
18-447

Computer Architecture

Lecture 11: Precise Exceptions,

State Maintenance, State Recovery

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/10/2014

Announcements

 Homework 2 due Wednesday (Feb 12)

 Lab 3 available online (due Feb 21)

2

Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

3

Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

4

Readings Specifically for Today

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

5

Review: How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

6

Remember: Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

7

Different branch types can be handled differently

Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted
target

 Accurate most of the time: 8-entry stack > 95% accuracy

8

Call X

…

Call X

…

Call X

…

Return

Return

Return

Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls

9

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1

Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

 Idea 2: Use history based target prediction

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses

10

More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.

11

Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4

12

Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower

13

PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???

Complications in Superscalar Processors

 “Superscalar” processors

 attempt to execute more than 1 instruction-per-cycle

 must fetch multiple instructions per cycle

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 NOTE both instructions could be control-flow; prediction based on
the first one predicted taken

 If the 1st instruction is the predicted taken branch

 nullify 2nd instruction fetched

14

Multiple Instruction Fetch: Concepts

15

Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation Two-level global predictor

 Local branch correlation Two-level local predictor

 Predicated execution

 Multipath execution

16

Pipelining and Precise Exceptions:

Preserving Sequential Semantics

Multi-Cycle Execution

 Not all instructions take the same amount of time for
“execution”

 Idea: Have multiple different functional units that take
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions to start execution on a
different functional unit before a previous long-latency
instruction finishes execution

18

Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in
EXECUTE stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture?

 What if FMUL incurs an exception?

 Sequential semantics of the ISA NOT preserved!

19

F D E W

F D E WE E E E E E EFMUL R4 R1, R2

ADD R3 R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 R5, R6

ADD R4 R5, R6

F D E WE E E E E E E

Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)
20

Precise Exceptions/Interrupts

 The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

21

Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions, e.g. page faults

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented
opcodes)

22

Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 What about memory operations?

 Each functional unit takes 500 cycles?

23

F D E W

F D E WE E E E E E E

F D E W

F D E W

F D E W

F D E W

F D E W

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

FMUL R3 R1, R2

ADD R4 R1, R2

Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Recommended Reading

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

24

Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

 When instruction is decoded it reserves an entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

25

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer

Instruction

Cache

What’s in a ROB Entry?

 Need valid bits to keep track of readiness of the result(s)

26

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data

+ control bits
Exc?

Reorder Buffer: Independent Operations

 Results first written to ROB, then to register file at commit
time

 What if a later operation needs a value in the reorder
buffer?

 Read reorder buffer in parallel with the register file. How?

27

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

28

Register

File

Func Unit

Func Unit

Func UnitReorder

Buffer

Instruction

Cache

bypass path

Content

Addressable

Memory

(searched with

register ID)

Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first

 If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

 Mapping of the register to a ROB entry

 Access reorder buffer next

 What is in a reorder buffer entry?

 Can it be simplified further?

29

V DestRegID DestRegVal StoreAddr StoreData PC/IP
Control/val

id bits
Exc?

Aside: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist due to lack of register ID’s (i.e. names) in
the ISA

 The register ID is renamed to the reorder buffer entry that
will hold the register’s value

 Register ID ROB entry ID

 Architectural register ID Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers

30

In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

31

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependencies

 Disadvantages

 Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

 CAM or indirection increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing

32

Solution II: History Buffer (HB)

 Idea: Update the register file when instruction completes,
but UNDO UPDATES when an exception occurs

 When instruction is decoded, it reserves an HB entry

 When the instruction completes, it stores the old value of
its destination in the HB

 When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

 When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head

33

History Buffer

 Advantage:

 Register file contains up-to-date values. History buffer access
not on critical path

 Disadvantage:

 Need to read the old value of the destination register

 Need to unwind the history buffer upon an exception

increased exception/interrupt handling latency

34

Register

File

Func Unit

Func Unit

Func Unit

History

Buffer

Instruction

Cache

Used only on exceptions

Solution III: Future File (FF) + ROB

 Idea: Keep two register files (speculative and architectural)

 Arch reg file: Updated in program order for precise exceptions

 Use a reorder buffer to ensure in-order updates

 Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

 Future file is used for fast access to latest register values
(speculative state)

 Frontend register file

 Architectural file is used for state recovery on exceptions
(architectural state)

 Backend register file

35

Future File

 Advantage

 No need to read the values from the ROB (no CAM or
indirection)

 Disadvantage

 Multiple register files

 Need to copy arch. reg. file to future file on an exception
36

Future

File

Func Unit

Func Unit

Func Unit

Arch.

File
Instruction

Cache

Used only on exceptions

ROB

VData or Tag

In-Order Pipeline with Future File and Reorder Buffer

 Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer and future file

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

37

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

 Recovers architectural state (register file, IP, and memory)

 Flushes all younger instructions in the pipeline

 Saves IP and registers (as specified by the ISA)

 Redirects the fetch engine to the exception handling routine

 Vectored exceptions

38

Pipelining Issues: Branch Mispredictions

 A branch misprediction resembles an “exception”

 Except it is not visible to software

 What about branch misprediction recovery?

 Similar to exception handling except can be initiated before
the branch is the oldest instruction

 All three state recovery methods can be used

 Difference between exceptions and branch mispredictions?

 Branch mispredictions are much more common

 need fast state recovery to minimize performance impact of

mispredictions

39

How Fast Is State Recovery?

 Latency of state recovery affects

 Exception service latency

 Interrupt service latency

 Latency to supply the correct data to instructions fetched after
a branch misprediction

 Which ones above need to be fast?

 How do the three state maintenance methods fare in terms
of recovery latency?

 Reorder buffer

 History buffer

 Future file

40

Branch State Recovery Actions and Latency

 Reorder Buffer

 Wait until branch is the oldest instruction in the machine

 Flush entire pipeline

 History buffer

 Undo all instructions after the branch by rewinding from the
tail of the history buffer until the branch & restoring old values
one by one into the register file

 Flush instructions in pipeline younger than the branch

 Future file

 Wait until branch is the oldest instruction in the machine

 Copy arch. reg. file to future file

 Flush entire pipeline
41

Can We Do Better?

 Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state at the time a
branch is fetched and keep the checkpointed state updated
with results of instructions older than the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

42

Checkpointing

 When a branch is decoded

 Make a copy of the future file and associate it with the branch

 When an instruction produces a register value

 All future file checkpoints that are younger than the instruction
are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file for the mispredicted
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch

43

Checkpointing

 Advantages?

 Disadvantages?

44

Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

45

Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry

 When store address and data become available: Record in store
buffer entry

 When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

46

Out-of-Order Execution

(Dynamic Instruction Scheduling)

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

48

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?

 What do the following two pieces of code have in common
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture

49

IMUL R3 R1, R2

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R3, R5

LD R3 R1 (0)

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R3, R5

Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)

50

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones

 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

51

In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
52

F D WE E E E R

F D E R W

F

IMUL R3 R1, R2

ADD R3 R3, R1

ADD R1 R6, R7

IMUL R5 R6, R8

ADD R7 R3, R5
D E R W

F D E R W

F D E R W

F D WE E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU

53

Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

54

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

55

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

56

Tomasulo’s Machine: IBM 360/91

57

FP FU FP FU

from memory

load

buffers

from instruction unit
FP registers

store buffers

to memory

operation bus

reservation

stations

Common data bus

Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value

 Register ID RS entry ID

 Architectural register ID Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of
registers even though ISA has a small number

58

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

59

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1

1

1

1

1

1

1

1

1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!

60

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

61

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

F D E W

Exercise Continued

62

Exercise Continued

63

Exercise Continued

64

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

How It Works

65

Cycle 0

66

Cycle 2

67

68

Cycle 3

Cycle 4

69

Cycle 7

70

Cycle 8

71

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

72

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a
future file) when it completes execution

 An instruction updates the architectural register file when it
is the oldest in the machine and has completed execution

73

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

74

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

75

Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

76

OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

77

Dataflow Graph for Our Example

78

MUL R3 R1, R2

ADD R5 R3, R4

ADD R7 R2, R6

ADD R10 R8, R9

MUL R11 R7, R10

ADD R5 R5, R11

State of RAT and RS in Cycle 7

79

Dataflow Graph

80

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
81

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by register file,
scheduling window, reorder buffer

82

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

83

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

84

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

85

