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Lab 4 Heads Up

 Lab 4a out

 Branch handling and branch predictors

 Lab 4b will be out soon

 Fine-grained multithreading

 Due March 21st

 You have 4 weeks!

 Get started very early – Exam and S. Break are on the way

 Finish Lab 4a first and check off

 Finish Lab 4b next and check off

 Do the extra credit
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Lab 2 Extra Credit Recognition

1. Albert Cho (260/263)

2. Bailey Forrest (252/263)

3. Jeremie Kim (248/263)

4. Clement Loh (240/263)

5. Xiang Lin (184/263) 
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Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 
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Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008.

 Stay tuned for more readings…
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Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)
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Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of 
produced value) between instructions

 Wakeup and select enables out-of-order dispatch
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OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired 
instructions

 Can we do it for the whole program? 

 Why would we like to?

 In other words, how can we have a large instruction 
window?

 Can we do it efficiently with Tomasulo’s algorithm?
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Dataflow Graph for Our Example
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MUL   R3  R1, R2

ADD   R5  R3, R4

ADD   R7  R2, R6

ADD   R10  R8, R9

MUL   R11  R7, R10

ADD   R5  R5, R11



State of RAT and RS in Cycle 7
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Dataflow Graph
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Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture 
level

 ISA is still based on von Neumann model (sequential 
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in 
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
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Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue 
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm?

 Active/instruction window size: determined by both scheduling 
window and reorder buffer size
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Registers versus Memory, Revisited

 So far, we considered register based value communication 
between instructions

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order 
machine 

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known 
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine
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Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an 
older store’s address is known

 Known as the memory disambiguation problem or the unknown 
address problem

 Approaches

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store
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Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store 
addresses are available. 

 How does the OOO engine detect dependence of a load instruction on a 
previous store?

 Option 1: Wait until all previous stores committed (no need to 
check) 

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

+ No need for recovery 

-- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an 
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.
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Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of 
the potential performance 
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Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed 
across functional units?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …
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More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch 
prediction?
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Recommended Readings

 Out-of-order execution processor designs

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002.
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And More Readings…

 Stark et al., “On Pipelining Dynamic Scheduling Logic,” 
MICRO 2000.

 Brown et al., “Select-free Instruction Scheduling Logic,” 
MICRO 2001.

 Palacharla et al., “Complexity-effective Superscalar 
Processors,” ISCA 1997.
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Other Approaches to Concurrency 

(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

25



Data Flow:

Exploiting Irregular Parallelism



Remember: State of RAT and RS in Cycle 7
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Remember: Dataflow Graph
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Review: More on Data Flow

 In a data flow machine, a program consists of data flow 
nodes

 A data flow node fires (fetched and executed) when all it 
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation
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Data Flow Nodes
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Dataflow Nodes (II)

 A small set of dataflow operators can be used to 
define a general programming language 

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T
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Dataflow Graphs
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 Values in dataflow graphs are 
represented as tokens

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow



Example Data Flow Program
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Control Flow vs. Data Flow
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Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential instruction stream 

 No program counter

 Execution triggered by the presence/readiness of data

 Operations execute asynchronously
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A Dataflow Processor
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MIT Tagged Token Data Flow Architecture

 Wait−Match Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address 

 Success: Both 
tokens forwarded

 Fail: Incoming 
token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded)
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TTDA Data Flow Example
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TTDA Data Flow Example
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TTDA Data Flow Example
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Manchester Data Flow Machine

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction

 Large data set 

overflow in overflow 
unit

 Paired tokens fetch the 
appropriate instruction 
from the node store
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Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Debugging very difficult 

 Interrupt/exception handling is difficult 

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult
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Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986.
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Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted 
data flow architecture having minimal functionality,”
ISCA 1986.
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