
18-447

Computer Architecture

Lecture 14: Out-of-Order Execution

(Dynamic Instruction Scheduling)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/19/2014

Announcements

 Lab due Friday (Feb 21)

 Homework 3 due next Wednesday (Feb 26)

 Exam coming up (before Spring Break)

2

Reminder: Lab Late Day Policy Adjustment

 Your total late days have increased to 7

 Each late day beyond all exhausted late days costs you
15% of the full credit of the lab

3

Reminder: A Note on Testing Your Code

 Testing is critical in developing any system

 You are responsible for creating your own test programs
and ensuring your designs work for all possible cases

 That is how real life works also…

 Noone gives you all possible test cases, workloads, users, etc.
beforehand

4

Readings for Past Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 5

Readings for Past Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

6

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

7

Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

 Stay tuned for more readings…

8

Maintaining Precise State

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Readings

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

9

Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

10

Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry

 When store address and data become available: Record in store
buffer entry

 When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

11

Out-of-Order Execution

(Dynamic Instruction Scheduling)

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

13

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?

 What do the following two pieces of code have in common
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture

14

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5

LD R3  R1 (0)

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5

Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)

15

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones

 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

16

In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
17

F D W E E E E R

F D E R W

F

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5
D E R W

F D E R W

F D E R W

F D W E E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU

18

Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

 19

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

20

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

 21

Tomasulo’s Machine: IBM 360/91

22

FP FU FP FU

from memory

load

buffers

from instruction unit
 FP registers

store buffers

to memory

operation bus

reservation

stations

Common data bus

Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value

 Register ID  RS entry ID

 Architectural register ID  Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of
registers even though ISA has a small number

23

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

24

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1

1

1

1

1

1

1

1

1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!

25

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

26

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

F D E W

Exercise Continued

27

Exercise Continued

28

Exercise Continued

29

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

How It Works

30

Cycle 0

31

Cycle 2

32

33

Cycle 3

Cycle 4

34

Cycle 7

35

Cycle 8

36

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

37

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a
future file) when it completes execution

 An instruction updates the architectural register file when it
is the oldest in the machine and has completed execution

38

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

39

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

40

Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

41

OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

42

Dataflow Graph for Our Example

43

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

State of RAT and RS in Cycle 7

44

Dataflow Graph

45

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received

46

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by register file,
scheduling window, reorder buffer

 47

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

48

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

49

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

50

Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to
check)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

51

Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

 + No need for recovery

 -- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

 + Simple and can be common case: no delay for independent loads

 -- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

 + More accurate. Load store dependencies persist over time

 -- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

52

Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

53

Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …
54

More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

55

Recommended Readings

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

56

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

 Pipelining

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing

 VLIW

 Systolic Arrays

 Decoupled Access Execute

58

Data Flow:

Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

60

Remember: Dataflow Graph

61

Review: More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

62

Data Flow Nodes

63

Dataflow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T



Dataflow Graphs

{x = a + b;
 y = b * 7
in
 (x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

66

OUT

Control Flow vs. Data Flow

67

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential I-stream

 No program counter

 Operations execute asynchronously

 Execution triggered by the presence of data

68

A Dataflow Processor

69

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

 Success: Both
tokens forwarded

 Fail: Incoming
token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

70

TTDA Data Flow Example

71

TTDA Data Flow Example

72

TTDA Data Flow Example

73

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set 

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

74

Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Interrupt/exception handling is difficult

 Debugging very difficult

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult

75

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

76

Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,”
ISCA 1986.

77

Vector Processing:

Exploiting Regular (Data) Parallelism

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

79

Data Parallelism

 Concurrency arises from performing the same operations
on different pieces of data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in
a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in
parallel

 SIMD exploits instruction-level parallelism

 Multiple instructions concurrent: instructions happen to be the same

80

SIMD Processing

 Single instruction operates on multiple data elements

 In time or in space

 Multiple processing elements

 Time-space duality

 Array processor: Instruction operates on multiple data
elements at the same time

 Vector processor: Instruction operates on multiple data
elements in consecutive time steps

81

Array vs. Vector Processors

82

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

 VLIW

83

SIMD Array Processing vs. VLIW

 Array processor

84

Vector Processors

 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

 C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

 Basic requirements

 Need to load/store vectors  vector registers (contain vectors)

 Need to operate on vectors of different lengths  vector length
register (VLEN)

 Elements of a vector might be stored apart from each other in
memory  vector stride register (VSTR)

 Stride: distance between two elements of a vector

85

Vector Processors (II)

 A vector instruction performs an operation on each element
in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies  no hardware interlocking

within a vector

 No control flow within a vector

 Known stride allows prefetching of vectors into cache/memory

86

Vector Processor Advantages

+ No dependencies within a vector

 Pipelining, parallelization work well

 Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

 Reduces instruction fetch bandwidth

+ Highly regular memory access pattern

 Interleaving multiple banks for higher memory bandwidth

 Prefetching

+ No need to explicitly code loops

 Fewer branches in the instruction sequence

87

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

 ++ Vector operations

 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

88 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

 1. compute/memory operation balance is not maintained

 2. data is not mapped appropriately to memory banks

89

Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

 e.g., VMASK[i] = (V
k
[i] == 0)

 Maximum VLEN can be N

 Maximum number of elements stored in a vector register

90

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

 Use deep pipeline (=> fast
clock) to execute element
operations

 Simplifies control of deep
pipeline because elements in
vector are independent

91

V
1

V
2

V
3

V3 <- v1 * v2

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

92

Memory Banking

 Example: 16 banks; can start one bank access per cycle

 Bank latency: 11 cycles

 Can sustain 16 parallel accesses if they go to different banks

93

Bank

0

Bank

1

MDR MAR

Bank

2

Bank

15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU

Slide credit: Derek Chiou

Vector Memory System

94

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Bas
e

Stride
Vector Registers

Memory Banks

Address
Generator

Slide credit: Krste Asanovic

Scalar Code Example

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Scalar code

 MOVI R0 = 50 1

 MOVA R1 = A 1

 MOVA R2 = B 1

 MOVA R3 = C 1

X: LD R4 = MEM[R1++] 11 ;autoincrement addressing

 LD R5 = MEM[R2++] 11

 ADD R6 = R4 + R5 4

 SHFR R7 = R6 >> 1 1

 ST MEM[R3++] = R7 11

 DECBNZ --R0, X 2 ;decrement and branch if NZ

 95

304 dynamic instructions

Scalar Code Execution Time

96

 Scalar execution time on an in-order processor with 1 bank

 First two loads in the loop cannot be pipelined: 2*11 cycles

 4 + 50*40 = 2004 cycles

 Scalar execution time on an in-order processor with 16
banks (word-interleaved)

 First two loads in the loop can be pipelined

 4 + 50*30 = 1504 cycles

 Why 16 banks?

 11 cycle memory access latency

 Having 16 (>11) banks ensures there are enough banks to
overlap enough memory operations to cover memory latency

Vectorizable Loops

 A loop is vectorizable if each iteration is independent of any
other

 For I = 0 to 49

 C[i] = (A[i] + B[i]) / 2

 Vectorized loop:

 MOVI VLEN = 50 1

 MOVI VSTR = 1 1

 VLD V0 = A 11 + VLN - 1

 VLD V1 = B 11 + VLN – 1

 VADD V2 = V0 + V1 4 + VLN - 1

 VSHFR V3 = V2 >> 1 1 + VLN - 1

 VST C = V3 11 + VLN – 1

97

7 dynamic instructions

Vector Code Performance

 No chaining

 i.e., output of a vector functional unit cannot be used as the
input of another (i.e., no vector data forwarding)

 One memory port (one address generator)

 16 memory banks (word-interleaved)

 285 cycles

98

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

Vector Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

99

Memory

V
1

Load
Unit

Mult.

V
2

V
3

Chain

Add

V
4

V
5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Slide credit: Krste Asanovic

Vector Code Performance - Chaining

 Vector chaining: Data forwarding from one vector
functional unit to another

 182 cycles

100

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be

pipelined. WHY?

VLD and VST cannot be

pipelined. WHY?

Strict assumption:

Each memory bank

has a single port

(memory bandwidth

bottleneck)

Vector Code Performance – Multiple Memory Ports

 Chaining and 2 load ports, 1 store port in each bank

 79 cycles

101

1 1 11 49

4 49

1 49

11 49

11 491

Questions (I)

 What if # data elements > # elements in a vector register?

 Need to break loops so that each iteration operates on #
elements in a vector register

 E.g., 527 data elements, 64-element VREGs

 8 iterations where VLEN = 64

 1 iteration where VLEN = 15 (need to change value of VLEN)

 Called vector stripmining

 What if vector data is not stored in a strided fashion in
memory? (irregular memory access to a vector)

 Use indirection to combine elements into vector registers

 Called scatter/gather operations

102

Gather/Scatter Operations

103

Want to vectorize loops with indirect accesses:

for (i=0; i<N; i++)

 A[i] = B[i] + C[D[i]]

Indexed load instruction (Gather)

LV vD, rD # Load indices in D vector

LVI vC, rC, vD # Load indirect from rC base

LV vB, rB # Load B vector

ADDV.D vA,vB,vC # Do add

SV vA, rA # Store result

Gather/Scatter Operations

 Gather/scatter operations often implemented in hardware
to handle sparse matrices

 Vector loads and stores use an index vector which is added
to the base register to generate the addresses

104

Index Vector Data Vector Equivalent

 1 3.14 3.14

 3 6.5 0.0

 7 71.2 6.5

 8 2.71 0.0

 0.0

 0.0

 0.0

 71.2

 2.7

Conditional Operations in a Loop

 What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?
loop: if (a[i] != 0) then b[i]=a[i]*b[i]

 goto loop

 Idea: Masked operations

 VMASK register is a bit mask determining which data element
should not be acted upon

 VLD V0 = A

 VLD V1 = B

 VMASK = (V0 != 0)

 VMUL V1 = V0 * V1

 VST B = V1

 Does this look familiar? This is essentially predicated execution.

 105

Another Example with Masking

106

for (i = 0; i < 64; ++i)

 if (a[i] >= b[i]) then c[i] = a[i]

 else c[i] = b[i]

A B VMASK

1 2 0

2 2 1

3 2 1

4 10 0

-5 -4 0

0 -3 1

6 5 1

-7 -8 1

Steps to execute loop

1. Compare A, B to get

 VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Masked Vector Instructions

107

C[4]

C[5]

C[1]

Write data port

A[7] B[7]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

M[7]=1

 Density-Time Implementation

– scan mask vector and only execute
elements with non-zero masks

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

M[3]=0

M[4]=1

M[5]=1

M[6]=0

M[2]=0

M[1]=1

M[0]=0

Write data port Write Enable

A[7] B[7] M[7]=1

 Simple Implementation

– execute all N operations, turn off
result writeback according to mask

Slide credit: Krste Asanovic

Some Issues

 Stride and banking

 As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, consecutive
accesses proceed in parallel

 Storage of a matrix

 Row major: Consecutive elements in a row are laid out
consecutively in memory

 Column major: Consecutive elements in a column are laid out
consecutively in memory

 You need to change the stride when accessing a row versus
column

108

109

Array vs. Vector Processors, Revisited

 Array vs. vector processor distinction is a “purist’s”
distinction

 Most “modern” SIMD processors are a combination of both

 They exploit data parallelism in both time and space

110

Remember: Array vs. Vector Processors

111

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Instruction Execution

112

ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Vector Unit Structure

113

Lane

Functional Unit

Vector
Registers

Memory Subsystem

Elements 0,
4, 8, …

Elements 1,
5, 9, …

Elements 2,
6, 10, …

Elements 3,
7, 11, …

Slide credit: Krste Asanovic

Vector Instruction Level Parallelism

Can overlap execution of multiple vector instructions
 example machine has 32 elements per vector register and 8 lanes

 Complete 24 operations/cycle while issuing 1 short instruction/cycle

114

load

load
mul

mul

add

add

Load Unit Multiply Unit Add Unit

time

Instruction
issue

Slide credit: Krste Asanovic

Automatic Code Vectorization

115

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vectorization is a compile-time reordering of
operation sequencing
 requires extensive loop dependence analysis

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

Vector/SIMD Processing Summary

 Vector/SIMD machines good at exploiting regular data-level
parallelism

 Same operation performed on many data elements

 Improve performance, simplify design (no intra-vector
dependencies)

 Performance improvement limited by vectorizability of code

 Scalar operations limit vector machine performance

 Amdahl’s Law

 CRAY-1 was the fastest SCALAR machine at its time!

 Many existing ISAs include (vector-like) SIMD operations

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD

116

SIMD Operations in Modern ISAs

Intel Pentium MMX Operations

 Idea: One instruction operates on multiple data elements
simultaneously

 Ala array processing (yet much more limited)

 Designed with multimedia (graphics) operations in mind

118

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”

IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride always equal to 1.

MMX Example: Image Overlaying (I)

119

MMX Example: Image Overlaying (II)

120

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

High-Level View of a GPU

122

Concept of “Thread Warps” and SIMT

 Warp: A set of threads that execute the same instruction
(on different data elements)  SIMT (Nvidia-speak)

 All threads run the same kernel
 Warp: The threads that run lengthwise in a woven fabric …

123

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Loop Iterations as Threads

124

for (i=0; i < N; i++)

 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

T
im

e

Slide credit: Krste Asanovic

 Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, blockDim=4  4 blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Sample GPU Program (Less Simplified)

127 Slide credit: Hyesoon Kim

Latency Hiding with “Thread Warps”

 Warp: A set of threads that
execute the same instruction
(on different data elements)

 Fine-grained multithreading

 One instruction per thread in
pipeline at a time (No branch
prediction)

 Interleave warp execution to
hide latencies

 Register values of all threads stay
in register file

 No OS context switching

 Memory latency hiding

 Graphics has millions of pixels

128

Decode

R
 F

R
 F

R
 F

A
 L U

A
 L U

A
 L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp-based SIMD vs. Traditional SIMD
 Traditional SIMD contains a single thread

 Lock step

 Programming model is SIMD (no threads)  SW needs to know vector

length

 ISA contains vector/SIMD instructions

 Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

 Does not have to be lock step

 Each thread can be treated individually (i.e., placed in a different
warp)  programming model not SIMD

 SW does not need to know vector length

 Enables memory and branch latency tolerance

 ISA is scalar  vector instructions formed dynamically

 Essentially, it is SPMD programming model implemented on SIMD
hardware

129

SPMD
 Single procedure/program, multiple data

 This is a programming model rather than computer organization

 Each processing element executes the same procedure, except on
different data elements

 Procedures can synchronize at certain points in program, e.g. barriers

 Essentially, multiple instruction streams execute the same
program

 Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

 Many scientific applications programmed this way and run on MIMD
computers (multiprocessors)

 Modern GPUs programmed in a similar way on a SIMD computer

130

Branch Divergence Problem in Warp-based SIMD

 SPMD Execution on SIMD Hardware

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”)

execution

131

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMD

 GPU uses SIMD
pipeline to save area
on control logic.

 Group scalar threads into
warps

 Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

132

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

Branch Divergence Handling (I)

133

- G 1111 TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread

2

Thread

3

Thread

4

Thread

1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111 TOS
E D 0110
E C 1001 TOS

- E 1111
E D 0110 TOS
- E 1111

A D G A

Time

C B E

- B 1111 TOS - E 1111 TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001 TOS

- E 1111

Slide credit: Tor Aamodt

Branch Divergence Handling (II)

134

A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;

if (some condition) {

 B;

} else {

 C;

}

D;
TOS

D

1

1

1

1

A

0

0

0

1

C

1

1

1

0

B

1

1

1

1

D

Time

Execution Sequence

Slide credit: Tor Aamodt

Dynamic Warp Formation

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Form new warp at divergence

 Enough threads branching to each path to create full new
warps

135

Dynamic Warp Formation/Merging

 Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

136

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

137

A A B B G G A A C C D D E E F F

Time

A A B B G G A A C D E E F

Time

A
x/1111
y/1111

B
x/1110
y/0011

C
x/1000
y/0010 D

x/0110
y/0001 F

x/0001
y/1100

E
x/1110
y/0011

G
x/1111
y/1111

A new warp created from scalar

threads of both Warp x and y

executing at Basic Block D

D

Execution of Warp x

at Basic Block A

Execution of Warp y

at Basic Block A

Legend
A A

Baseline

Dynamic

Warp

Formation

Slide credit: Tor Aamodt

What About Memory Divergence?

 Modern GPUs have caches

 Ideally: Want all threads in the warp to hit (without
conflicting with each other)

 Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

 Need techniques to

 Tolerate memory divergence

 Integrate solutions to branch and memory divergence

138

NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

139
Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

140

…

= instruction stream decode = SIMD functional unit, control

 shared across 8 units

= execution context storage = multiply-add

= multiply

64 KB of storage

for fragment

contexts (registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

141

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

142

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

 Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD? Multiple instructions operate on single data element

 Closest form: systolic array processor?

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

144

SISD Parallelism Extraction Techniques

 We have already seen

 Superscalar execution

 Out-of-order execution

 Are there simpler ways of extracting SISD parallelism?

 VLIW (Very Long Instruction Word)

 Decoupled Access/Execute

145

VLIW

VLIW (Very Long Instruction Word)

 A very long instruction word consists of multiple
independent instructions packed together by the compiler

 Packed instructions can be logically unrelated (contrast with
SIMD)

 Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

 Traditional Characteristics

 Multiple functional units

 Each instruction in a bundle executed in lock step

 Instructions in a bundle statically aligned to be directly fed
into the functional units

147

VLIW Concept

 Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

 ELI: Enormously longword instructions (512 bits)
148

SIMD Array Processing vs. VLIW

 Array processor

149

VLIW Philosophy

 Philosophy similar to RISC (simple instructions and hardware)

 Except multiple instructions in parallel

 RISC (John Cocke, 1970s, IBM 801 minicomputer)

 Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

 And, to reorder simple instructions for high performance

 Hardware does little translation/decoding  very simple

 VLIW (Fisher, ISCA 1983)

 Compiler does the hard work to find instruction level parallelism

 Hardware stays as simple and streamlined as possible

 Executes each instruction in a bundle in lock step

 Simple  higher frequency, easier to design
150

VLIW Philosophy (II)

151 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

 Cydrome Cydra 5, Bob Rau

 Transmeta Crusoe: x86 binary-translated into internal VLIW

 TI C6000, Trimedia, STMicro (DSP & embedded processors)

 Most successful commercially

 Intel IA-64

 Not fully VLIW, but based on VLIW principles

 EPIC (Explicitly Parallel Instruction Computing)

 Instruction bundles can have dependent instructions

 A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

152

VLIW Tradeoffs

 Advantages

+ No need for dynamic scheduling hardware  simple hardware

+ No need for dependency checking within a VLIW instruction 

simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units  simple hardware

 Disadvantages

-- Compiler needs to find N independent operations

 -- If it cannot, inserts NOPs in a VLIW instruction

 -- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

 -- No instruction can progress until the longest-latency instruction completes

153

VLIW Summary

 VLIW simplifies hardware, but requires complex compiler
techniques

 Solely-compiler approach of VLIW has several downsides
that reduce performance

-- Too many NOPs (not enough parallelism discovered)

-- Static schedule intimately tied to microarchitecture

 -- Code optimized for one generation performs poorly for next

-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

 Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP

154

DAE

Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to
implement

 1980s before HPS, Pentium Pro

 Idea: Decouple operand

 access and execution via

 two separate instruction

 streams that communicate

 via ISA-visible queues.

 Smith, “Decoupled Access/Execute

 Computer Architectures,” ISCA 1982,

 ACM TOCS 1984.

 156

Decoupled Access/Execute (II)

 Compiler generates two instruction streams (A and E)
 Synchronizes the two upon control flow instructions (using branch queues)

157

Decoupled Access/Execute (III)

 Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

 + If A takes a cache miss, E can perform useful work

 + If A hits in cache, it supplies data to lagging E

 + Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

 -- Compiler support to partition the program and manage queues

 -- Determines the amount of decoupling

 -- Branch instructions require synchronization between A and E

 -- Multiple instruction streams (can be done with a single one,
though)

158

Astronautics ZS-1

 Single stream
steered into A and
X pipelines

 Each pipeline in-
order

 Smith et al., “The

ZS-1 central
processor,”
ASPLOS 1987.

 Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

159

Astronautics ZS-1 Instruction Scheduling

 Dynamic scheduling

 A and X streams are issued/executed independently

 Loads can bypass stores in the memory unit (if no conflict)

 Branches executed early in the pipeline

 To reduce synchronization penalty of A/X streams

 Works only if the register a branch sources is available

 Static scheduling

 Move compare instructions as early as possible before a branch

 So that branch source register is available when branch is decoded

 Reorder code to expose parallelism in each stream

 Loop unrolling:

 Reduces branch count + exposes code reordering opportunities

 160

Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size

161

Systolic Arrays

162

Why Systolic Architectures?

 Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

 Similar to an assembly line

 Different people work on the same car

 Many cars are assembled simultaneously

 Can be two-dimensional

 Why? Special purpose accelerators/architectures need

 Simple, regular designs (keep # unique parts small and regular)

 High concurrency  high performance

 Balanced computation and I/O (memory access)

163

Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

164

Memory: heart

PEs: cells

Memory pulses

data through

cells

Systolic Architectures

 Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a
piece of the instruction)

165

Systolic Computation Example

 Convolution

 Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

 Many image processing tasks

166

Systolic Computation Example: Convolution

 y1 = w1x1 +
w2x2 + w3x3

 y2 = w1x2 +
w2x3 + w3x4

 y3 = w1x3 +
w2x4 + w3x5

167

Systolic Computation Example: Convolution

 Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

168

 Each PE in a systolic array

 Can store multiple “weights”

 Weights can be selected on the fly

 Eases implementation of, e.g., adaptive filtering

 Taken further

 Each PE can have its own data and instruction memory

 Data memory  to store partial/temporary results, constants

 Leads to stream processing, pipeline parallelism

 More generally, staged execution

169

More Programmability

Pipeline Parallelism

170

File Compression Example

171

Systolic Array

 Advantages

 Makes multiple uses of each data item  reduced need for

fetching/refetching

 High concurrency

 Regular design (both data and control flow)

 Disadvantages

 Not good at exploiting irregular parallelism

 Relatively special purpose  need software, programmer

support to be a general purpose model

172

The WARP Computer

 HT Kung, CMU, 1984-1988

 Linear array of 10 cells, each cell a 10 Mflop programmable
processor

 Attached to a general purpose host machine

 HLL and optimizing compiler to program the systolic array

 Used extensively to accelerate vision and robotics tasks

 Annaratone et al., “Warp Architecture and
Implementation,” ISCA 1986.

 Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

173

The WARP Computer

174

The WARP Computer

175

Systolic Arrays vs. SIMD

 Food for thought…

176

Some More Recommended Readings

 Recommended:

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983.

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

 Russell, “The CRAY-1 computer system,” CACM 1978.

 Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.

 Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.

177

