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Readings for Today

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008.

 Stay tuned for more readings…
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SIMD Processing:

Exploiting Regular (Data) Parallelism



Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor
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Data Parallelism

 Concurrency arises from performing the same operations 
on different pieces of data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in 
a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in 
parallel

 SIMD exploits instruction-level parallelism

 Multiple “instructions” (more appropriately, operations) are 
concurrent: instructions happen to be the same 
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SIMD Processing

 Single instruction operates on multiple data elements

 In time or in space

 Multiple processing elements 

 Time-space duality

 Array processor: Instruction operates on multiple data 
elements at the same time

 Vector processor: Instruction operates on multiple data 
elements in consecutive time steps
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



SIMD Array Processing vs. VLIW

 VLIW
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SIMD Array Processing vs. VLIW

 Array processor
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Vector Processors

 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values

 Basic requirements

 Need to load/store vectors  vector registers (contain vectors)

 Need to operate on vectors of different lengths  vector length 

register (VLEN)

 Elements of a vector might be stored apart from each other in 
memory  vector stride register (VSTR)

 Stride: distance between two elements of a vector
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Vector Processors (II)

 A vector instruction performs an operation on each element 
in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies  no hardware interlocking 

within a vector

 No control flow within a vector

 Known stride allows prefetching of vectors into cache/memory
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Vector Processor Advantages

+ No dependencies within a vector 

 Pipelining, parallelization work well

 Can have very deep pipelines, no dependencies! 

+ Each instruction generates a lot of work 

 Reduces instruction fetch bandwidth

+ Highly regular memory access pattern 

 Interleaving multiple banks for higher memory bandwidth

 Prefetching

+ No need to explicitly code loops 

 Fewer branches in the instruction sequence
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Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations

-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

13Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck, 
especially if

1. compute/memory operation balance is not maintained

2. data is not mapped appropriately to memory banks
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Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

 e.g., VMASK[i] = (V
k
[i] == 0)

 Maximum VLEN can be N

 Maximum number of elements stored in a vector register
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V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide



Vector Functional Units

 Use deep pipeline (=> fast 
clock) to execute element 
operations

 Simplifies control of deep 
pipeline because elements in 
vector are independent  
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V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Slide credit: Krste Asanovic



Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1 
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector 
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers
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Memory Banking

 Example: 16 banks; can start one bank access per cycle

 Bank latency: 11 cycles

 Can sustain 16 parallel accesses if they go to different banks
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Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Slide credit: Derek Chiou



Vector Memory System
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0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Bas
e

Stride
Vector Registers

Memory Banks

Address 
Generator

Slide credit: Krste Asanovic



Scalar Code Example

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Scalar code

MOVI R0 = 50 1

MOVA R1 = A 1

MOVA R2 = B 1

MOVA R3 = C 1

X:  LD R4 = MEM[R1++] 11  ;autoincrement addressing

LD R5 = MEM[R2++] 11

ADD R6 = R4 + R5 4

SHFR R7 = R6 >> 1 1

ST MEM[R3++] = R7 11

DECBNZ --R0, X 2   ;decrement and branch if NZ

20

304 dynamic instructions



Scalar Code Execution Time
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 Scalar execution time on an in-order processor with 1 bank

 First two loads in the loop cannot be pipelined: 2*11 cycles

 4 + 50*40 = 2004 cycles

 Scalar execution time on an in-order processor with 16 
banks (word-interleaved)

 First two loads in the loop can be pipelined

 4 + 50*30 = 1504 cycles

 Why 16 banks?

 11 cycle memory access latency

 Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency



Vectorizable Loops

 A loop is vectorizable if each iteration is independent of any 
other

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Vectorized loop:

MOVI VLEN = 50 1

MOVI VSTR = 1 1

VLD V0 = A 11 + VLN - 1

VLD V1 = B 11 + VLN – 1

VADD V2 = V0 + V1 4 + VLN - 1

VSHFR V3 = V2 >> 1 1 + VLN - 1

VST C = V3 11 + VLN – 1
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7 dynamic instructions



Vector Code Performance

 No chaining 

 i.e., output of a vector functional unit cannot be used as the 
input of another (i.e., no vector data forwarding)

 One memory port (one address generator)

 16 memory banks (word-interleaved)

 285 cycles
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining

 Vector chaining: Data forwarding from one vector 
functional unit to another
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Memory

V
1

Load 
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV   v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic



Vector Code Performance - Chaining

 Vector chaining: Data forwarding from one vector 
functional unit to another

 182 cycles
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be 

pipelined. WHY?

VLD and VST cannot be 

pipelined. WHY?

Strict assumption:

Each memory bank 

has a single port 

(memory bandwidth

bottleneck)



Vector Code Performance – Multiple Memory Ports

 Chaining and 2 load ports, 1 store port in each bank

 79 cycles
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I)

 What if # data elements > # elements in a vector register?

 Need to break loops so that each iteration operates on # 
elements in a vector register

 E.g., 527 data elements, 64-element VREGs

 8 iterations where VLEN = 64

 1 iteration where VLEN = 15 (need to change value of VLEN)

 Called vector stripmining

 What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector)

 Use indirection to combine elements into vector registers

 Called scatter/gather operations
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Gather/Scatter Operations
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Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD       # Load indices in D vector

LVI vC, rC, vD  # Load indirect from rC base

LV vB, rB       # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA       # Store result



Gather/Scatter Operations

 Gather/scatter operations often implemented in hardware 
to handle sparse matrices 

 Vector loads and stores use an index vector which is added 
to the base register to generate the addresses
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Index Vector Data Vector Equivalent

1 3.14 3.14

3 6.5 0.0

7 71.2 6.5

8 2.71 0.0

0.0

0.0

0.0

71.2

2.7 



Conditional Operations in a Loop

 What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*b[i]

goto loop

 Idea: Masked operations 

 VMASK register is a bit mask determining which data element 
should not be acted upon

VLD V0 = A

VLD V1 = B

VMASK = (V0 != 0)

VMUL V1 = V0 * V1

VST B = V1

 Does this look familiar? This is essentially predicated execution.
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Another Example with Masking
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for (i = 0; i < 64; ++i)

if (a[i] >= b[i]) then c[i] = a[i]

else c[i] = b[i]

A B VMASK    

1 2 0                 

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute loop

1. Compare A, B to get 

VMASK

2. Masked store of  A into C

3. Complement VMASK

4. Masked store of B into C



Masked Vector Instructions
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C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

Density-Time Implementation

– scan mask vector and only execute 
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data portWrite Enable

A[7] B[7]M[7]=1

Simple Implementation

– execute all N operations, turn off 
result writeback according to mask

Slide credit: Krste Asanovic



Some Issues

 Stride and banking

 As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, consecutive 
accesses proceed in parallel

 Storage of a matrix

 Row major: Consecutive elements in a row are laid out 
consecutively in memory

 Column major: Consecutive elements in a column are laid out 
consecutively in memory

 You need to change the stride when accessing a row versus 
column
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Array vs. Vector Processors, Revisited

 Array vs. vector processor distinction is a “purist’s”
distinction

 Most “modern” SIMD processors are a combination of both

 They exploit data parallelism in both time and space
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Remember: Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR  A[3:0]

ADD  VR  VR, 1 

MUL  VR  VR, 2

ST     A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Instruction Execution
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ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic



Vector Unit Structure
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Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0, 
4, 8, …

Elements 1, 
5, 9, …

Elements 2, 
6, 10, …

Elements 3, 
7, 11, …

Slide credit: Krste Asanovic



Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
 example machine has 32 elements per vector register and 8 lanes

 Complete 24 operations/cycle while issuing 1 short instruction/cycle
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load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction 
issue

Slide credit: Krste Asanovic



Automatic Code Vectorization
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of 
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic



Vector/SIMD Processing Summary

 Vector/SIMD machines good at exploiting regular data-level 
parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector 
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include (vector-like) SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD
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SIMD Operations in Modern ISAs



Intel Pentium MMX Operations

 Idea: One instruction operates on multiple data elements 
simultaneously

 Ala array processing (yet much more limited)

 Designed with multimedia (graphics) operations in mind

43

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride always equal to 1.



MMX Example: Image Overlaying (I)
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MMX Example: Image Overlaying (II)
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Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



High-Level View of a GPU

47



Concept of “Thread Warps” and SIMT

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak)

 All threads run the same kernel
 Warp: The threads that run lengthwise in a woven fabric …

48

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline



Loop Iterations as Threads
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for (i=0; i < N; i++)

C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic



 Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, blockDim=4  4 blocks 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim



Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim



Sample GPU Program (Less Simplified)

52Slide credit: Hyesoon Kim



Latency Hiding with “Thread Warps”

 Warp: A set of threads that 
execute the same instruction 
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in 
pipeline at a time (No branch 
prediction)

 Interleave warp execution to 
hide latencies

 Register values of all threads stay 
in register file

 No OS context switching

 Memory latency hiding

 Graphics has millions of pixels

53

Decode

R
F

R
F

R
F

A
LU

A
LU

A
LU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt



Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread 

 Lock step

 Programming model is SIMD (no threads)  SW needs to know vector 

length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD

 SW does not need to know vector length

 Enables memory and branch latency tolerance

 ISA is scalar  vector instructions formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD 
hardware
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SPMD
 Single procedure/program, multiple data 

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on 
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same 
program

 Each program/procedure can 1) execute a different control-flow path, 
2) work on different data, at run-time

 Many scientific applications programmed this way and run on MIMD 
computers (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD computer
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Branch Divergence Problem in Warp-based SIMD

 SPMD Execution on SIMD Hardware 

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution
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Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMD

 GPU uses SIMD 
pipeline to save area 
on control logic.

 Group scalar threads into 
warps

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths.
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Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt



Branch Divergence Handling (I)
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- G 1111TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111TOS
E D 0110
E C 1001TOS

- E 1111
E D 0110TOS
- E 1111

A D G A

Time

CB E

- B 1111TOS - E 1111TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001TOS

- E 1111

Slide credit: Tor Aamodt



Branch Divergence Handling (II)
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A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

B;

} else {

C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt



Dynamic Warp Formation

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

 Form new warp at divergence

 Enough threads branching to each path to create full new 
warps
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Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007.

61

Branch

Path A

Path B

Branch

Path A



Dynamic Warp Formation Example
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A A B B G G A AC C D D E E F F

Time

A A B B G G A AC D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
AA

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt



What About Memory Divergence?

 Modern GPUs have caches

 Ideally: Want all threads in the warp to hit (without 
conflicting with each other)

 Problem: One thread in a warp can stall the entire warp if it 
misses in the cache.

 Need techniques to 

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence
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NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

64
Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…

= instruction stream decode= SIMD functional unit, control 

shared across 8 units

= execution context storage = multiply-add
= multiply

64 KB of storage 

for fragment 

contexts (registers)

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285 “core”
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…
64 KB of storage 

for thread contexts 

(registers)

 Groups of 32 threads share instruction stream (each group is 
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored   

Slide credit: Kayvon Fatahalian



NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

67

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian



VLIW and DAE



Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor
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SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute
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VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple 
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with 
SIMD)

 Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed 
into the functional units
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VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
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SIMD Array Processing vs. VLIW

 Array processor
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VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding  very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism 

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple  higher frequency, easier to design
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VLIW Philosophy (II)

76Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones
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VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware  simple hardware

+ No need for dependency checking within a VLIW instruction 

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to 
different functional units  simple hardware

 Disadvantages

-- Compiler needs to find N independent operations

-- If it cannot, inserts NOPs in a VLIW instruction

-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
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VLIW Summary

 VLIW simplifies hardware, but requires complex compiler 
techniques

 Solely-compiler approach of VLIW has several downsides 
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP
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Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to 
implement 

 1980s before HPS, Pentium Pro

 Idea: Decouple operand 

access and execution via 

two separate instruction 

streams that communicate 

via ISA-visible queues. 

 Smith, “Decoupled Access/Execute 

Computer Architectures,” ISCA 1982, 

ACM TOCS 1984.
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Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)
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Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice 
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one, 
though)
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Astronautics ZS-1

 Single stream 
steered into A and 
X pipelines

 Each pipeline in-
order

 Smith et al., “The 
ZS-1 central 
processor,”
ASPLOS 1987.

 Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989.
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Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities
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Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
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Systolic Arrays
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Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Why? Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and regular)

 High concurrency  high performance

 Balanced computation and I/O (memory access)
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Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
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Systolic Architectures

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional 

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction)
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Systolic Computation Example

 Convolution

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc …

 Many image processing tasks
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Systolic Computation Example: Convolution

 y1 = w1x1 + 
w2x2 + w3x3

 y2 = w1x2 + 
w2x3 + w3x4

 y3 = w1x3 + 
w2x4 + w3x5
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Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions
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 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory  to store partial/temporary results, constants

 Leads to stream processing, pipeline parallelism

 More generally, staged execution
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Pipeline Parallelism
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File Compression Example
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Systolic Array

 Advantages

 Makes multiple uses of each data item  reduced need for 

fetching/refetching

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose  need software, programmer 

support to be a general purpose model
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The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor

 Attached to a general purpose host machine

 HLL and optimizing compiler to program the systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986. 

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987. 
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The WARP Computer 
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The WARP Computer 
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Systolic Arrays vs. SIMD

 Food for thought…
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Some More Recommended Readings

 Recommended:

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000.

 Russell, “The CRAY-1 computer system,” CACM 1978.

 Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993.

 Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001.
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