18-447

Computer Architecture
Lecture 14: Out-of-Order Execution
(Dynamic Instruction Scheduling)

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2014, 2/19/2014

Announcements
Lab due Friday (Feb 21)

Homework 3 due next Wednesday (Feb 26)

Exam coming up (before Spring Break)

Reminder: LLab Late Day Policy Adjustment

Your total late days have increased to 7

Each late day beyond all exhausted late days costs you
15% of the full credit of the lab

Reminder: A Note on Testing Your Code

Testing is critical in developing any system

You are responsible for creating your own test programs
and ensuring your designs work for all possible cases

That is how real life works also...

o Noone gives you all possible test cases, workloads, users, etc.
beforehand

Lab 2 Grade Distribution

Lab 2 Grade Distribution

N

Students
= =
o

O N b~ OO

0 10 20 30 40 50 60 70 80 90 100

Lab 2 Statistics

MAX 99.62
MIN 62.74
MEDIAN 92.59
MEAN 89.26

STD 10.21

HW 2 Grade Distribution

HW 2 Grade Distribution

N
Ul

N
o

—
1

—t
o

Number of Students

Ul

80

90

100

HW 2 Statistics

MAX 100
MIN 0
MEDIAN 92.98
MEAN 81.98

STD 24.82

Readings for Past Few Lectures (I)

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

Readings for Past Few Lectures (1I)

Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

10

Readings Specifically for Today

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

Kessler, "The Alpha 21264 Microprocessor,” IEEE Micro
1999.

11

Readings for Next Lecture

SIMD Processing
Basic GPU Architecture
Other execution models: VLIW, Dataflow

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

Fatahalian and Houston, “A Closer Look at GPUs,” CACM
2008.

Stay tuned for more readings...

12

Maintaining Precise State

Reorder buffer
History buffer
Future register file
Checkpointing

Readings

o Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

o Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

13

Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)

14

Maintaining Speculative Memory State: Stores

Handling out-of-order completion of memory operations

o UNDOing a memory write more difficult than UNDQing a
register write. Why?
o One idea: Keep store address/data in reorder buffer
How does a load instruction find its data?
a Store/write buffer: Similar to reorder buffer, but used only for
store instructions
Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry

When store address and data become available: Record in store
buffer entry

When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

15

Out-of-Order Execution
(Dynamic Instruction Scheduling)

An In-order Pipeline

Integer add

Integer mul

E |E |E |E

E|E|E |E|E|E |E

FP mul

E|E|E|E|E |E |E

] I%

Cache miss

Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

Dispatch: Act of sending an instruction to a functional unit

17

Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3,R1 ADD R3 € R3,R1
ADD R1 € R6, R7 ADD R1 € R6, R7
IMUL R5 < RG6, R8 IMUL R5 < R6, R8
ADD R7 € R9, R9 ADD R7 € R9, R9

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
o Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture

18

Preventing Dispatch Stalls

Multiple ways of doing it

You have already seen THREE:

o 1.

a 2.

o 3.

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?

o Actually, you have briefly seen the basic idea before

Dataflow: fetch and “fire” an instruction when its inputs are
ready

o Problem: in-order dispatch (scheduling, or execution)
o Solution: out-of-order dispatch (scheduling, or execution)

19

Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
independent ones

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

20

In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

F|D|E |E|E|E|R|W
F|D| STALL |E |R|W
F| STALL |[D|E |R|W
F|D|E |E |E|E W
F|D STALL R

Out-of-order dispatch + precise exceptions:

F |D|E

R

W

F D

16 vs. 12 cycles

Py

Py
=

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R5 € R6, R8
ADD R7 € R3,R5

21

Enabling OoO Execution

1.

Need to link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

. Need to buffer instructions until they are ready to execute

o Insert instruction into reservation stations after renaming

. Instructions need to keep track of readiness of source values

o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
o Instruction wakes up if all sources are ready
o If multiple instructions are awake, need to select one per FU

22

Tomasulo’s Algorithm

Oo00 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

What is the major difference today?

o Precise exceptions: IBM 360/91 did NOT have this

o Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Variants used in most high-performance processors

o Initially in Intel Pentium Pro, AMD K5
o Alpha 21264, MIPS R10000, IBM POWERS5, IBM 2196, Oracle UltraSPARC T4, ARM Cortex A15

23

Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

v
S
R
C E Integer add -
H Integer mul 0
£ D S E E |[E |E |E JR W
D FP mul D
U >E |E |E |E |E |E |E | E c
. R
E —~E |E |E |E |E |E |E |E |- «
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

24

General Organization of an OOQO Processor

1nstr.
cache

pre-
decode

4

floating pt.

e

gister

file

TER!

instr.
buffer

|
=
=
|

decode.
rename,
&dispatch

floating pt.
Instruction
buffers

integer
register

functional units

- memory

interface

Ga

integer/address

instruction
buffers

functional units
and
data cache

i

file

i

re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.

25

Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

reservation
stations

|

to memory

Common data bus

26

Register Renaming

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist because not enough register ID’ s (i.e.
names) in the ISA

The register ID is renamed to the reservation station entry
that will hold the register’ s value

o Register ID - RS entry ID

o Architectural register ID = Physical register ID

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number

27

Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

RO 1
R1 1
R2 1
R3 1
R4 1
RS 1
1
1
1
1

R6
R7
R8
R9

Tomasulo’s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!

29

An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 €« R2, R6 FIDIE |W
R10 < R8, R9

R11 €< R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

30

Exercise Continued

Mul- Rl R2Z,— R3
ADD R3,RY— RS
Ao R2LREL — RTF-
AP R%, R4 — RAQ
Mmul- R3 RIO = R4
AP RS R 5 RS

| MUL- tnes & oydles
ADD tees 4 oyoles

Huww iy eyotes dobpl wio oldin
e ve e se w, '

o

F D F W
)
o -
Cycles
Z
7

31

Exercise Continued

FD12345£6W

FD-=--- - -D1z:u,w
Pocoslne =~ D123 4 W
. | FD123 4 W
ED--- - DJ23556 W
e N D- D1234 W
y/&
Ened"‘k/\ Frvedone. w’ Sancbcaralms
3| oycles
FD123Le€ 6 W
FD e 3Ly W
F D4 23 -1l
F D123 4L W
E D 9 zsgweuu
F D g2l

2 s-cydc_g

32

Exercise Continued

MUL R3 € R1, R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7, R10
ADD R5 € R5,R11

TMO§JO'S Glg ot _;—Aﬂl h‘w“""ﬁ

D123 4Ls & w
F D b . WP T
FD123¢4 W
£Fp123 (W
F D 4 23486 W
FD

20 oyeles

33

How It Works

Registo Aios Table
Malue.
!] ok weer

SReq Saca. . o o
| NV tag wvlve. V dog velie N s vele W Vohse
Rese~diey a . . _' ¥ _ o .]
Shbn 2\ Y
fo- _i
POOBL. d

rraMalirer huve
S*pwk.

\Tﬂ / | .. /awi

34

Cycle 0

;\/cle 0 L

Rl

| R}

ug velue
sty |

- IntHal corbnds of e
regEle okas jeble

~ resovon shivees are oll ynvelrdd

35

MUl R, R2 — R3A _resds 4% Sowces Aow bre RAT™
—Wwrikes b 4= degdmibion pn e AT

Cycle 2 Cycle 2 :
(rernunes s destmobonr

—> oallccotes o resenpiun shobon eviny
—» allccotes ¢ Hag frrhe deshnckmn
regrs b~

= plees s4s Sewvas m e resSevolnn shign
ey b5 allccodeo! .,

end of- ogcle. 2.
V 48y e
R |1 = T a V dog velee V4 vive
RZ|T | —~ | 4 b X ~11 1l ~1=
RRIO| X | —~ ; v
q
A
+ 2k
Kyfl | ~ 1

-_ MuL. at ¥ &mrw,hWewk.
{ Wind- i muihple. mstngimng 5mmd7.>4—
J‘h.mkmc.)

bk of prs SowceS e, Volid e
TSV Shebren X : E

&/

cyole B: — MuL ot X sheds oneotion
- Aop R?:,ﬂl.,.‘._, RS geote mnencel ond plused mizire,
; AVPRR. rehonrvben Shhnrns
end of oyde 3
RI (1] ~ 1 ol X [~ i~ L‘4 '
Rt~ | 2 Al
R3[O]| X [~ & X~ |11 ~
eyl ~ | 4 o b4
RSIO|Q | ~ -)
Re|1]l~1 6 N o \'j
| =+ \ A=
Rit)) | ~ 1 = =

— ADOD 4+ a4 connd— be Nodybmmlocm

Ore Cf e Swwteg (& e
_,_T—!- IS WoRING for— e vale wd‘h‘h«:'f‘r‘sx

CYCIC 3 v be bracdesst by e UL M >4)

M Dees 4re 4vg need 4z be ecscowkd widn
N RS eviry of he Pnolvcer'?
Arswer: No: ﬁs 15 o tog fo-dre udue o
¥ compmmicdied.
il RS 55 & ploce 4 held he rcindrs
ercboles defla-flaw Whive ey become reody .
’t'tc value W‘dﬁ n Jwic ore les WSM- ?

Cycle 4

AP R2,R6— RZ gots renceed ovd ploced mbv RS @

cyde 4+
end o Fopcle 2y
RN ~ [t] 2W1x 1= 29 =
b ~ - . -~
23 ; % < ' : - Swe 05 Oyde 3
f:;'.é_ G el -
% 1 v - \Y = N
pes = |
0 b A 5

_NI | —~ 1)

—_ ADD o+ b beco-es n'cd +z Sdeodc.

(b sowees cre ready!)
— Aropde S, I 18 gt &k He addes cub-of-pregraa

—3 T4 15 ewecvied befove he add ™ O

38

Cycle 7

"

\

x Al L msindans yereved .

3x~i~.4:o
>(==9 ~{9 =|9| =] ~|o]
LYYRevsegs

— Neoke whd- hoppend v RS

39

Cycle 8

L~
Cyole 8: -~ MuL a+r X and APD 4+ b P
brvodcost 1rer fggeond veoles

— RS ovhtesvwosiny fo- hese bpgs cypbve e vohes
ancd sed e \oud &P~ occovimal s
— (and—rs needed i HW o occamolch 1xa?)

- CAM on +ras trnd oe brcodcosH fo-all 28
O\Wfts@ Screes

— RAT evries wotng forihes hae alse cqobre dve
Volves ond geb he sl SOs accostnsly

40

An Exercise, with Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 €« R2, R6 FIDIEIRI|W
R10 < R8, R9
R11 €< R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

41

Out-of-Order Execution with Precise Exceptions

Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the register alias table (essentially a
future file) when it completes execution

An instruction updates the architectural register file when it
is the oldest in the machine and has completed execution

42

Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

v
S
R
C E Integer add -
H Integer mul 0
£ D S E E |[E |E |E JR W
D FP mul D
U >E |E |E |E |E |E |E | E c
. R
E —~E |E |E |E |E |E |E |E |- «
Load/store
in order out of order in order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

43

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction

44

Summary of OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch

45

