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Announcements

 Homework 2 due Wednesday (Feb 12)

 Lab 3 available online (due Feb 21)
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Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 
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Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).
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Readings Specifically for Today

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts
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Review: How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Remember: Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches 

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted 
target

 Accurate most of the time: 8-entry stack  > 95% accuracy
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Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement 

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls 
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Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

 Idea 2: Use history based target prediction 

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses
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More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect 
Branches via Hardware-Based Dynamic Devirtualization,” ISCA 
2007. 
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Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4
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Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower
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Complications in Superscalar Processors

 “Superscalar” processors

 attempt to execute more than 1 instruction-per-cycle 

 must fetch multiple instructions per cycle

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on 
the first one predicted taken

 If the 1st instruction is the predicted taken branch 

 nullify 2nd instruction fetched
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Multiple Instruction Fetch: Concepts

15



Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation  Two-level global predictor

 Local branch correlation  Two-level local predictor

 Predicated execution

 Multipath execution
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Pipelining and Precise Exceptions: 

Preserving Sequential Semantics



Multi-Cycle Execution

 Not all instructions take the same amount of time for 
“execution”

 Idea: Have multiple different functional units that take 
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions to start execution on a 
different functional unit before a previous long-latency 
instruction finishes execution

18



Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in 
EXECUTE stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture?

 What if FMUL incurs an exception?

 Sequential semantics of the ISA NOT preserved!

19

F D E W

F D E WE E E E E E EFMUL R4  R1, R2

ADD   R3  R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2  R5, R6

ADD   R4  R5, R6

F D E WE E E E E E E



Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check 

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)
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Precise Exceptions/Interrupts

 The architectural state should be consistent when the 
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state
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Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions, e.g. page faults

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented 
opcodes)
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Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 What about memory operations?

 Each functional unit takes 500 cycles?
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Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Recommended Reading

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987.
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Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them 
before making results visible to architectural state

 When instruction is decoded it reserves an entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed 
without exceptions, its result moved to reg. file or memory
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What’s in a ROB Entry?

 Need valid bits to keep track of readiness of the result(s)
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Reorder Buffer: Independent Operations

 Results first written to ROB, then to register file at commit 
time

 What if a later operation needs a value in the reorder 
buffer?

 Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer, 
(or bypass/forwarding paths)
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Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first

 If register not valid, register file stores the ID of the reorder 
buffer entry that contains (or will contain) the value of the 
register

 Mapping of the register to a ROB entry

 Access reorder buffer next

 What is in a reorder buffer entry?

 Can it be simplified further? 
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Aside: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to 
do with each other

 They exist due to lack of register ID’s (i.e. names) in 
the ISA

 The register ID is renamed to the reorder buffer entry that 
will hold the register’s value

 Register ID  ROB entry ID

 Architectural register ID  Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers
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In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if 
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline and start from 
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement 
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Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependencies

 Disadvantages

 Reorder buffer needs to be accessed to get the results that 
are yet to be written to the register file

 CAM or indirection  increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing
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Solution II: History Buffer (HB)

 Idea: Update the register file when instruction completes, 
but UNDO UPDATES when an exception occurs

 When instruction is decoded, it reserves an HB entry

 When the instruction completes, it stores the old value of 
its destination in the HB

 When instruction is oldest and no exceptions/interrupts, the 
HB entry discarded

 When instruction is oldest and an exception needs to be 
handled, old values in the HB are written back into the 
architectural state from tail to head
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History Buffer

 Advantage:

 Register file contains up-to-date values. History buffer access 
not on critical path

 Disadvantage:

 Need to read the old value of the destination register

 Need to unwind the history buffer upon an exception 

increased exception/interrupt handling latency
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Solution III: Future File (FF) + ROB

 Idea: Keep two register files (speculative and architectural)

 Arch reg file: Updated in program order for precise exceptions

 Use a reorder buffer to ensure in-order updates

 Future reg file: Updated as soon as an instruction completes 
(if the instruction is the youngest one to write to a register)

 Future file is used for fast access to latest register values 
(speculative state)

 Frontend register file

 Architectural file is used for state recovery on exceptions
(architectural state)

 Backend register file
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Future File

 Advantage

 No need to read the values from the ROB (no CAM or 
indirection)

 Disadvantage

 Multiple register files

 Need to copy arch. reg. file to future file on an exception
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In-Order Pipeline with Future File and Reorder Buffer

 Decode (D): Access future file, allocate entry in ROB, check if instruction 
can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer and future file 

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline, copy 
architectural file to future file, and start from exception handler 

 In-order dispatch/execution, out-of-order completion, in-order retirement 
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Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

 Recovers architectural state (register file, IP, and memory)

 Flushes all younger instructions in the pipeline

 Saves IP and registers (as specified by the ISA)

 Redirects the fetch engine to the exception handling routine

 Vectored exceptions
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Pipelining Issues: Branch Mispredictions

 A branch misprediction resembles an “exception”

 Except it is not visible to software

 What about branch misprediction recovery?

 Similar to exception handling except can be initiated before 
the branch is the oldest instruction

 All three state recovery methods can be used 

 Difference between exceptions and branch mispredictions?

 Branch mispredictions are much more common 

 need fast state recovery to minimize performance impact of 

mispredictions
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How Fast Is State Recovery?

 Latency of state recovery affects

 Exception service latency

 Interrupt service latency

 Latency to supply the correct data to instructions fetched after 
a branch misprediction

 Which ones above need to be fast?

 How do the three state maintenance methods fare in terms 
of recovery latency?

 Reorder buffer

 History buffer

 Future file
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Branch State Recovery Actions and Latency

 Reorder Buffer

 Wait until branch is the oldest instruction in the machine

 Flush entire pipeline

 History buffer

 Undo all instructions after the branch by rewinding from the 
tail of the history buffer until the branch & restoring old values 
one by one into the register file

 Flush instructions in pipeline younger than the branch

 Future file

 Wait until branch is the oldest instruction in the machine

 Copy arch. reg. file to future file 

 Flush entire pipeline
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Can We Do Better?

 Goal: Restore the frontend state (future file) such that the 
correct next instruction after the branch can execute right 
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state at the time a 
branch is fetched and keep the checkpointed state updated 
with results of instructions older than the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order 
Execution Machines,” ISCA 1987.
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Checkpointing

 When a branch is decoded

 Make a copy of the future file and associate it with the branch

 When an instruction produces a register value

 All future file checkpoints that are younger than the instruction 
are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file for the mispredicted 
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch
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Checkpointing

 Advantages?

 Disadvantages?
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Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a 
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for 
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry 

 When store address and data become available: Record in store 
buffer entry

 When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data
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Out-of-Order Execution

(Dynamic Instruction Scheduling)



An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger 
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit
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Can We Do Better?

 What do the following two pieces of code have in common 
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture
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Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are 
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)
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Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of 
independent ones

 Rest areas for dependent instructions: Reservation stations 

 Monitor the source “values” of each instruction in the 
resting area

 When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order 

 Benefit:

 Latency tolerance: Allows independent instructions to execute 
and complete in the presence of a long latency operation

51



In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
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Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value 

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to 
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU
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Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5  
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15
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Two Humps in a  Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)
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General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995.
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Tomasulo’s Machine: IBM 360/91
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Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to 
do with each other

 They exist because not enough register ID’s (i.e. 
names) in the ISA

 The register ID is renamed to the reservation station entry 
that will hold the register’s value

 Register ID  RS entry ID

 Architectural register ID  Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of 
registers even though ISA has a small number
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 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming
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Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the 
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!
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An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise 
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise 
exceptions (full forwarding)
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Exercise Continued
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Exercise Continued
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Exercise Continued
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How It Works
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Cycle 0
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Cycle 2
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Cycle 4
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Cycle 7
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Cycle 8 
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An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer 
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder 
buffer (full forwarding)

72

MUL   R3  R1, R2

ADD   R5  R3, R4

ADD   R7  R2, R6

ADD   R10  R8, R9

MUL   R11  R7, R10

ADD   R5  R5, R11

F D E R W



Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before 
committing them to architectural state

 An instruction updates the register alias table (essentially a 
future file) when it completes execution

 An instruction updates the architectural register file when it 
is the oldest in the machine and has completed execution
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Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)
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Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value 

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of 
produced value) between instructions

 Wakeup and select enables out-of-order dispatch
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OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired 
instructions

 Can we do it for the whole program? 

 Why would we like to?

 In other words, how can we have a large instruction 
window?

 Can we do it efficiently with Tomasulo’s algorithm?
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Dataflow Graph for Our Example
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State of RAT and RS in Cycle 7
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Dataflow Graph

80



Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture 
level

 ISA is still based on von Neumann model (sequential 
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in 
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
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Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue 
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm?

 Active/instruction window size: determined by register file, 
scheduling window, reorder buffer
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Registers versus Memory, Revisited

 So far, we considered register based value communication 
between instructions

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order 
machine 

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known 
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine
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Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an 
older store’s address is known

 Known as the memory disambiguation problem or the unknown 
address problem

 Approaches

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store
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