
18-447

Computer Architecture

Lecture 14: Out-of-Order Execution

(Dynamic Instruction Scheduling)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/19/2014

Announcements

 Lab due Friday (Feb 21)

 Homework 3 due next Wednesday (Feb 26)

 Exam coming up (before Spring Break)

2

Reminder: Lab Late Day Policy Adjustment

 Your total late days have increased to 7

 Each late day beyond all exhausted late days costs you
15% of the full credit of the lab

3

Reminder: A Note on Testing Your Code

 Testing is critical in developing any system

 You are responsible for creating your own test programs
and ensuring your designs work for all possible cases

 That is how real life works also…

 Noone gives you all possible test cases, workloads, users, etc.
beforehand

4

Lab 2 Grade Distribution

5

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

#
 S

tu
d

e
n

ts

Lab 2 Grade Distribution

Lab 2 Statistics

 MAX 99.62

 MIN 62.74

 MEDIAN 92.59

 MEAN 89.26

 STD 10.21

6

HW 2 Grade Distribution

7

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

S
tu

d
e

n
ts

HW 2 Grade Distribution

HW 2 Statistics

 MAX 100

 MIN 0

 MEDIAN 92.98

 MEAN 81.98

 STD 24.82

8

Readings for Past Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 9

Readings for Past Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

10

Readings Specifically for Today

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

11

Readings for Next Lecture

 SIMD Processing

 Basic GPU Architecture

 Other execution models: VLIW, Dataflow

 Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro 2008.

 Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

 Stay tuned for more readings…

12

Maintaining Precise State

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Readings

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

13

Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

14

Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry

 When store address and data become available: Record in store
buffer entry

 When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

15

Out-of-Order Execution

(Dynamic Instruction Scheduling)

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

17

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?

 What do the following two pieces of code have in common
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture

18

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R9, R9

LD R3  R1 (0)

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R9, R9

Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)

19

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones

 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

20

In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
21

F D W E E E E R

F D E R W

F

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5
D E R W

F D E R W

F D E R W

F D W E E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU

22

Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

 23

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

24

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

 25

Tomasulo’s Machine: IBM 360/91

26

FP FU FP FU

from memory

load

buffers

from instruction unit
 FP registers

store buffers

to memory

operation bus

reservation

stations

Common data bus

Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value

 Register ID  RS entry ID

 Architectural register ID  Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of
registers even though ISA has a small number

27

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

28

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1

1

1

1

1

1

1

1

1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!

29

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

30

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

F D E W

Exercise Continued

31

Exercise Continued

32

Exercise Continued

33

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

How It Works

34

Cycle 0

35

Cycle 2

36

37

Cycle 3

Cycle 4

38

Cycle 7

39

Cycle 8

40

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

41

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a
future file) when it completes execution

 An instruction updates the architectural register file when it
is the oldest in the machine and has completed execution

42

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

43

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

44

Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

45

