
likely that you will do the same thing again soon

 since you are here today, there is a good chance you will be 
here again and again regularly

 Spatial Locality:  If you did something, it is very likely you 
will do something similar/related (in space)

 every time I find you in this room, you are probably sitting 
close to the same people
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Memory Locality

 A “typical” program has a lot of locality in memory 
references

 typical programs are composed of “loops”

 Temporal: A program tends to reference the same memory 
location many times and all within a small window of time

 Spatial: A program tends to reference a cluster of memory 
locations at a time 

 most notable examples: 

 1. instruction memory references 

 2. array/data structure references
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Caching Basics: Exploit Temporal Locality

 Idea: Store recently accessed data in automatically 
managed fast memory (called cache)

 Anticipation: the data will be accessed again soon

 Temporal locality principle

 Recently accessed data will be again accessed in the near 
future

 This is what Maurice Wilkes had in mind:

 Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965.

 “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality

 Idea: Store addresses adjacent to the recently accessed 
one in automatically managed fast memory

 Logically divide memory into equal size blocks

 Fetch to cache the accessed block in its entirety

 Anticipation: nearby data will be accessed soon

 Spatial locality principle

 Nearby data in memory will be accessed in the near future

 E.g., sequential instruction access, array traversal

 This is what IBM 360/85 implemented

 16 Kbyte cache with 64 byte blocks

 Liptay, “Structural aspects of the System/360 Model 85 II: the 
cache,” IBM Systems Journal, 1968.
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The Bookshelf Analogy

 Book in your hand

 Desk

 Bookshelf

 Boxes at home

 Boxes in storage

 Recently-used books tend to stay on desk

 Comp Arch books, books for classes you are currently taking

 Until the desk gets full

 Adjacent books in the shelf needed around the same time

 If I have organized/categorized my books well in the shelf
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Caching in a Pipelined Design

 The cache needs to be tightly integrated into the pipeline 

 Ideally, access in 1-cycle so that dependent operations do not 
stall

 High frequency pipeline  Cannot make the cache large

 But, we want a large cache AND a pipelined design

 Idea: Cache hierarchy

26

CPU

Main

Memory

(DRAM)
RF

Level1

Cache

Level 2

Cache



A Note on Manual vs. Automatic Management

 Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

“core” vs “drum” memory in the 50’s

still done in some embedded processors (on-chip scratch pad 
SRAM in lieu of a cache)

 Automatic: Hardware manages data movement across levels, 
transparently to the programmer

++ programmer’s life is easier

simple heuristic: keep most recently used items in cache

the average programmer doesn’t need to know about it

 You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?)
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Automatic Management in Memory Hierarchy

 Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

 “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.”
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A Modern Memory Hierarchy
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Hierarchical Latency Analysis

 For a given memory hierarchy level i it has a technology-intrinsic 
access time of ti, The perceived access time Ti is longer than ti

 Except for the outer-most hierarchy, when looking for a given 
address there is 

 a chance (hit-rate hi) you “hit” and access time is ti

 a chance (miss-rate mi) you “miss” and access time ti +Ti+1 

 hi + mi = 1

 Thus

Ti = hi·ti + mi·(ti + Ti+1)

Ti = ti + mi ·Ti+1 

keep in mind, hi and mi are defined to be the hit-rate

and miss-rate of just the references that missed at Li-1  
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Hierarchy Design Considerations

 Recursive latency equation

Ti = ti + mi ·Ti+1   

 The goal: achieve desired T1 within allowed cost

 Ti  ti is desirable

 Keep mi low

 increasing capacity Ci lowers mi, but beware of increasing ti

 lower mi by smarter management (replacement::anticipate what 
you don’t need, prefetching::anticipate what you will need)

 Keep Ti+1 low

 faster lower hierarchies, but beware of increasing cost

 introduce intermediate hierarchies as a compromise 
31



 90nm P4, 3.6 GHz

 L1 D-cache

 C1 = 16K

 t1 = 4 cyc int / 9 cycle fp 

 L2 D-cache

 C2 =1024 KB 

 t2 = 18 cyc int / 18 cyc fp

 Main memory

 t3 = ~ 50ns or 180 cyc

 Notice

 best case latency is not 1 

 worst case access latencies are into 500+ cycles

if m1=0.1, m2=0.1
T1=7.6, T2=36

if m1=0.01, m2=0.01
T1=4.2, T2=19.8

if m1=0.05, m2=0.01
T1=5.00, T2=19.8

if m1=0.01, m2=0.50
T1=5.08, T2=108

Intel Pentium 4 Example



Cache Basics and Operation



Cache

 Generically, any structure that “memoizes” frequently used 
results to avoid repeating the long-latency operations 
required to reproduce the results from scratch, e.g. a web 
cache

 Most commonly in the on-die context: an automatically-
managed memory hierarchy based on SRAM

 memoize in SRAM the most frequently accessed DRAM 
memory locations to avoid repeatedly paying for the DRAM 
access latency
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Caching Basics

 Block (line): Unit of storage in the cache

 Memory is logically divided into cache blocks that map to 
locations in the cache

 When data referenced

 HIT: If in cache, use cached data instead of accessing memory

 MISS: If not in cache, bring block into cache

 Maybe have to kick something else out to do it

 Some important cache design decisions

 Placement: where and how to place/find a block in cache?

 Replacement: what data to remove to make room in cache?

 Granularity of management: large, small, uniform blocks?

 Write policy: what do we do about writes?

 Instructions/data: Do we treat them separately?
35



Cache Abstraction and Metrics

 Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

 Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

 Aside: Can reducing AMAT reduce performance?
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Blocks and Addressing the Cache

 Memory is logically divided into cache blocks

 Each block maps to a location in the cache, determined by 
the index bits in the address

 used to index into the tag and data stores 

 Cache access: index into the tag and data stores with index 
bits in address, check valid bit in tag store, compare tag 
bits in address with the stored tag in tag store

 If a block is in the cache (cache hit), the tag store should 
have the tag of the block stored in the index of the block
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Direct-Mapped Cache: Placement and Access

 Assume byte-addressable memory:           
256 bytes, 8-byte blocks  32 blocks

 Assume cache: 64 bytes, 8 blocks

 Direct-mapped: A block can go to only one location

 Addresses with same index contend for the same location

 Cause conflict misses
38
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Direct-Mapped Caches

 Direct-mapped cache: Two blocks in memory that map to 
the same index in the cache cannot be present in the cache 
at the same time

 One index  one entry

 Can lead to 0% hit rate if more than one block accessed in 
an interleaved manner map to the same index 

 Assume addresses A and B have the same index bits but 
different tag bits

 A, B, A, B, A, B, A, B, …  conflict in the cache index

 All accesses are conflict misses
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Set Associativity

 Addresses 0 and 8 always conflict in direct mapped cache

 Instead of having one column of 8, have 2 columns of 4 blocks
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Higher Associativity

 4-way

-- More tag comparators and wider data mux; larger tags

+ Likelihood of conflict misses even lower
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Full Associativity

 Fully associative cache

 A block can be placed in any cache location
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Associativity (and Tradeoffs)

 How many blocks can map to the same index (or set)?

 Higher associativity

++ Higher hit rate

-- Slower cache access time (hit latency and data access latency)

-- More expensive hardware (more comparators)

 Diminishing returns from higher

associativity
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Set-Associative Caches (I)

 Diminishing returns in hit rate from higher associativity

 Longer access time with higher associativity

 Which block in the set to replace on a cache miss?

 Any invalid block first

 If all are valid, consult the replacement policy

 Random

 FIFO

 Least recently used (how to implement?)

 Not most recently used

 Least frequently used?

 Least costly to re-fetch?

 Why would memory accesses have different cost?

 Hybrid replacement policies

 Optimal replacement policy? 

44



Implementing LRU

 Idea: Evict the least recently accessed block

 Problem: Need to keep track of access ordering of blocks

 Question: 2-way set associative cache:

 What do you need to implement LRU?

 Question: 4-way set associative cache: 

 How many different orderings possible for the 4 blocks in the 
set? 

 How many bits needed to encode the LRU order of a block?

 What is the logic needed to determine the LRU victim?
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Approximations of LRU

 Most modern processors do not implement “true LRU” in 
highly-associative caches

 Why?

 True LRU is complex

 LRU is an approximation to predict locality anyway (i.e., not 
the best possible replacement policy)

 Examples:

 Not MRU (not most recently used)

 Hierarchical LRU: divide the 4-way set into 2-way “groups”, 
track the MRU group and the MRU way in each group

 Victim-NextVictim Replacement: Only keep track of the victim 
and the next victim
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Hierarchical LRU (not MRU)

 Divide a set into multiple groups

 Keep track of the MRU group

 Keep track of the MRU block in each group

 On replacement, select victim as:

 A not-MRU block in one of the not-MRU groups
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Hierarchical LRU (not MRU) Example
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Hierarchical LRU (not MRU) Example
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Hierarchical LRU (not MRU): Questions

 8-way cache

 2 4-way groups

 What is an access pattern that performs worse than true 
LRU?

 What is an access pattern that performs better than true 
LRU?
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Victim/Next-Victim Policy

 Only 2 blocks’ status tracked in each set: 

 victim (V), next victim (NV)

 all other blocks denoted as (O) – Ordinary block

 On a cache miss

 Replace V

 Promote NV to V

 Randomly pick an O block as NV

 On a cache hit to V

 Promote NV to V

 Randomly pick an O block as NV

 Turn V to O
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Victim/Next-Victim Policy (II)

 On a cache hit to NV

 Randomly pick an O block as NV

 Turn NV to O

 On a cache hit to O

 Do nothing
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Victim/Next-Victim Example
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Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is 
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E 

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the 
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.
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Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory 
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate
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What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches
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Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence 
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes
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Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them 
individually to next level

+ Simpler because write misses can be treated the same way as 
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate)
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Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read? 

++ No need to transfer the entire cache block into the cache

(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads

60
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Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., split I and D 
caches)

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access?

 First level caches are almost always split 

 Mainly for the last reason above

 Second and higher levels are almost always unified
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Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter
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Virtual Memory and Cache Interaction



Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or 
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data
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Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why? 

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why? 

 Different pages can share the same physical frame within or 
across processes

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, …

 Do homonyms and synonyms create problems when we 
have a cache?

 Is the cache virtually or physically addressed?
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Cache-VM Interaction
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Physical Cache
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Virtual Cache
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Virtual-Physical Cache
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Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only 
from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end
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Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?
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Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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An Exercise

 Problem 5 from 

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf
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An Exercise (I)
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An Exercise (II)
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An Exercise (Concluded)
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Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your 
homeworks…
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Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors
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Some Questions to Ponder

 At what cache level should we worry about the synonym 
and homonym problems?

 What levels of the memory hierarchy does the system 
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page 
coloring?
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Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in 
DRAM

 Operating system can control which bank/channel/rank a 
virtual page is mapped to. 

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference
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Cache Performance



Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy
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Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data                                                    
the executing application references 

 Within a time interval 
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Block Size

 Block size is the data that is associated with an address tag 

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed
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Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first 

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth 

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?
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Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?
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Classification of Cache Misses

 Compulsory miss 

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is 
displaced for the reasons below

 dominates when locality is poor

 Capacity miss 

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity           

 Conflict miss 

 defined as any miss that is neither a compulsory nor a capacity 
miss
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How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the 
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each 
“phase” fits in cache
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Improving Cache “Performance”

 Remember 

 Average memory access time (AMAT)

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency )

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks 

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other)

-- Increases miss latency if accessed serially with L2
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Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions  

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and 
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]} 
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Skewed Associative Caches (I)

 Basic 2-way associative cache structure
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Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function
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Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index 
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.
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Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
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Poor code

for i = 1, rows

for j = 1, columns

sum = sum + x[i,j]

Better code

for j = 1, columns

for i = 1, rows

sum = sum + x[i,j]



More on Data Structure Layout

 Pointer based traversal 
(e.g., of a linked list)

 Assume a huge linked 
list (1M nodes) and 
unique keys

 Why does the code on 
the left have poor cache 
hit rate?

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed!
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struct Node {

struct Node* node;

int key;

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access other fields of node

}

node = nodenext;

}



How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure

 Who should do this?

 Programmer

 Compiler 

 Profiling vs. dynamic

 Hardware?

 Who can determine what 
is frequently used?
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struct Node {

struct Node* node;

int key;

struct Node-data* node-data;

}

struct Node-data {

char [256] name;

char [256] school;

}

while (node) {

if (nodekey == input-key) {

// access nodenode-data

}

node = nodenext;

}



Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of 
computation

 Essentially: Divide the working set so that each piece fits in 
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time
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Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity 

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
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Memory Level Parallelism (MLP) 

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss



Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss 
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time 

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss
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Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example



Fewest Misses = Best Performance
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P3 P2 P1 P4 

H  H  H  H M          H  H  H MHit/Miss

Misses=4 
Stalls=4

S1P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M          M          

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4 

H           H           H

S1 S2 S3P4 

H  M  M  M H  M  M  M

Time stall Misses=6
Stalls=2

Saved 
cycles

Cache



MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week
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