
18-447

Computer Architecture

Lecture 11: Precise Exceptions,

State Maintenance, State Recovery

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/10/2014

Announcements

 Homework 2 due Wednesday (Feb 12)

 Lab 3 available online (due Feb 21)

2

Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

3

Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

4

Readings Specifically for Today

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

5

Review: How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

6

Remember: Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

7

Different branch types can be handled differently

Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted
target

 Accurate most of the time: 8-entry stack  > 95% accuracy

8

Call X

…

Call X

…

Call X

…

Return

Return

Return

Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls

9

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1

Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

 Idea 2: Use history based target prediction

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses

10

More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.

11

Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit  indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4

12

Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower

13

PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???

Complications in Superscalar Processors

 “Superscalar” processors

 attempt to execute more than 1 instruction-per-cycle

 must fetch multiple instructions per cycle

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 *NOTE* both instructions could be control-flow; prediction based on
the first one predicted taken

 If the 1st instruction is the predicted taken branch

 nullify 2nd instruction fetched

14

Multiple Instruction Fetch: Concepts

15

Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation  Two-level global predictor

 Local branch correlation  Two-level local predictor

 Predicated execution

 Multipath execution

16

Pipelining and Precise Exceptions:

Preserving Sequential Semantics

Multi-Cycle Execution

 Not all instructions take the same amount of time for
“execution”

 Idea: Have multiple different functional units that take
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions to start execution on a
different functional unit before a previous long-latency
instruction finishes execution

18

Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in
EXECUTE stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture?

 What if FMUL incurs an exception?

 Sequential semantics of the ISA NOT preserved!

19

F D E W

F D E WE E E E E E EFMUL R4  R1, R2

ADD R3  R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2  R5, R6

ADD R4  R5, R6

F D E WE E E E E E E

Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)
20

Precise Exceptions/Interrupts

 The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

21

Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions, e.g. page faults

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented
opcodes)

22

Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 What about memory operations?

 Each functional unit takes 500 cycles?

23

F D E W

F D E WE E E E E E E

F D E W

F D E W

F D E W

F D E W

F D E W

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

FMUL R3  R1, R2

ADD R4  R1, R2

Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Recommended Reading

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

24

Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

 When instruction is decoded it reserves an entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

25

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer

Instruction

Cache

What’s in a ROB Entry?

 Need valid bits to keep track of readiness of the result(s)

26

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data

+ control bits
Exc?

Reorder Buffer: Independent Operations

 Results first written to ROB, then to register file at commit
time

 What if a later operation needs a value in the reorder
buffer?

 Read reorder buffer in parallel with the register file. How?

27

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

28

Register

File

Func Unit

Func Unit

Func UnitReorder

Buffer

Instruction

Cache

bypass path

Content

Addressable

Memory

(searched with

register ID)

Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first

 If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

 Mapping of the register to a ROB entry

 Access reorder buffer next

 What is in a reorder buffer entry?

 Can it be simplified further?

29

V DestRegID DestRegVal StoreAddr StoreData PC/IP
Control/val

id bits
Exc?

Aside: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist due to lack of register ID’s (i.e. names) in
the ISA

 The register ID is renamed to the reorder buffer entry that
will hold the register’s value

 Register ID  ROB entry ID

 Architectural register ID  Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers

30

In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

31

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependencies

 Disadvantages

 Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

 CAM or indirection  increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing

32

Solution II: History Buffer (HB)

 Idea: Update the register file when instruction completes,
but UNDO UPDATES when an exception occurs

 When instruction is decoded, it reserves an HB entry

 When the instruction completes, it stores the old value of
its destination in the HB

 When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

 When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head

33

History Buffer

 Advantage:

 Register file contains up-to-date values. History buffer access
not on critical path

 Disadvantage:

 Need to read the old value of the destination register

 Need to unwind the history buffer upon an exception 

increased exception/interrupt handling latency

34

Register

File

Func Unit

Func Unit

Func Unit

History

Buffer

Instruction

Cache

Used only on exceptions

Solution III: Future File (FF) + ROB

 Idea: Keep two register files (speculative and architectural)

 Arch reg file: Updated in program order for precise exceptions

 Use a reorder buffer to ensure in-order updates

 Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

 Future file is used for fast access to latest register values
(speculative state)

 Frontend register file

 Architectural file is used for state recovery on exceptions
(architectural state)

 Backend register file

35

Future File

 Advantage

 No need to read the values from the ROB (no CAM or
indirection)

 Disadvantage

 Multiple register files

 Need to copy arch. reg. file to future file on an exception
36

Future

File

Func Unit

Func Unit

Func Unit

Arch.

File
Instruction

Cache

Used only on exceptions

ROB

VData or Tag

In-Order Pipeline with Future File and Reorder Buffer

 Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer and future file

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

37

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

 Recovers architectural state (register file, IP, and memory)

 Flushes all younger instructions in the pipeline

 Saves IP and registers (as specified by the ISA)

 Redirects the fetch engine to the exception handling routine

 Vectored exceptions

38

Pipelining Issues: Branch Mispredictions

 A branch misprediction resembles an “exception”

 Except it is not visible to software

 What about branch misprediction recovery?

 Similar to exception handling except can be initiated before
the branch is the oldest instruction

 All three state recovery methods can be used

 Difference between exceptions and branch mispredictions?

 Branch mispredictions are much more common

 need fast state recovery to minimize performance impact of

mispredictions

39

How Fast Is State Recovery?

 Latency of state recovery affects

 Exception service latency

 Interrupt service latency

 Latency to supply the correct data to instructions fetched after
a branch misprediction

 Which ones above need to be fast?

 How do the three state maintenance methods fare in terms
of recovery latency?

 Reorder buffer

 History buffer

 Future file

40

Branch State Recovery Actions and Latency

 Reorder Buffer

 Wait until branch is the oldest instruction in the machine

 Flush entire pipeline

 History buffer

 Undo all instructions after the branch by rewinding from the
tail of the history buffer until the branch & restoring old values
one by one into the register file

 Flush instructions in pipeline younger than the branch

 Future file

 Wait until branch is the oldest instruction in the machine

 Copy arch. reg. file to future file

 Flush entire pipeline
41

Can We Do Better?

 Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state at the time a
branch is fetched and keep the checkpointed state updated
with results of instructions older than the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

42

Checkpointing

 When a branch is decoded

 Make a copy of the future file and associate it with the branch

 When an instruction produces a register value

 All future file checkpoints that are younger than the instruction
are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file for the mispredicted
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch

43

Checkpointing

 Advantages?

 Disadvantages?

44

Registers versus Memory

 So far, we considered mainly registers as part of state

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

45

Maintaining Speculative Memory State: Stores

 Handling out-of-order completion of memory operations

 UNDOing a memory write more difficult than UNDOing a
register write. Why?

 One idea: Keep store address/data in reorder buffer

 How does a load instruction find its data?

 Store/write buffer: Similar to reorder buffer, but used only for
store instructions

 Program-order list of un-committed store operations

 When store is decoded: Allocate a store buffer entry

 When store address and data become available: Record in store
buffer entry

 When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data

46

Out-of-Order Execution

(Dynamic Instruction Scheduling)

An In-order Pipeline

 Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

 Dispatch: Act of sending an instruction to a functional unit

48

F D

E

R

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Cache miss

W

Can We Do Better?

 What do the following two pieces of code have in common
(with respect to execution in the previous design)?

 Answer: First ADD stalls the whole pipeline!

 ADD cannot dispatch because its source registers unavailable

 Later independent instructions cannot get executed

 How are the above code portions different?

 Answer: Load latency is variable (unknown until runtime)

 What does this affect? Think compiler vs. microarchitecture

49

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5

LD R3  R1 (0)

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5

Preventing Dispatch Stalls

 Multiple ways of doing it

 You have already seen THREE:

 1. Fine-grained multithreading

 2. Value prediction

 3. Compile-time instruction scheduling/reordering

 What are the disadvantages of the above three?

 Any other way to prevent dispatch stalls?

 Actually, you have briefly seen the basic idea before

 Dataflow: fetch and “fire” an instruction when its inputs are
ready

 Problem: in-order dispatch (scheduling, or execution)

 Solution: out-of-order dispatch (scheduling, or execution)

50

Out-of-order Execution (Dynamic Scheduling)

 Idea: Move the dependent instructions out of the way of
independent ones

 Rest areas for dependent instructions: Reservation stations

 Monitor the source “values” of each instruction in the
resting area

 When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

 Instructions dispatched in dataflow (not control-flow) order

 Benefit:

 Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation

51

In-order vs. Out-of-order Dispatch

 In order dispatch + precise exceptions:

 Out-of-order dispatch + precise exceptions:

 16 vs. 12 cycles
52

F D WE E E E R

F D E R W

F

IMUL R3  R1, R2

ADD R3  R3, R1

ADD R1  R6, R7

IMUL R5  R6, R8

ADD R7  R3, R5
D E R W

F D E R W

F D E R W

F D WE E E E R

F D

STALL

STALL

E R W

F D

E E E E

STALL

E R

F D E E E E R W

F D E R W

WAIT

WAIT

W

Enabling OoO Execution

1. Need to link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Need to buffer instructions until they are ready to execute

 Insert instruction into reservation stations after renaming

3. Instructions need to keep track of readiness of source values

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, need to
dispatch the instruction to its functional unit (FU)

 Instruction wakes up if all sources are ready

 If multiple instructions are awake, need to select one per FU

53

Tomasulo’s Algorithm

 OoO with register renaming invented by Robert Tomasulo

 Used in IBM 360/91 Floating Point Units

 Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

 What is the major difference today?

 Precise exceptions: IBM 360/91 did NOT have this

 Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

 Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

 Variants used in most high-performance processors

 Initially in Intel Pentium Pro, AMD K5
 Alpha 21264, MIPS R10000, IBM POWER5, IBM z196, Oracle UltraSPARC T4, ARM Cortex A15

54

Two Humps in a Modern Pipeline

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

55

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

General Organization of an OOO Processor

 Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.
1995.

56

Tomasulo’s Machine: IBM 360/91

57

FP FU FP FU

from memory

load

buffers

from instruction unit
FP registers

store buffers

to memory

operation bus

reservation

stations

Common data bus

Register Renaming

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist because not enough register ID’s (i.e.
names) in the ISA

 The register ID is renamed to the reservation station entry
that will hold the register’s value

 Register ID  RS entry ID

 Architectural register ID  Physical register ID

 After renaming, RS entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Approximates the performance effect of a large number of
registers even though ISA has a small number

58

 Register rename table (register alias table)

Tomasulo’s Algorithm: Renaming

59

R0

R1

R2

R3

tag value valid?

R4

R5

R6

R7

R8

R9

1

1

1

1

1

1

1

1

1

1

Tomasulo’s Algorithm
 If reservation station available before renaming

 Instruction + renamed operands (source value/tag) inserted into the
reservation station

 Only rename if reservation station is available

 Else stall
 While in reservation station, each instruction:

 Watches common data bus (CDB) for tag of its sources
 When tag seen, grab value for the source and keep it in the reservation station
 When both operands available, instruction ready to be dispatched

 Dispatch instruction to the Functional Unit when instruction is ready
 After instruction finishes in the Functional Unit

 Arbitrate for CDB
 Put tagged value onto CDB (tag broadcast)
 Register file is connected to the CDB

 Register contains a tag indicating the latest writer to the register
 If the tag in the register file matches the broadcast tag, write broadcast value

into register (and set valid bit)

 Reclaim rename tag
 no valid copy of tag in system!

60

An Exercise

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)

61

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

F D E W

Exercise Continued

62

Exercise Continued

63

Exercise Continued

64

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

How It Works

65

Cycle 0

66

Cycle 2

67

68

Cycle 3

Cycle 4

69

Cycle 7

70

Cycle 8

71

An Exercise, with Precise Exceptions

 Assume ADD (4 cycle execute), MUL (6 cycle execute)

 Assume one adder and one multiplier

 How many cycles

 in a non-pipelined machine

 in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

 in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)

72

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

F D E R W

Out-of-Order Execution with Precise Exceptions

 Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

 An instruction updates the register alias table (essentially a
future file) when it completes execution

 An instruction updates the architectural register file when it
is the oldest in the machine and has completed execution

73

Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

74

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

75

Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

76

OOO Execution: Restricted Dataflow

 An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

 which piece?

 The dataflow graph is limited to the instruction window

 Instruction window: all decoded but not yet retired
instructions

 Can we do it for the whole program?

 Why would we like to?

 In other words, how can we have a large instruction
window?

 Can we do it efficiently with Tomasulo’s algorithm?

77

Dataflow Graph for Our Example

78

MUL R3  R1, R2

ADD R5  R3, R4

ADD R7  R2, R6

ADD R10  R8, R9

MUL R11  R7, R10

ADD R5  R5, R11

State of RAT and RS in Cycle 7

79

Dataflow Graph

80

Restricted Data Flow

 An out-of-order machine is a “restricted data flow” machine

 Dataflow-based execution is restricted to the microarchitecture
level

 ISA is still based on von Neumann model (sequential
execution)

 Remember the data flow model (at the ISA level):

 Dataflow model: An instruction is fetched and executed in
data flow order

 i.e., when its operands are ready

 i.e., there is no instruction pointer

 Instruction ordering specified by data flow dependence

 Each instruction specifies “who” should receive the result

 An instruction can “fire” whenever all operands are received
81

Questions to Ponder

 Why is OoO execution beneficial?

 What if all operations take single cycle?

 Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

 What if an instruction takes 500 cycles?

 How large of an instruction window do we need to continue
decoding?

 How many cycles of latency can OoO tolerate?

 What limits the latency tolerance scalability of Tomasulo’s
algorithm?

 Active/instruction window size: determined by register file,
scheduling window, reorder buffer

82

Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

83

Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

84

Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

85

