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Announcements

 Homework 2 due Wednesday (Feb 12)

 Lab 3 available online (due Feb 21)
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Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999. 
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Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).
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Readings Specifically for Today

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985).

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts
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Review: How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions. 

 Potential solutions if the instruction is a control-flow 
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution)
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Remember: Branch Types

Type Direction at 
fetch time

Number of 
possible next 
fetch addresses?

When is next 
fetch address 
resolved?

Conditional Unknown 2 Execution (register 
dependent)

Unconditional Always taken 1 Decode (PC + 
offset)

Call Always taken 1 Decode (PC + 
offset)

Return Always taken Many Execution (register 
dependent)

Indirect Always taken Many Execution (register 
dependent)
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Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches 

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted 
target

 Accurate most of the time: 8-entry stack  > 95% accuracy
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Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement 

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls 
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Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch 
between different targets

 Idea 2: Use history based target prediction 

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses
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More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect 
Branches via Hardware-Based Dynamic Devirtualization,” ISCA 
2007. 
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Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4
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Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower
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Complications in Superscalar Processors

 “Superscalar” processors

 attempt to execute more than 1 instruction-per-cycle 

 must fetch multiple instructions per cycle

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on 
the first one predicted taken

 If the 1st instruction is the predicted taken branch 

 nullify 2nd instruction fetched
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Multiple Instruction Fetch: Concepts
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Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation  Two-level global predictor

 Local branch correlation  Two-level local predictor

 Predicated execution

 Multipath execution
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Pipelining and Precise Exceptions: 

Preserving Sequential Semantics



Multi-Cycle Execution

 Not all instructions take the same amount of time for 
“execution”

 Idea: Have multiple different functional units that take 
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions to start execution on a 
different functional unit before a previous long-latency 
instruction finishes execution
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Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in 
EXECUTE stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture?

 What if FMUL incurs an exception?

 Sequential semantics of the ISA NOT preserved!
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Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check 

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)
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Precise Exceptions/Interrupts

 The architectural state should be consistent when the 
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired. 

Retire = commit = finish execution and update arch. state
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Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions, e.g. page faults

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented 
opcodes)
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Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 What about memory operations?

 Each functional unit takes 500 cycles?
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Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Recommended Reading

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined 
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution 
Machines,” ISCA 1987.
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Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them 
before making results visible to architectural state

 When instruction is decoded it reserves an entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed 
without exceptions, its result moved to reg. file or memory
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What’s in a ROB Entry?

 Need valid bits to keep track of readiness of the result(s)
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Reorder Buffer: Independent Operations

 Results first written to ROB, then to register file at commit 
time

 What if a later operation needs a value in the reorder 
buffer?

 Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer, 
(or bypass/forwarding paths)
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Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first

 If register not valid, register file stores the ID of the reorder 
buffer entry that contains (or will contain) the value of the 
register

 Mapping of the register to a ROB entry

 Access reorder buffer next

 What is in a reorder buffer entry?

 Can it be simplified further? 
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Aside: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to 
do with each other

 They exist due to lack of register ID’s (i.e. names) in 
the ISA

 The register ID is renamed to the reorder buffer entry that 
will hold the register’s value

 Register ID  ROB entry ID

 Architectural register ID  Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers
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In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if 
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline and start from 
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement 

31

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R



Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependencies

 Disadvantages

 Reorder buffer needs to be accessed to get the results that 
are yet to be written to the register file

 CAM or indirection  increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing
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Solution II: History Buffer (HB)

 Idea: Update the register file when instruction completes, 
but UNDO UPDATES when an exception occurs

 When instruction is decoded, it reserves an HB entry

 When the instruction completes, it stores the old value of 
its destination in the HB

 When instruction is oldest and no exceptions/interrupts, the 
HB entry discarded

 When instruction is oldest and an exception needs to be 
handled, old values in the HB are written back into the 
architectural state from tail to head
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History Buffer

 Advantage:

 Register file contains up-to-date values. History buffer access 
not on critical path

 Disadvantage:

 Need to read the old value of the destination register

 Need to unwind the history buffer upon an exception 

increased exception/interrupt handling latency
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Solution III: Future File (FF) + ROB

 Idea: Keep two register files (speculative and architectural)

 Arch reg file: Updated in program order for precise exceptions

 Use a reorder buffer to ensure in-order updates

 Future reg file: Updated as soon as an instruction completes 
(if the instruction is the youngest one to write to a register)

 Future file is used for fast access to latest register values 
(speculative state)

 Frontend register file

 Architectural file is used for state recovery on exceptions
(architectural state)

 Backend register file
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Future File

 Advantage

 No need to read the values from the ROB (no CAM or 
indirection)

 Disadvantage

 Multiple register files

 Need to copy arch. reg. file to future file on an exception
36
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In-Order Pipeline with Future File and Reorder Buffer

 Decode (D): Access future file, allocate entry in ROB, check if instruction 
can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer and future file 

 Retirement/Commit (W): Check for exceptions; if none, write result to 
architectural register file or memory; else, flush pipeline, copy 
architectural file to future file, and start from exception handler 

 In-order dispatch/execution, out-of-order completion, in-order retirement 
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Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected 
to have caused an exception, the control logic

 Recovers architectural state (register file, IP, and memory)

 Flushes all younger instructions in the pipeline

 Saves IP and registers (as specified by the ISA)

 Redirects the fetch engine to the exception handling routine

 Vectored exceptions
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Pipelining Issues: Branch Mispredictions

 A branch misprediction resembles an “exception”

 Except it is not visible to software

 What about branch misprediction recovery?

 Similar to exception handling except can be initiated before 
the branch is the oldest instruction

 All three state recovery methods can be used 

 Difference between exceptions and branch mispredictions?

 Branch mispredictions are much more common 

 need fast state recovery to minimize performance impact of 

mispredictions
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How Fast Is State Recovery?

 Latency of state recovery affects

 Exception service latency

 Interrupt service latency

 Latency to supply the correct data to instructions fetched after 
a branch misprediction

 Which ones above need to be fast?

 How do the three state maintenance methods fare in terms 
of recovery latency?

 Reorder buffer

 History buffer

 Future file
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Branch State Recovery Actions and Latency

 Reorder Buffer

 Wait until branch is the oldest instruction in the machine

 Flush entire pipeline

 History buffer

 Undo all instructions after the branch by rewinding from the 
tail of the history buffer until the branch & restoring old values 
one by one into the register file

 Flush instructions in pipeline younger than the branch

 Future file

 Wait until branch is the oldest instruction in the machine

 Copy arch. reg. file to future file 

 Flush entire pipeline
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Can We Do Better?

 Goal: Restore the frontend state (future file) such that the 
correct next instruction after the branch can execute right 
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state at the time a 
branch is fetched and keep the checkpointed state updated 
with results of instructions older than the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order 
Execution Machines,” ISCA 1987.
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Checkpointing

 When a branch is decoded

 Make a copy of the future file and associate it with the branch

 When an instruction produces a register value

 All future file checkpoints that are younger than the instruction 
are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file for the mispredicted 
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch
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Checkpointing

 Advantages?

 Disadvantages?

44



Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a 
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for 
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry 

 When store address and data become available: Record in store 
buffer entry

 When the store is the oldest instruction in the pipeline: Update 
the memory address (i.e. cache) with store data
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Out-of-Order Execution

(Dynamic Instruction Scheduling)



An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger 
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

48

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W



Can We Do Better?

 What do the following two pieces of code have in common 
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture
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Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are 
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)
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Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of 
independent ones

 Rest areas for dependent instructions: Reservation stations 

 Monitor the source “values” of each instruction in the 
resting area

 When all source “values” of an instruction are available, 
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order 

 Benefit:

 Latency tolerance: Allows independent instructions to execute 
and complete in the presence of a long latency operation
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In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
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Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value 

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to 
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU
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Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple 
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and 
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance 
microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5  
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15
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Two Humps in a  Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)
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General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec. 
1995.
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Tomasulo’s Machine: IBM 360/91
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Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to 
do with each other

 They exist because not enough register ID’s (i.e. 
names) in the ISA

 The register ID is renamed to the reservation station entry 
that will hold the register’s value

 Register ID  RS entry ID

 Architectural register ID  Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of 
registers even though ISA has a small number
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 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming
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Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the 
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value 

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!
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An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise 
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise 
exceptions (full forwarding)
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MUL   R3  R1, R2

ADD   R5  R3, R4

ADD   R7  R2, R6

ADD   R10  R8, R9

MUL   R11  R7, R10

ADD   R5  R5, R11
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Exercise Continued
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Exercise Continued
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Exercise Continued
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MUL   R3  R1, R2

ADD   R5  R3, R4

ADD   R7  R2, R6

ADD   R10  R8, R9

MUL   R11  R7, R10

ADD   R5  R5, R11



How It Works
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Cycle 0
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Cycle 2
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Cycle 3



Cycle 4
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Cycle 7
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Cycle 8 

71



An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer 
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder 
buffer (full forwarding)

72

MUL   R3  R1, R2

ADD   R5  R3, R4

ADD   R7  R2, R6

ADD   R10  R8, R9

MUL   R11  R7, R10

ADD   R5  R5, R11
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Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before 
committing them to architectural state

 An instruction updates the register alias table (essentially a 
future file) when it completes execution

 An instruction updates the architectural register file when it 
is the oldest in the machine and has completed execution
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Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)
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Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value 

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction
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Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of 
produced value) between instructions

 Wakeup and select enables out-of-order dispatch
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OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow 
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired 
instructions

 Can we do it for the whole program? 

 Why would we like to?

 In other words, how can we have a large instruction 
window?

 Can we do it efficiently with Tomasulo’s algorithm?
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Dataflow Graph for Our Example

78

MUL   R3  R1, R2

ADD   R5  R3, R4

ADD   R7  R2, R6

ADD   R10  R8, R9

MUL   R11  R7, R10

ADD   R5  R5, R11



State of RAT and RS in Cycle 7
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Dataflow Graph
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Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture 
level

 ISA is still based on von Neumann model (sequential 
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in 
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
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Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of 
multi-cycle operations by executing independent operations 
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue 
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s 
algorithm?

 Active/instruction window size: determined by register file, 
scheduling window, reorder buffer
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Registers versus Memory, Revisited

 So far, we considered register based value communication 
between instructions

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order 
machine 

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known 
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine
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Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an 
older store’s address is known

 Known as the memory disambiguation problem or the unknown 
address problem

 Approaches

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store
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