18-447
Computer Architecture

Lecture 15: Load/Store Handling
and Data Flow

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 2/21/2014

Lab 4 Heads Up

Lab 4a out
o Branch handling and branch predictors

Lab 4b will be out soon
o Fine-grained multithreading

Due March 21st

You have 4 weeks!

Get started very early — Exam and S. Break are on the way
Finish Lab 4a first and check off

Finish Lab 4b next and check off

Do the extra credit

Lab 2 Extra Credit Recognition

1. Albert Cho (260/263)

2. Bailey Forrest (252/263)
3. Jeremie Kim (248/263)
4. Clement Loh (240/263)
5. Xiang Lin (184/263)

Readings Specifically for Today

Smith and Sohi, “"The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro
1999.

Readings for Next Lecture

SIMD Processing
Basic GPU Architecture
Other execution models: VLIW, Dataflow

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

Stay tuned for more readings...

Review: Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

v
S
R
C E Integer add A
H Integer mul O
F D E E |E |E |E IR W
D FP mul o
U >E |E |E |E |E |E |E |E c
. R
E E | E |E |E|E|E|E|E]|.. .~
Load/store
In order out of order In order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

Review: Summary ot OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch

OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?

Datatlow Graph for Our Example

MUL R3 € R1, R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7, R10
ADD RS5 € R5,R11

State of RAT and RS in Cycle 7

end of oydle =

v vehe a - —

Ie-’lt: | L { 7 :~Z‘ ;(l~’| 1| ~ L’
k21| ~ SN c Ht- g 1|~ 179 ~ |lo
L A dpq~oy~y e
b oAl T A ¥
rslo] d | ~ r7
eIl ~ | &
RE || —~ @
Rt] ~ 1 9
M.O C A
gan] Yy 1=

2 Al £ msindess yereved .
— Ncle whd- hopperd v RS

10

Dataflow Graph

AOO R3 Ry — RS (o)
ADD R RE — RF (b)
AL R8,RG — R0 ()
moL. R} RIC — R [Y)

Dataftions oaph
Ncdee: gpohions pofrmed oy 1ic
msirud-son
AEs s fass i Temesole's algefimg
2l Ré Rg
R2- 7]
o b P
= R10 (&)
x)
+
%9
(a)

RS [d

11

Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

o ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence
Each instruction specifies "who” should receive the result

An instruction can “fire” whenever all operands are received
12

Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take single cycle?

a Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?

o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Active/instruction window size: determined by both scheduling
window and reorder buffer size

13

Registers versus Memory, Revisited

So far, we considered register based value communication
between instructions

What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)

14

Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known
until a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

15

Memory Dependence Handling (1)

When do you schedule a load instruction in an OOO engine?

a Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

16

Handling of Store-l.oad Dependencies

A load’ s dependence status is not known until all previous store
addresses are available.

How does the OO0 engine detect dependence of a load instruction on a
previous store?

o Option 1: Wait until all previous stores committed (no need to
check)

o Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

o Option 1: Assume load dependent on all previous stores
o Option 2: Assume load independent of all previous stores
o Option 3: Predict the dependence of a load on an outstanding store

17

Memory Disambiguation (I)

Option 1: Assume load dependent on all previous stores

+ No need for recovery
-- Too conservative: delays independent loads unnecessarily

Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads
-- Requires recovery and re-execution of load and dependents on misprediction

Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction
o Alpha 21264 : Initially assume load independent, delay loads found to be dependent

o Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

o Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

18

Memory Disambiguation (II)

Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

IPC
O = NWAGO O N

compress [
- petl scr =
sSwim
tomcatv
turb3d T
vortex
wave

‘A no speculatlon B naive sﬁécullation.." ;;erfect

Predicting store-load dependencies important for performance

Simple predictors (based on past history) can achieve most of
the potential performance

19

Food for Thought for You

Many other design choices

Should reservation stations be centralized or distributed
across functional units?

o What are the tradeoffs?

Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

o What are the tradeoffs?

Exactly when does an instruction broadcast its tag?

20

More Food for Thought for You

How can you implement branch prediction in an out-of-
order execution machine?

o Think about branch history register and PHT updates

a Think about recovery from mispredictions
= How to do this fast?

How can you combine superscalar execution with out-of-
order execution?

a These are different concepts
o Concurrent renaming of instructions
o Concurrent broadcast of tags

How can you combine superscalar + out-of-order + branch
prediction?

21

Recommended Readings

Out-of-order execution processor designs

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

Boggs et al., "The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

Yeager, "The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

Tendler et al., "POWER4 system microarchitecture,” IBM

Journal of Research and Development, January 2002.
22

And More Readings...

Stark et al., "On Pipelining Dynamic Scheduling Logic,”
MICRO 2000.

Brown et al., "Select-free Instruction Scheduling Logic,”
MICRO 2001.

Palacharla et al., "Complexity-effective Superscalar
Processors,” ISCA 1997.

23

Other Approaches to Concurrency
(or Instruction Level Parallelism)

Approaches to (Instruction-l.evel) Concurrency

Pipelining

Out-of-order execution

Dataflow (at the ISA level)

SIMD Processing (Vector and array processors, GPUs)
VLIW

Decoupled Access Execute
Systolic Arrays

25

Data Flow:
Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

end of oydle =

\ vehe. a _— g ' *
Ie-’lt: | L { 7 :~Z‘ ;(l~’| 1| ~ L’
R2[(V| ~ PV TR e - e Il ~179 ~ |lo
$AOLX L~ | gl e [~ ey =T Y =
R" "’_‘1,_ 5
rslo] d | ~
e |1 | ~ 6
R+10] L |~ + /
RE || —~ Q
R9lt] ~ 1 9
M.O C Ar
eNie] Y | ~

2 Al £ msindess yereved .
— Ncle whd- hopperd v RS

Remember: Dataflow Graph

D“bﬁm)ﬁaﬁph
Ncdee: gpohions pofrmed oy 1ic

MUL. RJ ,R2—2 R (X)

AO0 RE Ry —> rG (o)
ADD RZ,RE — RF (b) msirudsen ‘
A—OD" RS,&‘i —)Q‘lO[c,\ Afcs: +O.§,$ m T&‘V\oéulos also«ﬂ-w»,
moL. R3F RI0 — R [Y)
ADD RS,RA| — RS (4) o R2- RE RE g
i ol N :
3 RI10 (&)
(x)
+
RS
(a)

RS [N

Review: More on Data Flow

In a data flow machine, a program consists of data flow
nodes

o A data flow node fires (fetched and executed) when all it
inputs are ready

i.e. when all inputs have tokens

Data flow node and its ISA representation

S % R ARG1 R ARG2 Dest. Of Result

29

Data Flow Nodes

X |

% Conditional .
(= = (=)
N

10\' 7
* Relational ((5
=
éRUE
l
¢

*Barrier Synch t t
Vo

30

Datatlow Nodes (II)

A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops Switch Merge
A *(i) T T ?
U
A g s
?

+

Datatlow Graphs

{

>
1

+ b;
*f

mR

(X-y) * (x+y)}

Values in dataflow graphs are
represented as tokens

—

—
—
—

X

. =S
token <ip,p,V> 0= L y
N _

/
instruction ptr port data

An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

|

1

+

3

no separate control flow

Example Data Flow Program

OuT

33

Control Flow vs. Data Flow

a:“x+}r
b:=a XxXa
c:=4—a

o B =

"'\

c -
i]
[}]

ngramwemmy Memory
¥V .f’.\\' : ¥

e

b I

i
X| &
i
—1 4

Figure 2. A comparison of control flow and dataflow programs. On the
left a control flow program for a computer with memory-to-memory
instructions. The arcs point to the locations of data that are to be used or
created. Control flow arcs are indicated with dashed arrows; usually most
of them are implicit. In the equivalent dataflow program on the right only
one memory is involved. Each instruction contains pointers to all instruc-
tions that consume its results.

34

Data Flow Characteristics

Data-driven execution of instruction-level graphical code
o Nodes are operators

o Arcs are data (I/0)

o As opposed to control-driven execution

Only real dependencies constrain processing

No sequential instruction stream
o No program counter

Execution triggered by the presence/readiness of data
Operations execute asynchronously

35

A Dataflow Processor

Token =

l

Matching
Area

1
i

Instruction
Fetch Area

|

Data1 + Tag + Destination

.~
.
~
.

Pool of
Unmatched Tokens

I\
N \New One

N\ \

Execution Package = Data1 + Data2 + 05Code“,

|

+Tag + Destination

Data Flow
Proc. Element

l

Token = Data + Tag + Destination

36

MIT Tagged Token Data Flow Architecture

= Wait—Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

o Success: Both
tokens forwarded

o Fail: Incoming
token ——>
Waiting Token
Mem, bubble (no-

From network op forwarded)

To network

37

TTDA Data Flow Example

Conceptual

|
My, o

Encoding of token:
A "packet" containing:

] Iﬁ_]

=0 =

Encoding of graph

Program memory:

Re-entrancy ("dynamic" dataflow):

® Each invocation of a function or loop iteration gets
its own, unique, "Context"

® Tokens destined for same instruction in different
invocations are distinguished by a context identifier

120R Destination instruction address, Left/Right port
Ctxt Context Identifier

E-:Ed-e Destination(s)
109 [opl [120L |
113 [op2 | 120R |
120 [+ 141, 159
141 [op3 |
159 [opd | ..., |

6.847 Value

120R Destination instruction address, Left/Right port

6.847 Value

38

TTDA Data Flow Example

120R,c, 6.847

120L,c, 6.001
120,c, 6.001,6.847

141,159L,c, +,6.001,6.847

o

141,159L,c, 12.848

e |

1-!41,.!:‘.*.I 12.848
159L,c, 12.848

39

TTDA Data Flow Example

200,c, A
Conceptual:
Heap Memory
200,c, A
207,c, Fetch,A -

Encoding of graph:

Program memory:

Opcode Destination(s) 207,c, v Fetch, A, 207,c
200 [Fefch| 207] reteh, A, 207.¢ mr:.c, v
N C el)
207 1 - T *
Fetch, A, 207,c 207,¢, v

Manchester Data Flow Machine

Manchester

- v

|

Token

| Queue

Matching

|

Store

L

Overflow
Unit

J

l

v
Node

Store

Matching Store: Pairs
together tokens
destined for the same
Instruction

Large data set >
overflow in overflow
unit

Paired tokens fetch the

appropriate instruction
from the node store

41

Data Flow Advantages/Disadvantages

Advantages

a Very good at exploiting irregular parallelism
o Only real dependencies constrain processing

Disadvantages

o No precise state
Debugging very difficult
Interrupt/exception handling is difficult

o Bookkeeping overhead (tag matching)

o Too much parallelism? (Parallelism control needed)
Overflow of tag matching tables

o Implementing dynamic data structures difficult

42

Data Flow Summary

Availability of data determines order of execution
A data flow node fires when its sources are ready
Programs represented as data flow graphs (of nodes)

Data Flow at the ISA level has not been (as) successful

Data Flow implementations under the hood (while

preserving sequential ISA semantics) have been very
successful

o Out of order execution

o Hwu and Patt, "HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

43

Further Reading on Data Flow

ISA level dataflow

Gurd et al., "The Manchester prototype dataflow
computer,” CACM 1985.

Microarchitecture-level dataflow:

Hwu and Patt, “"HPSm, a high performance restricted
data flow architecture having minimal functionality,”
ISCA 1986.

44

