
18-447

Computer Architecture

Lecture 15: Load/Store Handling

and Data Flow

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/21/2014

Lab 4 Heads Up

 Lab 4a out

 Branch handling and branch predictors

 Lab 4b will be out soon

 Fine-grained multithreading

 Due March 21st

 You have 4 weeks!

 Get started very early – Exam and S. Break are on the way

 Finish Lab 4a first and check off

 Finish Lab 4b next and check off

 Do the extra credit
2

Lab 2 Extra Credit Recognition

1. Albert Cho (260/263)

2. Bailey Forrest (252/263)

3. Jeremie Kim (248/263)

4. Clement Loh (240/263)

5. Xiang Lin (184/263)

3

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

4

Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

 Stay tuned for more readings…

5

Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

6

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

7

OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

8

Dataflow Graph for Our Example

9

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

State of RAT and RS in Cycle 7

10

Dataflow Graph

11

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
12

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by both scheduling
window and reorder buffer size

13

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

14

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

15

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

16

Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to
check)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

17

Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

+ No need for recovery

-- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

18

Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

19

Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed
across functional units?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …

20

More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

21

Recommended Readings

 Out-of-order execution processor designs

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

22

And More Readings…

 Stark et al., “On Pipelining Dynamic Scheduling Logic,”
MICRO 2000.

 Brown et al., “Select-free Instruction Scheduling Logic,”
MICRO 2001.

 Palacharla et al., “Complexity-effective Superscalar
Processors,” ISCA 1997.

23

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing (Vector and array processors, GPUs)

 VLIW

 Decoupled Access Execute

 Systolic Arrays

25

Data Flow:

Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

27

Remember: Dataflow Graph

28

Review: More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

29

Data Flow Nodes

30

Dataflow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T



Dataflow Graphs

{x = a + b;
y = b * 7
in

(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

33

OUT

Control Flow vs. Data Flow

34

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential instruction stream

 No program counter

 Execution triggered by the presence/readiness of data

 Operations execute asynchronously

35

A Dataflow Processor

36

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

 Success: Both
tokens forwarded

 Fail: Incoming
token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

37

TTDA Data Flow Example

38

TTDA Data Flow Example

39

TTDA Data Flow Example

40

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set 

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

41

Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Debugging very difficult

 Interrupt/exception handling is difficult

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult

42

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

43

Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,”
ISCA 1986.

44

