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Announcements 

 Lab due Friday (Feb 21) 

 

 Homework 3 due next Wednesday (Feb 26) 

 

 Exam coming up (before Spring Break) 
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Reminder: Lab Late Day Policy Adjustment 

 Your total late days have increased to 7 

 

 Each late day beyond all exhausted late days costs you 
15% of the full credit of the lab  
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Reminder: A Note on Testing Your Code 

 Testing is critical in developing any system 

 

 You are responsible for creating your own test programs 
and ensuring your designs work for all possible cases 

 

 That is how real life works also…  

 Noone gives you all possible test cases, workloads, users, etc. 
beforehand 
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Lab 2 Grade Distribution 
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Lab 2 Statistics 

 MAX  99.62 

 MIN  62.74 

 MEDIAN  92.59 

 MEAN  89.26 

 STD  10.21 
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HW 2 Grade Distribution 
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HW 2 Statistics 

 MAX  100 

 MIN  0 

 MEDIAN  92.98 

 MEAN  81.98 

 STD  24.82 

8 



Readings for Past Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993. 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Past Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985). 
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Readings Specifically for Today 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  

 

11 



Readings for Next Lecture 

 SIMD Processing 

 Basic GPU Architecture 

 Other execution models: VLIW, Dataflow 

 

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 
Computing Architecture," IEEE Micro 2008. 

 

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 

 

 Stay tuned for more readings… 
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Maintaining Precise State 

 Reorder buffer 

 

 History buffer 

 

 Future register file 

 

 Checkpointing 

 

 Readings 

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985. 

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987. 
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Registers versus Memory 

 So far, we considered mainly registers as part of state 

 

 What about memory? 

 

 What are the fundamental differences between registers 
and memory? 

 Register dependences known statically – memory 
dependences determined dynamically 

 Register state is small – memory state is large 

 Register state is not visible to other threads/processors – 
memory state is shared between threads/processors (in a 
shared memory multiprocessor) 
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Maintaining Speculative Memory State: Stores 

 Handling out-of-order completion of memory operations 

 UNDOing a memory write more difficult than UNDOing a 
register write. Why? 

 One idea: Keep store address/data in reorder buffer 

 How does a load instruction find its data? 

 Store/write buffer: Similar to reorder buffer, but used only for 
store instructions 

 Program-order list of un-committed store operations 

 When store is decoded: Allocate a store buffer entry  

 When store address and data become available: Record in store 
buffer entry 

 When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data 
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Out-of-Order Execution 

(Dynamic Instruction Scheduling) 

 

 

 

 

 



An In-order Pipeline 

 Problem: A true data dependency stalls dispatch of younger 
instructions into functional (execution) units 

 Dispatch: Act of sending an instruction to a functional unit 
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Can We Do Better? 

 What do the following two pieces of code have in common 
(with respect to execution in the previous design)? 

 

 

 

 

 Answer: First ADD stalls the whole pipeline! 

 ADD cannot dispatch because its source registers unavailable 

 Later independent instructions cannot get executed 

 

 How are the above code portions different? 

 Answer: Load latency is variable (unknown until runtime) 

 What does this affect? Think compiler vs. microarchitecture 
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IMUL  R3  R1, R2 

ADD   R3  R3, R1 

ADD   R1  R6, R7 

IMUL  R5  R6, R8 

ADD   R7  R9, R9 

LD      R3  R1 (0) 

ADD   R3  R3, R1 

ADD   R1  R6, R7 

IMUL  R5  R6, R8 

ADD   R7  R9, R9 



Preventing Dispatch Stalls 

 Multiple ways of doing it 

 You have already seen THREE: 

 1. Fine-grained multithreading 

 2. Value prediction 

 3. Compile-time instruction scheduling/reordering 

 What are the disadvantages of the above three? 

 

 Any other way to prevent dispatch stalls? 

 Actually, you have briefly seen the basic idea before 

 Dataflow: fetch and “fire” an instruction when its inputs are 
ready 

 Problem: in-order dispatch (scheduling, or execution) 

 Solution: out-of-order dispatch (scheduling, or execution) 

19 



Out-of-order Execution (Dynamic Scheduling) 

 Idea: Move the dependent instructions out of the way of 
independent ones  

 Rest areas for dependent instructions: Reservation stations  

 

 Monitor the source “values” of each instruction in the 
resting area 

 When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction 

 Instructions dispatched in dataflow (not control-flow) order  

 

 Benefit: 

 Latency tolerance: Allows independent instructions to execute 
and complete in the presence of a long latency operation 
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In-order vs. Out-of-order Dispatch 

 In order dispatch + precise exceptions: 

 

 

 

 

 

 Out-of-order dispatch + precise exceptions: 

 

 

 

 

 

 16 vs. 12 cycles 
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Enabling OoO Execution 

1. Need to link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  

2. Need to buffer instructions until they are ready to execute 

 Insert instruction into reservation stations after renaming  

3. Instructions need to keep track of readiness of source values 

 Broadcast the “tag” when the value is produced 

 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

4. When all source values of an instruction are ready, need to 
dispatch the instruction to its functional unit (FU) 

 Instruction wakes up if all sources are ready 

 If multiple instructions are awake, need to select one per FU 

 

 

 
22 



Tomasulo’s Algorithm 

 OoO with register renaming invented by Robert Tomasulo 

 Used in IBM 360/91 Floating Point Units 

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of R&D, Jan. 1967. 

 

 What is the major difference today? 

 Precise exceptions: IBM 360/91 did NOT have this 

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985. 

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985. 

 

 Variants used in most high-performance processors 

 Initially in Intel Pentium Pro, AMD K5   
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15 
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Two Humps in a  Modern Pipeline 

 

 

 

 

 

 

 

 

 

 Hump 1: Reservation stations (scheduling window) 

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window) 
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General Organization of an OOO Processor 

 

 

 

 

 

 

 

 

 

 

 
 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 

1995. 
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Tomasulo’s Machine: IBM 360/91 
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Register Renaming 

 Output and anti dependencies are not true dependencies 

 WHY? The same register refers to values that have nothing to 
do with each other 

 They exist because not enough register ID’s (i.e. 
names) in the ISA 

 The register ID is renamed to the reservation station entry 
that will hold the register’s value 

 Register ID  RS entry ID 

 Architectural register ID  Physical register ID 

 After renaming, RS entry ID used to refer to the register 

 

 This eliminates anti- and output- dependencies 

 Approximates the performance effect of a large number of 
registers even though ISA has a small number 
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 Register rename table (register alias table) 

Tomasulo’s Algorithm: Renaming 
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Tomasulo’s Algorithm 
 If reservation station available before renaming 

 Instruction + renamed operands (source value/tag) inserted into the 
reservation station 

 Only rename if reservation station is available 

 Else stall 
 While in reservation station, each instruction: 

 Watches common data bus (CDB) for tag of its sources 
 When tag seen, grab value for the source and keep it in the reservation station 
 When both operands available, instruction ready to be dispatched 

 Dispatch instruction to the Functional Unit when instruction is ready 
 After instruction finishes in the Functional Unit 

 Arbitrate for CDB 
 Put tagged value onto CDB (tag broadcast) 
 Register file is connected to the CDB 

 Register contains a tag indicating the latest writer to the register 
 If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit) 

 Reclaim rename tag 
 no valid copy of tag in system! 
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An Exercise 

 

 

 

 

 

 Assume ADD (4 cycle execute), MUL (6 cycle execute) 

 Assume one adder and one multiplier 

 How many cycles 

 in a non-pipelined machine 

 in an in-order-dispatch pipelined machine with imprecise 
exceptions (no forwarding and full forwarding) 

 in an out-of-order dispatch pipelined machine imprecise 
exceptions (full forwarding) 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 

F D E W 



Exercise Continued 
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Exercise Continued 
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Exercise Continued 

33 

MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 



How It Works 
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Cycle 0 
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Cycle 2 
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Cycle 3 



Cycle 4 
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Cycle 7 
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Cycle 8  
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An Exercise, with Precise Exceptions 

 

 

 

 

 

 Assume ADD (4 cycle execute), MUL (6 cycle execute) 

 Assume one adder and one multiplier 

 How many cycles 

 in a non-pipelined machine 

 in an in-order-dispatch pipelined machine with reorder buffer 
(no forwarding and full forwarding) 

 in an out-of-order dispatch pipelined machine with reorder 
buffer (full forwarding) 
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MUL   R3  R1, R2 

ADD   R5  R3, R4 

ADD   R7  R2, R6 

ADD   R10  R8, R9 

MUL   R11  R7, R10 

ADD   R5  R5, R11 

F D E R W 



Out-of-Order Execution with Precise Exceptions 

 Idea: Use a reorder buffer to reorder instructions before 
committing them to architectural state 

 

 An instruction updates the register alias table (essentially a 
future file) when it completes execution 

 An instruction updates the architectural register file when it 
is the oldest in the machine and has completed execution 
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Out-of-Order Execution with Precise Exceptions 

 

 

 

 

 

 

 

 

 

 Hump 1: Reservation stations (scheduling window) 

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window) 
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Enabling OoO Execution, Revisited 

1. Link the consumer of a value to the producer 

 Register renaming: Associate a “tag” with each data value  
 

2. Buffer instructions until they are ready 

 Insert instruction into reservation stations after renaming  
 

3. Keep track of readiness of source values of an instruction 

 Broadcast the “tag” when the value is produced 

 Instructions compare their “source tags”  to the broadcast tag 
 if match, source value becomes ready 

 

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU) 

 Wakeup and select/schedule the instruction 
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Summary of OOO Execution Concepts 

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers 

 

 Buffering enables the pipeline to move for independent ops 

 

 Tag broadcast enables communication (of readiness of 
produced value) between instructions 

 

 Wakeup and select enables out-of-order dispatch 
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