
18-447

Computer Architecture

Lecture 16: SIMD Processing

(Vector and Array Processors)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/24/2014

Lab 4 Reminder

 Lab 4a out

 Branch handling and branch predictors

 Lab 4b out

 Fine-grained multithreading

 Due March 21st

 You have 4 weeks!

 Get started very early – Exam and S. Break are on the way

 Finish Lab 4a first and check off

 Finish Lab 4b next and check off

 Do the extra credit
2

Readings for Today

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

 Stay tuned for more readings…

3

SIMD Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

5

Data Parallelism

 Concurrency arises from performing the same operations
on different pieces of data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in
a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in
parallel

 SIMD exploits instruction-level parallelism

 Multiple “instructions” (more appropriately, operations) are
concurrent: instructions happen to be the same

6

SIMD Processing

 Single instruction operates on multiple data elements

 In time or in space

 Multiple processing elements

 Time-space duality

 Array processor: Instruction operates on multiple data
elements at the same time

 Vector processor: Instruction operates on multiple data
elements in consecutive time steps

7

Array vs. Vector Processors

8

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

 VLIW

9

SIMD Array Processing vs. VLIW

 Array processor

10

Vector Processors

 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

 C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

 Basic requirements

 Need to load/store vectors vector registers (contain vectors)

 Need to operate on vectors of different lengths vector length
register (VLEN)

 Elements of a vector might be stored apart from each other in
memory vector stride register (VSTR)

 Stride: distance between two elements of a vector

11

Vector Processors (II)

 A vector instruction performs an operation on each element
in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies no hardware interlocking

within a vector

 No control flow within a vector

 Known stride allows prefetching of vectors into cache/memory

12

Vector Processor Advantages

+ No dependencies within a vector

 Pipelining, parallelization work well

 Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

 Reduces instruction fetch bandwidth

+ Highly regular memory access pattern

 Interleaving multiple banks for higher memory bandwidth

 Prefetching

+ No need to explicitly code loops

 Fewer branches in the instruction sequence

13

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

 ++ Vector operations

 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

14 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

 1. compute/memory operation balance is not maintained

 2. data is not mapped appropriately to memory banks

15

Vector Processing in More Depth

Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

 Maximum VLEN can be N

 Maximum number of elements stored in a vector register

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

 e.g., VMASK[i] = (V
k
[i] == 0)

17

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

 Use deep pipeline (=> fast
clock) to execute element
operations

 Simplifies control of deep
pipeline because elements in
vector are independent

18

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

19

Memory Banking
 Memory is divided into banks that can be accessed independently;

banks share address and data buses

 Can start and complete one bank access per cycle

 Can sustain N parallel accesses if they go to different banks

20

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Slide credit: Derek Chiou

Vector Memory System

21

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Bas
e

Stride
Vector Registers

Memory Banks

Address
Generator

Slide credit: Krste Asanovic

Scalar Code Example

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Scalar code (instruction and its latency)

 MOVI R0 = 50 1

 MOVA R1 = A 1

 MOVA R2 = B 1

 MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

 LD R5 = MEM[R2++] 11

 ADD R6 = R4 + R5 4

 SHFR R7 = R6 >> 1 1

 ST MEM[R3++] = R7 11

 DECBNZ --R0, X 2 ;decrement and branch if NZ

 22

304 dynamic instructions

Scalar Code Execution Time

23

 Scalar execution time on an in-order processor with 1 bank

 First two loads in the loop cannot be pipelined: 2*11 cycles

 4 + 50*40 = 2004 cycles

 Scalar execution time on an in-order processor with 16
banks (word-interleaved: consecutive words are stored in
consecutive banks)

 First two loads in the loop can be pipelined

 4 + 50*30 = 1504 cycles

 Why 16 banks?

 11 cycle memory access latency

 Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

 A loop is vectorizable if each iteration is independent of any
other

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Vectorized loop:

 MOVI VLEN = 50 1

 MOVI VSTR = 1 1

 VLD V0 = A 11 + VLN - 1

 VLD V1 = B 11 + VLN – 1

 VADD V2 = V0 + V1 4 + VLN - 1

 VSHFR V3 = V2 >> 1 1 + VLN - 1

 VST C = V3 11 + VLN – 1

24

7 dynamic instructions

Basic Vector Code Performance

 Assume no chaining (no vector data forwarding)

 i.e., output of a vector functional unit cannot be used as the
direct input of another

 The entire vector register needs to be ready before any
element of it can be used as part of another operation

 One memory port (one address generator)

 16 memory banks (word-interleaved)

 285 cycles

25

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

26

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

 182 cycles

27

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

Vector Code Performance – Multiple Memory Ports

 Chaining and 2 load ports, 1 store port in each bank

 79 cycles

28

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)

 What if # data elements > # elements in a vector register?

 Need to break loops so that each iteration operates on #
elements in a vector register

 E.g., 527 data elements, 64-element VREGs

 8 iterations where VLEN = 64

 1 iteration where VLEN = 15 (need to change value of VLEN)

 Called vector stripmining

 What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

 Use indirection to combine/pack elements into vector registers

 Called scatter/gather operations

29

Gather/Scatter Operations

30

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

 Gather/scatter operations often implemented in hardware
to handle sparse matrices

 Vector loads and stores use an index vector which is added
to the base register to generate the addresses

31

Index Vector Data Vector Equivalent

 0 3.14 3.14

 2 6.5 0.0

 6 71.2 6.5

 7 2.71 0.0

 0.0

 0.0

 71.2

 2.71

Conditional Operations in a Loop

 What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*b[i]

 goto loop

 Idea: Masked operations

 VMASK register is a bit mask determining which data element
should not be acted upon

 VLD V0 = A

 VLD V1 = B

 VMASK = (V0 != 0)

 VMUL V1 = V0 * V1

 VST B = V1

 Does this look familiar? This is essentially predicated execution.

 32

Another Example with Masking

33

for (i = 0; i < 64; ++i)

 if (a[i] >= b[i]) then c[i] = a[i]

 else c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute loop

1. Compare A, B to get

 VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

34

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

 Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

 Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Some Issues

 Stride and banking

 As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, consecutive
accesses proceed in parallel

 Storage of a matrix

 Row major: Consecutive elements in a row are laid out
consecutively in memory

 Column major: Consecutive elements in a column are laid out
consecutively in memory

 You need to change the stride when accessing a row versus
column

35

36

Array vs. Vector Processors, Revisited

 Array vs. vector processor distinction is a “purist’s”
distinction

 Most “modern” SIMD processors are a combination of both

 They exploit data parallelism in both time and space

37

Remember: Array vs. Vector Processors

38

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR A[3:0]

ADD VR VR, 1

MUL VR VR, 2

ST A[3:0] VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

39

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Vector Unit Structure

40

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
 example machine has 32 elements per vector register and 8 lanes

 Complete 24 operations/cycle while issuing 1 short instruction/cycle

41

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

42

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

 Vector/SIMD machines are good at exploiting regular data-
level parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include (vector-like) SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

43

SIMD Operations in Modern ISAs

Intel Pentium MMX Operations

 Idea: One instruction operates on multiple data elements
simultaneously

 Ala array processing (yet much more limited)

 Designed with multimedia (graphics) operations in mind

45

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”

IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride always equal to 1.

MMX Example: Image Overlaying (I)

46

MMX Example: Image Overlaying (II)

47

