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Lab 4 Reminder 

 Lab 4a out 

 Branch handling and branch predictors 

 

 Lab 4b out 

 Fine-grained multithreading 

 

 Due March 21st 

 

 You have 4 weeks! 

 Get started very early – Exam and S. Break are on the way 

 Finish Lab 4a first and check off 

 Finish Lab 4b next and check off 

 Do the extra credit 
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Readings for Today 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, Dataflow 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 

 

 Stay tuned for more readings… 
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SIMD Processing: 

Exploiting Regular (Data) Parallelism 

 
 

 

 

 

 



Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Data Parallelism 

 Concurrency arises from performing the same operations 
on different pieces of data 

 Single instruction multiple data (SIMD) 

 E.g., dot product of two vectors 
 

 Contrast with data flow 

 Concurrency arises from executing different operations in parallel (in 
a data driven manner) 

 

 Contrast with thread (“control”) parallelism 

 Concurrency arises from executing different threads of control in 
parallel 

 

 SIMD exploits instruction-level parallelism 

 Multiple “instructions” (more appropriately, operations) are 
concurrent: instructions happen to be the same  
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SIMD Processing 

 Single instruction operates on multiple data elements 

 In time or in space 

 Multiple processing elements  

 

 Time-space duality 

 Array processor: Instruction operates on multiple data 
elements at the same time 

 Vector processor: Instruction operates on multiple data 
elements in consecutive time steps 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 

 VLIW 
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SIMD Array Processing vs. VLIW 

 Array processor 
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Vector Processors 

 A vector is a one-dimensional array of numbers 

 Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 

 C[i] = (A[i] + B[i]) / 2 

 

 A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

 Basic requirements 

 Need to load/store vectors  vector registers (contain vectors) 

 Need to operate on vectors of different lengths  vector length 
register (VLEN) 

 Elements of a vector might be stored apart from each other in 
memory  vector stride register (VSTR) 

 Stride: distance between two elements of a vector 
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Vector Processors (II) 

 A vector instruction performs an operation on each element 
in consecutive cycles 

 Vector functional units are pipelined 

 Each pipeline stage operates on a different data element 

 

 Vector instructions allow deeper pipelines 

 No intra-vector dependencies  no hardware interlocking 

within a vector 

 No control flow within a vector 

 Known stride allows prefetching of vectors into cache/memory 
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Vector Processor Advantages 

+ No dependencies within a vector  

 Pipelining, parallelization work well 

 Can have very deep pipelines, no dependencies!  

 

+ Each instruction generates a lot of work  

 Reduces instruction fetch bandwidth 

 

+ Highly regular memory access pattern  

 Interleaving multiple banks for higher memory bandwidth 

 Prefetching 

 

+ No need to explicitly code loops  

 Fewer branches in the instruction sequence 
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Vector Processor Disadvantages 

-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 

    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 

 

 

 

 

14 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Vector Processor Limitations 

-- Memory (bandwidth) can easily become a bottleneck, 
especially if 

 1. compute/memory operation balance is not maintained 

 2. data is not mapped appropriately to memory banks 
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Vector Processing in More Depth 

 

 

 

 

 

 



Vector Registers 

 Each vector data register holds N M-bit values 

 Vector control registers: VLEN, VSTR, VMASK 

 Maximum VLEN can be N 

 Maximum number of elements stored in a vector register 

 Vector Mask Register (VMASK) 

 Indicates which elements of vector to operate on 

 Set by vector test instructions 

 e.g., VMASK[i] = (V
k
[i] == 0) 
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V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 

 Use deep pipeline (=> fast 
clock) to execute element 
operations 

 Simplifies control of deep 
pipeline because elements in 
vector are independent   
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V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Scalar and vector modes 

 8 64-element vector 
registers 

 64 bits per element 

 16 memory banks 

 8 64-bit scalar registers 

 8 24-bit address registers 
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Memory Banking 
 Memory is divided into banks that can be accessed independently; 

banks share address and data buses 

 Can start and complete one bank access per cycle 

 Can sustain N parallel accesses if they go to different banks 
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Bank 

0 

Bank 

1 

MDR MAR 

Bank 

2 

Bank 

15 

MDR MAR MDR MAR MDR MAR 

Data bus 

Address bus 

CPU 

Slide credit: Derek Chiou 



Vector Memory System 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Bas
e 

Stride 
Vector Registers 

Memory Banks 

Address 
Generator 

Slide credit: Krste Asanovic 



Scalar Code Example 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 

 Scalar code (instruction and its latency) 

     MOVI R0 = 50   1 

     MOVA R1 = A   1 

     MOVA R2 = B   1 

     MOVA R3 = C   1 

X:  LD R4 = MEM[R1++]  11  ;autoincrement addressing 

     LD R5 = MEM[R2++]  11 

     ADD R6 = R4 + R5  4 

     SHFR R7 = R6 >> 1  1 

     ST MEM[R3++] = R7   11 

     DECBNZ --R0, X  2   ;decrement and branch if NZ 
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304 dynamic instructions 



Scalar Code Execution Time 
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 Scalar execution time on an in-order processor with 1 bank 

 First two loads in the loop cannot be pipelined: 2*11 cycles 

 4 + 50*40 = 2004 cycles 

 

 Scalar execution time on an in-order processor with 16 
banks (word-interleaved: consecutive words are stored in 
consecutive banks) 

 First two loads in the loop can be pipelined 

 4 + 50*30 = 1504 cycles 

 

 Why 16 banks? 

 11 cycle memory access latency 

 Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency 

 



Vectorizable Loops 

 A loop is vectorizable if each iteration is independent of any 
other 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 Vectorized loop: 

  MOVI VLEN = 50   1 

  MOVI VSTR = 1   1 

  VLD V0 = A    11 + VLN - 1 

  VLD V1 = B    11 + VLN – 1 

  VADD V2 = V0 + V1   4 + VLN - 1 

  VSHFR V3 = V2 >> 1   1 + VLN - 1 

  VST C = V3    11 + VLN – 1 
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7 dynamic instructions 



Basic Vector Code Performance 

 Assume no chaining (no vector data forwarding) 

 i.e., output of a vector functional unit cannot be used as the 
direct input of another  

 The entire vector register needs to be ready before any 
element of it can be used as part of another operation 

 One memory port (one address generator) 

 16 memory banks (word-interleaved) 

 

 

 

 

 

 285 cycles 
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 
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Memory 

V
1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 

Slide credit: Krste Asanovic 



Vector Code Performance - Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 

 

 

 

 

 

 

 

 

 

 182 cycles 
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  

pipelined. WHY? 

VLD and VST cannot be  

pipelined. WHY? 

Strict assumption: 

Each memory bank  

has a single port  

(memory bandwidth 

bottleneck) 



Vector Code Performance – Multiple Memory Ports 

 Chaining and 2 load ports, 1 store port in each bank 

 

 

 

 

 

 

 

 

 

 

 79 cycles 
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I) 

 What if # data elements > # elements in a vector register? 

 Need to break loops so that each iteration operates on # 
elements in a vector register 

 E.g., 527 data elements, 64-element VREGs 

 8 iterations where VLEN = 64 

 1 iteration where VLEN = 15 (need to change value of VLEN) 

 Called vector stripmining 

 

 What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector) 

 Use indirection to combine/pack elements into vector registers 

 Called scatter/gather operations 
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Gather/Scatter Operations 
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Want to vectorize loops with indirect accesses: 

for (i=0; i<N; i++) 

    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 

LV vD, rD       # Load indices in D vector 

LVI vC, rC, vD  # Load indirect from rC base 

LV vB, rB       # Load B vector 

ADDV.D vA,vB,vC # Do add 

SV vA, rA       # Store result 

 



Gather/Scatter Operations 

 Gather/scatter operations often implemented in hardware 
to handle sparse matrices  

 Vector loads and stores use an index vector which is added 
to the base register to generate the addresses 
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Index Vector  Data Vector  Equivalent 

 

        0           3.14         3.14 

        2          6.5             0.0 

        6        71.2            6.5 

        7          2.71             0.0 

          0.0 

           0.0 

           71.2 

          2.71   



Conditional Operations in a Loop 

 What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)? 
loop:  if (a[i] != 0) then b[i]=a[i]*b[i] 

   goto loop 

 

 Idea: Masked operations  

 VMASK register is a bit mask determining which data element 
should not be acted upon 

  VLD V0 = A 

  VLD V1 = B 

  VMASK = (V0 != 0) 

  VMUL V1 = V0 * V1 

  VST B = V1 

 Does this look familiar? This is essentially predicated execution. 
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Another Example with Masking 
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for (i = 0; i < 64; ++i) 

 if (a[i] >= b[i]) then c[i] = a[i] 

 else c[i] = b[i] 

A B VMASK     

1 2    0                  

2 2    1 

3 2    1 

4 10    0 

-5 -4    0 

0 -3    1 

6 5    1 

-7 -8    1 

Steps to execute loop 

 

1. Compare A, B to get  

 VMASK 

 

2. Masked store of  A into C 

 

3. Complement VMASK 

 

4. Masked store of B into C 



Masked Vector Instructions 

 

34 

C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

      Density-Time Implementation 

– scan mask vector and only execute 
elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

     Simple Implementation 

– execute all N operations, turn off 
result writeback according to mask 

Slide credit: Krste Asanovic 



Some Issues 

 Stride and banking 

 As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, consecutive 
accesses proceed in parallel 

 

 Storage of a matrix 

 Row major: Consecutive elements in a row are laid out 
consecutively in memory 

 Column major: Consecutive elements in a column are laid out 
consecutively in memory 

 You need to change the stride when accessing a row versus 
column 
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Array vs. Vector Processors, Revisited 

 Array vs. vector processor distinction is a “purist’s” 
distinction 

 

 Most “modern” SIMD processors are a combination of both 

 They exploit data parallelism in both time and space 
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Remember: Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



Vector Instruction Execution 
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ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 



Vector Unit Structure 
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Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 

Slide credit: Krste Asanovic 



Vector Instruction Level Parallelism 

Can overlap execution of multiple vector instructions 
 example machine has 32 elements per vector register and 8 lanes 

 Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Slide credit: Krste Asanovic 



Automatic Code Vectorization 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a compile-time reordering of 
operation sequencing 
 requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
 

Slide credit: Krste Asanovic 



Vector/SIMD Processing Summary 

 Vector/SIMD machines are good at exploiting regular data-
level parallelism 

 Same operation performed on many data elements 

 Improve performance, simplify design (no intra-vector 
dependencies) 

 

 Performance improvement limited by vectorizability of code 

 Scalar operations limit vector machine performance 

 Amdahl’s Law 

 CRAY-1 was the fastest SCALAR machine at its time! 

 

 Many existing ISAs include (vector-like) SIMD operations 

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD 
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SIMD Operations in Modern ISAs 

 

 

 

 

 

 



Intel Pentium MMX Operations 

 Idea: One instruction operates on multiple data elements 
simultaneously 

 Ala array processing (yet much more limited) 

 Designed with multimedia (graphics) operations in mind 
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Peleg and Weiser, “MMX Technology 

Extension to the Intel Architecture,” 

IEEE Micro, 1996. 

No VLEN register 

Opcode determines data type: 

8 8-bit bytes 

4 16-bit words 

2 32-bit doublewords 

1 64-bit quadword 

 

Stride always equal to 1. 

 



MMX Example: Image Overlaying (I) 
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MMX Example: Image Overlaying (II) 
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