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Announcements 

 Lab due Friday (Feb 21) 

 

 Homework 3 due next Wednesday (Feb 26) 

 

 Exam coming up (before Spring Break) 
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Reminder: Lab Late Day Policy Adjustment 

 Your total late days have increased to 7 

 

 Each late day beyond all exhausted late days costs you 
15% of the full credit of the lab  
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Reminder: A Note on Testing Your Code 

 Testing is critical in developing any system 

 

 You are responsible for creating your own test programs 
and ensuring your designs work for all possible cases 

 

 That is how real life works also…  

 Noone gives you all possible test cases, workloads, users, etc. 
beforehand 
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Readings for Past Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993. 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Past Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985). 
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Readings Specifically for Today 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Next Lecture 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, Dataflow 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 

 

 Stay tuned for more readings… 
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Maintaining Precise State 

 Reorder buffer 

 

 History buffer 

 

 Future register file 

 

 Checkpointing 

 

 Readings 

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985. 

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987. 

9 



Registers versus Memory 

 So far, we considered mainly registers as part of state 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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Maintaining Speculative Memory State: Stores 

 Handling out-of-order completion of memory operations 

 UNDOing a memory write more difficult than UNDOing a 
register write. Why? 

 One idea: Keep store address/data in reorder buffer 

 How does a load instruction find its data? 

 Store/write buffer: Similar to reorder buffer, but used only for 
store instructions 

 Program-order list of un-committed store operations 

 When store is decoded: Allocate a store buffer entry  

 When store address and data become available: Record in store 
buffer entry 

 When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data 
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Out-of-Order Execution 

(Dynamic Instruction Scheduling) 

 

 

 

 

 



An In-order Pipeline 

 Problem: A true data dependency stalls dispatch of younger 
instructions into functional (execution) units 

 Dispatch: Act of sending an instruction to a functional unit 
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Can We Do Better? 

 What do the following two pieces of code have in common 
(with respect to execution in the previous design)? 

 

 

 

 

 Answer: First ADD stalls the whole pipeline! 

 ADD cannot dispatch because its source registers unavailable 

 Later independent instructions cannot get executed 

 

 How are the above code portions different? 

 Answer: Load latency is variable (unknown until runtime) 

 What does this affect? Think compiler vs. microarchitecture 
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IMUL  R3  R1, R2 

ADD   R3  R3, R1 

ADD   R1  R6, R7 

IMUL  R5  R6, R8 

ADD   R7  R3, R5 

LD      R3  R1 (0) 

ADD   R3  R3, R1 

ADD   R1  R6, R7 

IMUL  R5  R6, R8 

ADD   R7  R3, R5 



Preventing Dispatch Stalls 

 Multiple ways of doing it 

 You have already seen THREE: 

 1. Fine-grained multithreading 

 2. Value prediction 

 3. Compile-time instruction scheduling/reordering 

 What are the disadvantages of the above three? 

 

 Any other way to prevent dispatch stalls? 

 Actually, you have briefly seen the basic idea before 

 Dataflow: fetch and “fire” an instruction when its inputs are 
ready 

 Problem: in-order dispatch (scheduling, or execution) 

 Solution: out-of-order dispatch (scheduling, or execution) 
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Out-of-order Execution (Dynamic Scheduling) 

 Idea: Move the dependent instructions out of the way of 
independent ones  

 Rest areas for dependent instructions: Reservation stations  

 

 Monitor the source “values” of each instruction in the 
resting area 

 When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction 

 Instructions dispatched in dataflow (not control-flow) order  

 

 Benefit: 

 Latency tolerance: Allows independent instructions to execute 
and complete in the presence of a long latency operation 

16 



In-order vs. Out-of-order Dispatch 

 In order dispatch + precise exceptions: 

 

 

 

 

 

 Out-of-order dispatch + precise exceptions: 

 

 

 

 

 

 16 vs. 12 cycles 
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Enabling OoO Execution 

1. Need to link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  

2. Need to buffer instructions until they are ready to execute 

 Insert instruction into reservation stations after renaming  

3. Instructions need to keep track of readiness of source values 

 Broadcast the “tag” when the value is produced 

 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

4. When all source values of an instruction are ready, need to 
dispatch the instruction to its functional unit (FU) 

 Instruction wakes up if all sources are ready 

 If multiple instructions are awake, need to select one per FU 
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Tomasulo’s Algorithm 

 OoO with register renaming invented by Robert Tomasulo 

 Used in IBM 360/91 Floating Point Units 

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of R&D, Jan. 1967. 

 

 What is the major difference today? 

 Precise exceptions: IBM 360/91 did NOT have this 

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 

 

 Variants used in most high-performance processors 

 Initially in Intel Pentium Pro, AMD K5   
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15 
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Two Humps in a  Modern Pipeline 

 

 

 

 

 

 

 

 

 

 Hump 1: Reservation stations (scheduling window) 

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window) 
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General Organization of an OOO Processor 

 

 

 

 

 

 

 

 

 

 

 
 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 

1995. 
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Tomasulo’s Machine: IBM 360/91 
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Register Renaming 

 Output and anti dependencies are not true dependencies 

 WHY? The same register refers to values that have nothing to 
do with each other 

 They exist because not enough register ID’s (i.e. 
names) in the ISA 

 The register ID is renamed to the reservation station entry 
that will hold the register’s value 

 Register ID  RS entry ID 

 Architectural register ID  Physical register ID 

 After renaming, RS entry ID used to refer to the register 

 

 This eliminates anti- and output- dependencies 

 Approximates the performance effect of a large number of 
registers even though ISA has a small number 
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 Register rename table (register alias table) 

Tomasulo’s Algorithm: Renaming 
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Tomasulo’s Algorithm 
 If reservation station available before renaming 

 Instruction + renamed operands (source value/tag) inserted into the 
reservation station 

 Only rename if reservation station is available 

 Else stall 
 While in reservation station, each instruction: 

 Watches common data bus (CDB) for tag of its sources 
 When tag seen, grab value for the source and keep it in the reservation station 
 When both operands available, instruction ready to be dispatched 

 Dispatch instruction to the Functional Unit when instruction is ready 
 After instruction finishes in the Functional Unit 

 Arbitrate for CDB 
 Put tagged value onto CDB (tag broadcast) 
 Register file is connected to the CDB 

 Register contains a tag indicating the latest writer to the register 
 If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit) 

 Reclaim rename tag 
 no valid copy of tag in system! 
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An Exercise 

 

 

 

 

 

 Assume ADD (4 cycle execute), MUL (6 cycle execute) 

 Assume one adder and one multiplier 

 How many cycles 

 in a non-pipelined machine 

 in an in-order-dispatch pipelined machine with imprecise 
exceptions (no forwarding and full forwarding) 

 in an out-of-order dispatch pipelined machine imprecise 
exceptions (full forwarding) 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 
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Exercise Continued 
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Exercise Continued 
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Exercise Continued 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 



How It Works 
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Cycle 0 

31 



Cycle 2 
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Cycle 3 



Cycle 4 
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Cycle 7 
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Cycle 8  
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An Exercise, with Precise Exceptions 

 

 

 

 

 

 Assume ADD (4 cycle execute), MUL (6 cycle execute) 

 Assume one adder and one multiplier 

 How many cycles 

 in a non-pipelined machine 

 in an in-order-dispatch pipelined machine with reorder buffer 
(no forwarding and full forwarding) 

 in an out-of-order dispatch pipelined machine with reorder 
buffer (full forwarding) 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 

F D E R W 



Out-of-Order Execution with Precise Exceptions 

 Idea: Use a reorder buffer to reorder instructions before 
committing them to architectural state 

 

 An instruction updates the register alias table (essentially a 
future file) when it completes execution 

 An instruction updates the architectural register file when it 
is the oldest in the machine and has completed execution 
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Out-of-Order Execution with Precise Exceptions 

 

 

 

 

 

 

 

 

 

 Hump 1: Reservation stations (scheduling window) 

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window) 
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Enabling OoO Execution, Revisited 

1. Link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  
 

2. Buffer instructions until they are ready 

 Insert instruction into reservation stations after renaming  
 

3. Keep track of readiness of source values of an instruction 

 Broadcast the “tag” when the value is produced 

 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

 

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU) 

 Wakeup and select/schedule the instruction 

 

  
40 



Summary of OOO Execution Concepts 

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers 

 

 Buffering enables the pipeline to move for independent ops 

 

 Tag broadcast enables communication (of readiness of 
produced value) between instructions 

 

 Wakeup and select enables out-of-order dispatch 
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OOO Execution: Restricted Dataflow 

 An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program 

 which piece? 

 

 The dataflow graph is limited to the instruction window 

 Instruction window: all decoded but not yet retired 
instructions 

 

 Can we do it for the whole program?  

 Why would we like to? 

 In other words, how can we have a large instruction 
window? 

 Can we do it efficiently with Tomasulo’s algorithm? 
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Dataflow Graph for Our Example 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 



State of RAT and RS in Cycle 7 
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Dataflow Graph 
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Restricted Data Flow 

 An out-of-order machine is a “restricted data flow” machine 

 Dataflow-based execution is restricted to the microarchitecture 
level 

 ISA is still based on von Neumann model (sequential 
execution) 

 

 Remember the data flow model (at the ISA level): 

 Dataflow model: An instruction is fetched and executed in 
data flow order 

 i.e., when its operands are ready 

 i.e., there is no instruction pointer 

 Instruction ordering specified by data flow dependence 

 Each instruction specifies “who” should receive the result 

 An instruction can “fire” whenever all operands are received 
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Questions to Ponder 

 Why is OoO execution beneficial? 

 What if all operations take single cycle? 

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently 

 

 What if an instruction takes 500 cycles? 

 How large of an instruction window do we need to continue 
decoding? 

 How many cycles of latency can OoO tolerate? 

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm? 

 Active/instruction window size: determined by register file, 
scheduling window, reorder buffer 
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Registers versus Memory, Revisited 

 So far, we considered register based value communication 
between instructions 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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Memory Dependence Handling (I) 

 Need to obey memory dependences in an out-of-order 
machine  

 and need to do so while providing high performance 

 

 Observation and Problem: Memory address is not known 
until a load/store executes 

 

 Corollary 1: Renaming memory addresses is difficult 

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution 

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine 
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Memory Dependence Handling (II) 

 When do you schedule a load instruction in an OOO engine? 

 Problem: A younger load can have its address ready before an 
older store’s address is known 

 Known as the memory disambiguation problem or the unknown 
address problem 

 

 Approaches 

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine) 

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away 

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store 
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Handling of Store-Load Dependencies 

 A load’s dependence status is not known until all previous store 
addresses are available.  

 

 How does the OOO engine detect dependence of a load instruction on a 
previous store? 

 Option 1: Wait until all previous stores committed (no need to 
check)  

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address 

 

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores? 

 Option 1: Assume load dependent on all previous stores 

 Option 2: Assume load independent of all previous stores 

 Option 3: Predict the dependence of a load on an outstanding store 
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Memory Disambiguation (I) 

 Option 1: Assume load dependent on all previous stores 

 + No need for recovery  

    -- Too conservative: delays independent loads unnecessarily 
 

 Option 2: Assume load independent of all previous stores 

 + Simple and can be common case: no delay for independent loads 

 -- Requires recovery and re-execution of load and dependents on misprediction 
 

 Option 3: Predict the dependence of a load on an 
outstanding store 

 + More accurate. Load store dependencies persist over time 

 -- Still requires recovery/re-execution on misprediction 

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent  

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,” 
ISCA 1997. 

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998. 
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Memory Disambiguation (II) 

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,” ISCA 1998. 

 

 

 

 

 

 

 

 

 Predicting store-load dependencies important for performance 

 Simple predictors (based on past history) can achieve most of 
the potential performance  
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Food for Thought for You 

 Many other design choices 

 

 Should reservation stations be centralized or distributed? 

 What are the tradeoffs? 

 

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored? 

 What are the tradeoffs? 

 

 Exactly when does an instruction broadcast its tag? 

 

 … 
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More Food for Thought for You 

 How can you implement branch prediction in an out-of-
order execution machine? 

 Think about branch history register and PHT updates 

 Think about recovery from mispredictions 

 How to do this fast? 
 

 How can you combine superscalar execution with out-of-
order execution? 

 These are different concepts 

 Concurrent renaming of instructions 

 Concurrent broadcast of tags 

 

 How can you combine superscalar + out-of-order + branch 
prediction? 
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Recommended Readings 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro, 
March-April 1999. 

 

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001. 

 

 Yeager, “The MIPS R10000 Superscalar Microprocessor,” 
IEEE Micro, April 1996 

 

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002. 
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Other Approaches to Concurrency 

(or Instruction Level Parallelism) 

 

 

 

 

 



Approaches to (Instruction-Level) Concurrency 

 Pipelining 

 Out-of-order execution 

 Dataflow (at the ISA level) 

 SIMD Processing 

 VLIW 

 

 Systolic Arrays 

 Decoupled Access Execute 
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Data Flow: 

Exploiting Irregular Parallelism 

 
 

 

 

 

 



Remember: State of RAT and RS in Cycle 7 
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Remember: Dataflow Graph 

61 



Review: More on Data Flow 

 In a data flow machine, a program consists of data flow 
nodes 

 A data flow node fires (fetched and executed) when all it 
inputs are ready 

 i.e. when all inputs have tokens 

 

 Data flow node and its ISA representation 
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Data Flow Nodes 
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Dataflow Nodes (II) 

 A small set of dataflow operators can be used to 
define a general programming language  

Fork Primitive Ops 

+ 

Switch Merge 

 

T F 
T F 

T T 

+ T F 
T F 

T T 


 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 

a b 

+ *7 

- + 

* 

y 
x 

1 2 

3 4 

5 

 Values in dataflow graphs are 
represented as tokens 

 

 

 

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination   operators 

token < ip , p , v > 

instruction ptr port data 

no separate control flow 



Example Data Flow Program 
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Control Flow vs. Data Flow 
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Data Flow Characteristics 

 Data-driven execution of instruction-level graphical code 

 Nodes are operators 

 Arcs are data (I/O) 

 As opposed to control-driven execution 

 Only real dependencies constrain processing 

 No sequential I-stream  

 No program counter 

 Operations execute asynchronously 

 Execution triggered by the presence of data 
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A Dataflow Processor 
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MIT Tagged Token Data Flow Architecture 

 Wait−Match Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address  

 Success: Both 
tokens forwarded 

 Fail: Incoming 
token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded) 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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Manchester Data Flow Machine 

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

 Large data set  

overflow in overflow 
unit 

 Paired tokens fetch the 
appropriate instruction 
from the node store 
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Data Flow Advantages/Disadvantages 

 Advantages 

 Very good at exploiting irregular parallelism 

 Only real dependencies constrain processing 

 

 Disadvantages 

 No precise state 

 Interrupt/exception handling is difficult  

 Debugging very difficult  

 Bookkeeping overhead (tag matching) 

 Too much parallelism? (Parallelism control needed) 

 Overflow of tag matching tables 

 Implementing dynamic data structures difficult 
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Data Flow Summary 

 Availability of data determines order of execution 

 A data flow node fires when its sources are ready 

 Programs represented as data flow graphs (of nodes) 

 

 Data Flow at the ISA level has not been (as) successful 

 

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful 

 Out of order execution 

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986. 
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Further Reading on Data Flow 

 ISA level dataflow 

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985. 

 

 Microarchitecture-level dataflow: 

 Hwu and Patt, “HPSm, a high performance restricted 
data flow architecture having minimal functionality,” 
ISCA 1986. 
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Vector Processing: 

Exploiting Regular (Data) Parallelism 

 
 

 

 

 

 



Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Data Parallelism 

 Concurrency arises from performing the same operations 
on different pieces of data 

 Single instruction multiple data (SIMD) 

 E.g., dot product of two vectors 
 

 Contrast with data flow 

 Concurrency arises from executing different operations in parallel (in 
a data driven manner) 

 

 Contrast with thread (“control”) parallelism 

 Concurrency arises from executing different threads of control in 
parallel 

 

 SIMD exploits instruction-level parallelism 

 Multiple instructions concurrent: instructions happen to be the same  
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SIMD Processing 

 Single instruction operates on multiple data elements 

 In time or in space 

 Multiple processing elements  

 

 Time-space duality 

 Array processor: Instruction operates on multiple data 
elements at the same time 

 Vector processor: Instruction operates on multiple data 
elements in consecutive time steps 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 

 VLIW 
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SIMD Array Processing vs. VLIW 

 Array processor 
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Vector Processors 

 A vector is a one-dimensional array of numbers 

 Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 

 C[i] = (A[i] + B[i]) / 2 

 

 A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

 Basic requirements 

 Need to load/store vectors  vector registers (contain vectors) 

 Need to operate on vectors of different lengths  vector length 
register (VLEN) 

 Elements of a vector might be stored apart from each other in 
memory  vector stride register (VSTR) 

 Stride: distance between two elements of a vector 
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Vector Processors (II) 

 A vector instruction performs an operation on each element 
in consecutive cycles 

 Vector functional units are pipelined 

 Each pipeline stage operates on a different data element 

 

 Vector instructions allow deeper pipelines 

 No intra-vector dependencies  no hardware interlocking 

within a vector 

 No control flow within a vector 

 Known stride allows prefetching of vectors into cache/memory 
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Vector Processor Advantages 

+ No dependencies within a vector  

 Pipelining, parallelization work well 

 Can have very deep pipelines, no dependencies!  

 

+ Each instruction generates a lot of work  

 Reduces instruction fetch bandwidth 

 

+ Highly regular memory access pattern  

 Interleaving multiple banks for higher memory bandwidth 

 Prefetching 

 

+ No need to explicitly code loops  

 Fewer branches in the instruction sequence 
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Vector Processor Disadvantages 

-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 

    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 

 

 

 

 

88 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Vector Processor Limitations 

-- Memory (bandwidth) can easily become a bottleneck, 
especially if 

 1. compute/memory operation balance is not maintained 

 2. data is not mapped appropriately to memory banks 
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Vector Registers 

 Each vector data register holds N M-bit values 

 Vector control registers: VLEN, VSTR, VMASK 

 Vector Mask Register (VMASK) 

 Indicates which elements of vector to operate on 

 Set by vector test instructions 

 e.g., VMASK[i] = (V
k
[i] == 0) 

 Maximum VLEN can be N 

 Maximum number of elements stored in a vector register 
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V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 

 Use deep pipeline (=> fast 
clock) to execute element 
operations 

 Simplifies control of deep 
pipeline because elements in 
vector are independent   

 

91 

V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Scalar and vector modes 

 8 64-element vector 
registers 

 64 bits per element 

 16 memory banks 

 8 64-bit scalar registers 

 8 24-bit address registers 
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Memory Banking 

 Example: 16 banks; can start one bank access per cycle 

 Bank latency: 11 cycles 

 Can sustain 16 parallel accesses if they go to different banks 
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Bank 

0 

Bank 

1 

MDR MAR 

Bank 

2 

Bank 

15 

MDR MAR MDR MAR MDR MAR 

Data bus 

Address bus 

CPU 

Slide credit: Derek Chiou 



Vector Memory System 
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0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Bas
e 

Stride 
Vector Registers 

Memory Banks 

Address 
Generator 

Slide credit: Krste Asanovic 



Scalar Code Example 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 

 Scalar code 

     MOVI R0 = 50   1 

     MOVA R1 = A   1 

     MOVA R2 = B   1 

     MOVA R3 = C   1 

X:  LD R4 = MEM[R1++]  11  ;autoincrement addressing 

     LD R5 = MEM[R2++]  11 

     ADD R6 = R4 + R5  4 

     SHFR R7 = R6 >> 1  1 

     ST MEM[R3++] = R7   11 

     DECBNZ --R0, X  2   ;decrement and branch if NZ 
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304 dynamic instructions 



Scalar Code Execution Time 
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 Scalar execution time on an in-order processor with 1 bank 

 First two loads in the loop cannot be pipelined: 2*11 cycles 

 4 + 50*40 = 2004 cycles 

 

 Scalar execution time on an in-order processor with 16 
banks (word-interleaved) 

 First two loads in the loop can be pipelined 

 4 + 50*30 = 1504 cycles 

 

 Why 16 banks? 

 11 cycle memory access latency 

 Having 16 (>11) banks ensures there are enough banks to 
overlap enough memory operations to cover memory latency 

 



Vectorizable Loops 

 A loop is vectorizable if each iteration is independent of any 
other 

 For I = 0 to 49 

 C[i] = (A[i] + B[i]) / 2 

 Vectorized loop: 

  MOVI VLEN = 50   1 

  MOVI VSTR = 1   1 

  VLD V0 = A    11 + VLN - 1 

  VLD V1 = B    11 + VLN – 1 

  VADD V2 = V0 + V1   4 + VLN - 1 

  VSHFR V3 = V2 >> 1   1 + VLN - 1 

  VST C = V3    11 + VLN – 1 
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7 dynamic instructions 



Vector Code Performance 

 No chaining  

 i.e., output of a vector functional unit cannot be used as the 
input of another (i.e., no vector data forwarding) 

 One memory port (one address generator) 

 16 memory banks (word-interleaved) 

 

 

 

 

 

 

 

 285 cycles 
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1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 
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Memory 

V
1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 

MULV v3,v1,v2 

ADDV v5, v3, v4 

Slide credit: Krste Asanovic 



Vector Code Performance - Chaining 

 Vector chaining: Data forwarding from one vector 
functional unit to another 

 

 

 

 

 

 

 

 

 

 182 cycles 
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1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  

pipelined. WHY? 

VLD and VST cannot be  

pipelined. WHY? 

Strict assumption: 

Each memory bank  

has a single port  

(memory bandwidth 

bottleneck) 



Vector Code Performance – Multiple Memory Ports 

 Chaining and 2 load ports, 1 store port in each bank 

 

 

 

 

 

 

 

 

 

 

 79 cycles 
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1 1 11 49

4 49

1 49

11 49

11 491



Questions (I) 

 What if # data elements > # elements in a vector register? 

 Need to break loops so that each iteration operates on # 
elements in a vector register 

 E.g., 527 data elements, 64-element VREGs 

 8 iterations where VLEN = 64 

 1 iteration where VLEN = 15 (need to change value of VLEN) 

 Called vector stripmining 

 

 What if vector data is not stored in a strided fashion in 
memory? (irregular memory access to a vector) 

 Use indirection to combine elements into vector registers 

 Called scatter/gather operations 
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Gather/Scatter Operations 
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Want to vectorize loops with indirect accesses: 

for (i=0; i<N; i++) 

    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 

LV vD, rD       # Load indices in D vector 

LVI vC, rC, vD  # Load indirect from rC base 

LV vB, rB       # Load B vector 

ADDV.D vA,vB,vC # Do add 

SV vA, rA       # Store result 

 



Gather/Scatter Operations 

 Gather/scatter operations often implemented in hardware 
to handle sparse matrices  

 Vector loads and stores use an index vector which is added 
to the base register to generate the addresses 
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Index Vector  Data Vector  Equivalent 

 

        1           3.14         3.14 

        3          6.5             0.0 

        7        71.2            6.5 

        8          2.71             0.0 

          0.0 

           0.0 

          0.0 

         71.2 

          2.7   



Conditional Operations in a Loop 

 What if some operations should not be executed on a vector 
(based on a dynamically-determined condition)? 
loop:  if (a[i] != 0) then b[i]=a[i]*b[i] 

   goto loop 

 

 Idea: Masked operations  

 VMASK register is a bit mask determining which data element 
should not be acted upon 

  VLD V0 = A 

  VLD V1 = B 

  VMASK = (V0 != 0) 

  VMUL V1 = V0 * V1 

  VST B = V1 

 Does this look familiar? This is essentially predicated execution. 
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Another Example with Masking 
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for (i = 0; i < 64; ++i) 

 if (a[i] >= b[i]) then c[i] = a[i] 

 else c[i] = b[i] 

A B VMASK     

1 2    0                  

2 2    1 

3 2    1 

4 10    0 

-5 -4    0 

0 -3    1 

6 5    1 

-7 -8    1 

Steps to execute loop 

 

1. Compare A, B to get  

 VMASK 

 

2. Masked store of  A into C 

 

3. Complement VMASK 

 

4. Masked store of B into C 



Masked Vector Instructions 
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C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

      Density-Time Implementation 

– scan mask vector and only execute 
elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

     Simple Implementation 

– execute all N operations, turn off 
result writeback according to mask 

Slide credit: Krste Asanovic 



Some Issues 

 Stride and banking 

 As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, consecutive 
accesses proceed in parallel 

 

 Storage of a matrix 

 Row major: Consecutive elements in a row are laid out 
consecutively in memory 

 Column major: Consecutive elements in a column are laid out 
consecutively in memory 

 You need to change the stride when accessing a row versus 
column 
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Array vs. Vector Processors, Revisited 

 Array vs. vector processor distinction is a “purist’s” 
distinction 

 

 Most “modern” SIMD processors are a combination of both 

 They exploit data parallelism in both time and space 
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Remember: Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



Vector Instruction Execution 
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ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 



Vector Unit Structure 
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Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 0, 
4, 8, … 

Elements 1, 
5, 9, … 

Elements 2, 
6, 10, … 

Elements 3, 
7, 11, … 

Slide credit: Krste Asanovic 



Vector Instruction Level Parallelism 

Can overlap execution of multiple vector instructions 
 example machine has 32 elements per vector register and 8 lanes 

 Complete 24 operations/cycle while issuing 1 short instruction/cycle 
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load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Slide credit: Krste Asanovic 



Automatic Code Vectorization 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a compile-time reordering of 
operation sequencing 
 requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
 

Slide credit: Krste Asanovic 



Vector/SIMD Processing Summary 

 Vector/SIMD machines good at exploiting regular data-level 
parallelism 

 Same operation performed on many data elements 

 Improve performance, simplify design (no intra-vector 
dependencies) 

 

 Performance improvement limited by vectorizability of code 

 Scalar operations limit vector machine performance 

 Amdahl’s Law 

 CRAY-1 was the fastest SCALAR machine at its time! 

 

 Many existing ISAs include (vector-like) SIMD operations 

 Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD 
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SIMD Operations in Modern ISAs 

 

 

 

 

 

 



Intel Pentium MMX Operations 

 Idea: One instruction operates on multiple data elements 
simultaneously 

 Ala array processing (yet much more limited) 

 Designed with multimedia (graphics) operations in mind 
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Peleg and Weiser, “MMX Technology 

Extension to the Intel Architecture,” 

IEEE Micro, 1996. 

No VLEN register 

Opcode determines data type: 

8 8-bit bytes 

4 16-bit words 

2 32-bit doublewords 

1 64-bit quadword 

 

Stride always equal to 1. 

 



MMX Example: Image Overlaying (I) 
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MMX Example: Image Overlaying (II) 
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Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 

 

 

 

 

 



High-Level View of a GPU 
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Concept of “Thread Warps” and SIMT 

 Warp: A set of threads that execute the same instruction 
(on different data elements)  SIMT (Nvidia-speak) 

 All threads run the same kernel 
 Warp: The threads that run lengthwise in a woven fabric … 
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Thread Warp 3 
Thread Warp 8 

Thread Warp 7 

Thread Warp 

Scalar 
Thread 

W 

Scalar 
Thread 

X 

Scalar 
Thread 

Y 

Scalar 
Thread 

Z 

Common PC 

SIMD Pipeline 



Loop Iterations as Threads 
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for (i=0; i < N; i++) 

    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

T
im

e
 

Slide credit: Krste Asanovic 



 Same instruction in different threads uses thread id to 
index and access different data elements 

 

SIMT Memory Access 

Let’s assume N=16, blockDim=4  4 blocks  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 

127 Slide credit: Hyesoon Kim 



Latency Hiding with “Thread Warps” 

 Warp: A set of threads that 
execute the same instruction 
(on different data elements) 

 

 Fine-grained multithreading 

 One instruction per thread in 
pipeline at a time (No branch 
prediction) 

 Interleave warp execution to 
hide latencies 

 Register values of all threads stay 
in register file 

 No OS context switching 

 Memory latency hiding 

 Graphics has millions of pixels 
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Decode 

R
 F
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 F
 

R
 F
 

A
 L U
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 L U
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D-Cache 

Thread Warp 6 

Thread Warp 1 
Thread Warp 2 Data All Hit? 

Miss? 

Warps accessing 
memory hierarchy 

Thread Warp 3 
Thread Warp 8 

Writeback 

Warps available 
for scheduling 

Thread Warp 7 

I-Fetch 

SIMD Pipeline 

Slide credit: Tor Aamodt 



Warp-based SIMD vs. Traditional SIMD 
 Traditional SIMD contains a single thread  

 Lock step 

 Programming model is SIMD (no threads)  SW needs to know vector 

length 

 ISA contains vector/SIMD instructions 

 

 Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads) 

 Does not have to be lock step 

 Each thread can be treated individually (i.e., placed in a different 
warp)  programming model not SIMD 

 SW does not need to know vector length 

 Enables memory and branch latency tolerance 

 ISA is scalar  vector instructions formed dynamically 

 Essentially, it is SPMD programming model implemented on SIMD 
hardware 
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SPMD 
 Single procedure/program, multiple data  

 This is a programming model rather than computer organization 

 

 Each processing element executes the same procedure, except on 
different data elements 

 Procedures can synchronize at certain points in program, e.g. barriers 

 

 Essentially, multiple instruction streams execute the same 
program 

 Each program/procedure can 1) execute a different control-flow path, 
2) work on different data, at run-time 

 Many scientific applications programmed this way and run on MIMD 
computers (multiprocessors) 

 Modern GPUs programmed in a similar way on a SIMD computer 
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Branch Divergence Problem in Warp-based SIMD 

 SPMD Execution on SIMD Hardware  

 NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution 
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Thread Warp Common PC 

Thread 

2 

Thread 

3 

Thread 

4 

Thread 

1 
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C D 

E 

F 

A 

G 

Slide credit: Tor Aamodt 



Control Flow Problem in GPUs/SIMD 

 GPU uses SIMD 
pipeline to save area 
on control logic. 

 Group scalar threads into 
warps 

 

 Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch 

Path A 

Path B 

Branch 

Path A 

Path B 

Slide credit: Tor Aamodt 



Branch Divergence Handling (I) 
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- G 1111 TOS 

B 

C D 

E 

F 

A 

G 

Thread Warp Common PC 

Thread 

2 

Thread 

3 

Thread 

4 

Thread 

1 

B/1111 

C/1001 D/0110 

E/1111 

A/1111 

G/1111 

- A 1111 TOS 
E D 0110 
E C 1001 TOS 

- E 1111 
E D 0110 TOS 
- E 1111 
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E D 0110 
E E 1001 TOS 

- E 1111 

Slide credit: Tor Aamodt 



Branch Divergence Handling (II) 
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A 

B C 

D 

A -- 1111 
B D 1110 
C D 0001 

Next PC Recv PC Amask 
D -- 1111 

Control Flow Stack 

One per warp 

A; 

if (some condition) { 

   B; 

} else { 

   C; 

} 

D; 
TOS 

D 

1 

1 

1 

1 

A 

0 

0 

0 

1 

C 

1 

1 

1 

0 

B 

1 

1 

1 

1 

D 

Time 

Execution Sequence 

Slide credit: Tor Aamodt 



Dynamic Warp Formation 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 Form new warp at divergence 

 Enough threads branching to each path to create full new 
warps 
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Dynamic Warp Formation/Merging 

 Idea: Dynamically merge threads executing the same 
instruction (after branch divergence) 

 

 

 

 

 

 

 

 

 

 Fung et al., “Dynamic Warp Formation and Scheduling for 
Efficient GPU Control Flow,” MICRO 2007. 
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Branch 

Path A 

Path B 

Branch 

Path A 



Dynamic Warp Formation Example 
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A A B B G G A A C C D D E E F F 

Time 

A A B B G G A A C D E E F 

Time 

A 
x/1111 
y/1111 

B 
x/1110 
y/0011 

C 
x/1000 
y/0010 D 

x/0110 
y/0001 F 

x/0001 
y/1100 

E 
x/1110 
y/0011 

G 
x/1111 
y/1111 

A new warp created from scalar 

threads of both Warp x and y 

executing at Basic Block D 

D 

Execution of Warp x 

at Basic Block A 

Execution of Warp y 

at Basic Block A 

Legend 
A A 

Baseline 

Dynamic 

Warp 

Formation 

Slide credit: Tor Aamodt 



What About Memory Divergence? 

 Modern GPUs have caches 

 Ideally: Want all threads in the warp to hit (without 
conflicting with each other) 

 Problem: One thread in a warp can stall the entire warp if it 
misses in the cache. 

 

 Need techniques to  

 Tolerate memory divergence 

 Integrate solutions to branch and memory divergence 
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NVIDIA GeForce GTX 285 

 NVIDIA-speak: 

 240 stream processors 

 “SIMT execution” 

  

 

 Generic speak: 

 30 cores 

 8 SIMD functional units per core 
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Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 

= instruction stream decode = SIMD functional unit, control  

   shared across 8 units 

    
= execution context storage  = multiply-add 

= multiply 

64 KB of storage  

for fragment 

contexts (registers) 

Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  

for thread contexts 

(registers) 

 Groups of 32 threads share instruction stream (each group is 
a Warp) 

 Up to 32 warps are simultaneously interleaved 

 Up to 1024 thread contexts can be stored    

 
Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 
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30 cores on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 



VLIW and DAE 

 

 

 

 

 

 



Remember: SIMD/MIMD Classification of Computers 

 Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD? Multiple instructions operate on single data element 

 Closest form: systolic array processor? 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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SISD Parallelism Extraction Techniques 

 We have already seen 

 Superscalar execution 

 Out-of-order execution 

 

 Are there simpler ways of extracting SISD parallelism? 

 VLIW (Very Long Instruction Word) 

 Decoupled Access/Execute 
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VLIW 

 

 

 

 

 

 



VLIW (Very Long Instruction Word) 

 A very long instruction word consists of multiple 
independent instructions packed together by the compiler 

 Packed instructions can be logically unrelated (contrast with 
SIMD) 

 

 Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction 

 

 Traditional Characteristics 

 Multiple functional units 

 Each instruction in a bundle executed in lock step 

 Instructions in a bundle statically aligned to be directly fed 
into the functional units 

147 



VLIW Concept 
 

 

 

 

 

 

 

 

 

 

 Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983. 

 ELI: Enormously longword instructions (512 bits) 
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SIMD Array Processing vs. VLIW 

 Array processor 
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VLIW Philosophy 

 Philosophy similar to RISC (simple instructions and hardware) 

 Except multiple instructions in parallel 

 

 RISC (John Cocke, 1970s, IBM 801 minicomputer) 

 Compiler does the hard work to translate high-level language 
code to simple instructions (John Cocke: control signals) 

 And, to reorder simple instructions for high performance 

 Hardware does little translation/decoding  very simple 

 

 VLIW (Fisher, ISCA 1983) 

 Compiler does the hard work to find instruction level parallelism  

 Hardware stays as simple and streamlined as possible 

 Executes each instruction in a bundle in lock step 

 Simple  higher frequency, easier to design 
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VLIW Philosophy (II) 

151 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Commercial VLIW Machines 

 Multiflow TRACE, Josh Fisher (7-wide, 28-wide) 

 Cydrome Cydra 5, Bob Rau 

 Transmeta Crusoe: x86 binary-translated into internal VLIW 

 TI C6000, Trimedia, STMicro (DSP & embedded processors) 

 Most successful commercially 

 

 Intel IA-64 

 Not fully VLIW, but based on VLIW principles 

 EPIC (Explicitly Parallel Instruction Computing) 

 Instruction bundles can have dependent instructions 

 A few bits in the instruction format specify explicitly which 
instructions in the bundle are dependent on which other ones 
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VLIW Tradeoffs 

 Advantages 

+ No need for dynamic scheduling hardware  simple hardware 

+ No need for dependency checking within a VLIW instruction  

simple hardware for multiple instruction issue + no renaming 

+ No need for instruction alignment/distribution after fetch to 
different functional units  simple hardware 

 

 Disadvantages 

-- Compiler needs to find N independent operations 

 -- If it cannot, inserts NOPs in a VLIW instruction 

 -- Parallelism loss AND code size increase 

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing) 

-- Lockstep execution causes independent operations to stall 

 -- No instruction can progress until the longest-latency instruction completes 

 
153 



VLIW Summary 

 VLIW simplifies hardware, but requires complex compiler 
techniques 

 Solely-compiler approach of VLIW has several downsides 
that reduce performance 

-- Too many NOPs (not enough parallelism discovered) 

-- Static schedule intimately tied to microarchitecture 

 -- Code optimized for one generation performs poorly for next 

-- No tolerance for variable or long-latency operations (lock step) 

 

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation) 

 Enable code optimizations 

++ VLIW successful in embedded markets, e.g. DSP 
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DAE 

 

 

 

 

 

 



Decoupled Access/Execute 

 Motivation: Tomasulo’s algorithm too complex to 
implement  

 1980s before HPS, Pentium Pro 

 

 Idea: Decouple operand  

    access and execution via  

    two separate instruction  

    streams that communicate  

    via ISA-visible queues.  

 
 Smith, “Decoupled Access/Execute  

     Computer Architectures,” ISCA 1982,  

     ACM TOCS 1984. 
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Decoupled Access/Execute (II) 

 Compiler generates two instruction streams (A and E) 
 Synchronizes the two upon control flow instructions (using branch queues) 
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Decoupled Access/Execute (III) 

 Advantages: 

+ Execute stream can run ahead of the access stream and vice 
versa 

 + If A takes a cache miss, E can perform useful work 

    + If A hits in cache, it supplies data to lagging E 

 + Queues reduce the number of required registers 

+ Limited out-of-order execution without wakeup/select complexity 

 

 Disadvantages: 

 -- Compiler support to partition the program and manage queues 

        -- Determines the amount of decoupling 

 -- Branch instructions require synchronization between A and E 

 -- Multiple instruction streams (can be done with a single one, 
though) 
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Astronautics ZS-1 

 Single stream 
steered into A and 
X pipelines 

 Each pipeline in-
order 

 
 Smith et al., “The 

ZS-1 central 
processor,” 
ASPLOS 1987. 

 

 Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989. 
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Astronautics ZS-1 Instruction Scheduling 

 Dynamic scheduling 

 A and X streams are issued/executed independently 

 Loads can bypass stores in the memory unit (if no conflict) 

 Branches executed early in the pipeline 

 To reduce synchronization penalty of A/X streams 

 Works only if the register a branch sources is available 

 

 Static scheduling 

 Move compare instructions as early as possible before a branch 

 So that branch source register is available when branch is decoded 

 Reorder code to expose parallelism in each stream 

 Loop unrolling: 

 Reduces branch count + exposes code reordering opportunities 
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Loop Unrolling 

 

 

 

 

 

 

 

 Idea: Replicate loop body multiple times within an iteration 

+ Reduces loop maintenance overhead 

 Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 

 Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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Systolic Arrays 
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Why Systolic Architectures? 

 Idea: Data flows from the computer memory in a rhythmic 
fashion, passing through many processing elements before it 
returns to memory 

 

 Similar to an assembly line 

 Different people work on the same car 

 Many cars are assembled simultaneously 

 Can be two-dimensional 

 

 Why? Special purpose accelerators/architectures need 

 Simple, regular designs (keep # unique parts small and regular) 

 High concurrency  high performance 

 Balanced computation and I/O (memory access) 
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Systolic Architectures 

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 
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Memory: heart 

PEs: cells 

 

 

Memory pulses  

data through  

cells 

 



Systolic Architectures 

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements 

 

 

 

 

 Differences from pipelining: 

 Array structure can be non-linear and multi-dimensional  

 PE connections can be multidirectional (and different speed) 

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction) 
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Systolic Computation Example 

 Convolution 

 Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

 Many image processing tasks 
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Systolic Computation Example: Convolution 

 y1 = w1x1 + 
w2x2 + w3x3 

 

 y2 = w1x2 + 
w2x3 + w3x4 

 

 y3 = w1x3 + 
w2x4 + w3x5 
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Systolic Computation Example: Convolution 

 

 

 

 

 

 

 

 

 

 

 Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 
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 Each PE in a systolic array 

 Can store multiple “weights” 

 Weights can be selected on the fly 

 Eases implementation of, e.g., adaptive filtering 

 

 Taken further 

 Each PE can have its own data and instruction memory 

 Data memory  to store partial/temporary results, constants 

 Leads to stream processing, pipeline parallelism 

 More generally, staged execution 
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More Programmability 



Pipeline Parallelism 
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File Compression Example 
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Systolic Array 

 Advantages 

 Makes multiple uses of each data item  reduced need for 

fetching/refetching 

 High concurrency 

 Regular design (both data and control flow) 

 

 Disadvantages 

 Not good at exploiting irregular parallelism 

 Relatively special purpose  need software, programmer 

support to be a general purpose model 
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The WARP Computer 

 HT Kung, CMU, 1984-1988 

 

 Linear array of 10 cells, each cell a 10 Mflop programmable 
processor 

 Attached to a general purpose host machine 

 HLL and optimizing compiler to program the systolic array 

 Used extensively to accelerate vision and robotics tasks 

 

 Annaratone et al., “Warp Architecture and 
Implementation,” ISCA 1986.  

 Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987.  
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The WARP Computer  
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The WARP Computer  
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Systolic Arrays vs. SIMD 

 Food for thought… 
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Some More Recommended Readings 

 Recommended: 

 Fisher, “Very Long Instruction Word architectures and the ELI-
512,” ISCA 1983. 

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000. 

 

 Russell, “The CRAY-1 computer system,” CACM 1978. 

 Rau and Fisher, “Instruction-level parallel processing: history, 
overview, and perspective,” Journal of Supercomputing, 1993. 

 Faraboschi et al., “Instruction Scheduling for Instruction Level 
Parallel Processors,” Proc. IEEE, Nov. 2001. 
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