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Announcements
Homework 2 due Wednesday (Feb 12)

Lab 3 available online (due Feb 21)



Readings for Next Few Lectures (I)

P&H Chapter 4.9-4.11

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts

McFarling, "Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.



Readings for Next Few Lectures (I1)

Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).



Readings Specifically for Today

Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

Smith and Sohi, "The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

o More advanced pipelining
o Interrupt and exception handling
o Out-of-order and superscalar execution concepts



Review: How to Handle Control Dependences

Critical to keep the pipeline full with correct sequence of
dynamic instructions.

Potential solutions if the instruction is a control-flow
Instruction:

Stall the pipeline until we know the next fetch address
Guess the next fetch address (branch prediction)

Employ delayed branching (branch delay slot)

Do something else (fine-grained multithreading)
Eliminate control-flow instructions (predicated execution)

Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)



Remember: Branch Types

Type Direction at Number of When is next
fetch time possible next fetch address
fetch addresses? | resolved?
Conditional Unknown 2 Execution (register
dependent)
Unconditional Always taken 1 Decode (PC +
offset)
Call Always taken 1 Decode (PC +
offset)
Return Always taken Many Execution (register
dependent)
Indirect Always taken Many Execution (register
dependent)

Different branch types can be handled differently




Call and Return Prediction

. . Call X
Direct calls are easy to predict
o Always taken, single target Call X
o Call marked in BTB, target predicted by BTB Call X
I.'\.’.eturn
Returns are indirect branches ReturF;eturn

o A function can be called from many points in code
o A return instruction can have many target addresses
Next instruction after each call point for the same function
o Observation: Usually a return matches a call
o Idea: Use a stack to predict return addresses (Return Address Stack)

A fetched call: pushes the return (next instruction) address on the stack

A fetched return: pops the stack and uses the address as its predicted
target

Accurate most of the time: 8-entry stack > > 95% accuracy



Indirect Branch Prediction (I)

Register-indirect branches have multiple targets

A br.cond TARGET A R1 = MEM[R2]
Ay \NA 2 branch R1
A
TARG A+1
a | Blo]p
Conditional (Direct) Branch Indirect Jump

Used to implement

o Switch-case statements

o Virtual function calls

o Jump tables (of function pointers)
o Interface calls



Indirect Branch Prediction (1)

No direction prediction needed

Idea 1: Predict the last resolved target as the next fetch address
+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

Idea 2: Use history based target prediction
o E.g., Index the BTB with GHR XORed with Indirect Branch PC
o Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.
+ More accurate
-- An indirect branch maps to (too) many entries in BTB
-- Conflict misses with other branches (direct or indirect)
-- Inefficient use of space if branch has few target addresses
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More Ideas on Indirect Branches?

Virtual Program Counter prediction

o Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

o i.e., devirtualize the indirect branch in hardware

Curious?

o Kim et al., "VPC Prediction: Reducing the Cost of Indirect

Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.
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Issues in Branch Prediction (I)

Need to identify a branch before it is fetched

How do we do this?
o BTB hit = indicates that the fetched instruction is a branch
o BTB entry contains the “type” of the branch

What if no BTB?
o Bubble in the pipeline until target address is computed
o E.g., IBM POWER4
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Issues in Branch Prediction (II)

Latency: Prediction is latency critical
o Need to generate next fetch address for the next cycle
o Bigger, more complex predictors are more accurate but slower

PC + inst size ———»
BTB target ' Next Fetch
Return Address Stack target > > Address

Indirect Branch Predictor target —
Resolved target from Backend —

?7?77?
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Complications 1n Superscalar Processors

“Superscalar” processors
0 attempt to execute more than 1 instruction-per-cycle
o must fetch multiple instructions per cycle

Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst
nPC=PC+38
(case 2) One of the insts is a taken control flow inst

nPC = predicted target addr

*NOTE* both instructions could be control-flow; prediction based on
the first one predicted taken

If the 1stinstruction is the predicted taken branch
- nullify 2" instruction fetched
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Multiple Instruction Fetch: Concepts
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Review of LLast Few Lectures

Control dependence handling in pipelined machines
o Delayed branching
o Fine-grained multithreading

o Branch prediction
Compile time (static)
o Always NT, Always T, Backward T Forward NT, Profile based
Run time (dynamic)
0 Last time predictor
0 Hysteresis: 2BC predictor
0 Global branch correlation - Two-level global predictor
0 Local branch correlation > Two-level local predictor

o Predicated execution
o Multipath execution
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Pipelining and Precise Exceptions:
Preserving Sequential Semantics




Multi-Cycle Execution

Not all instructions take the same amount of time for
“execution”

Idea: Have multiple different functional units that take
different number of cycles

o Can be pipelined or not pipelined

o Can let independent instructions to start execution on a
different functional unit before a previous long-latency
instruction finishes execution
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Issues 1n Pipelining: Multi-Cycle

Hxecute

Instructions can take different number of cycles in

EXECUTE stage

o Integer ADD versus FP MULtiply

FMUL R4 € R1, R2
ADD R3 € R1, R2

FMUL R2 € R5, R6
ADD R4 € R5,R6

o What is wrong with this picture?

F |D|E|E|E|E|E|E|E|E|W
F|D|E |W
F |D|E |W
F|D|E |W
F |D|E|E|E|E|E |E|E
F|D|E |W
F (D |E|W

What if FMUL incurs an exception?
Sequential semantics of the ISA NOT preserved!




Exceptions vs. Interrupts

Cause
o Exceptions: internal to the running thread
o Interrupts: external to the running thread

When to Handle

o Exceptions: when detected (and known to be non-speculative)
o Interrupts: when convenient

Except for very high priority ones
o Power failure
o Machine check

Priority: process (exception), depends (interrupt)

Handling Context: process (exception), system (interrupt)
20



Precise Exceptions/Interrupts

The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.
2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state
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Why Do We Want Precise Exceptions?

Semantics of the von Neumann model ISA specifies it
o Remember von Neumann vs. dataflow

Aids software debugging
Enables (easy) recovery from exceptions, e.g. page faults
Enables (easily) restartable processes

Enables traps into software (e.g., software implemented
opcodes)
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Ensuring Precise Exceptions in Pipelining

Idea: Make each operation take the same amount of time

FMUL R3 € R1, R2 FIDIE|lE|E|E|E|E|E|E|W
ADD R4 ¢« R1,R2 FID|E|E|E|E|E|E|E|E|W
FID E|lE|IE|E|E|E|E|E|W
FID|E|E|E|E|E|E|E|E|W
FID|E|E|E|E|E|E|E|E|W
FID|E|E|E|E|E|E|E|E|W
FID|E|E|E|E|E|E|E|E|W
Downside

o What about memory operations?
o Each functional unit takes 500 cycles?



Solutions

Reorder buffer

History buffer
Future register file
Checkpointing

Recommended Reading

o Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

o Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.
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Solution I: Reorder Butfer (ROB)

Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

When instruction is decoded it reserves an entry in the ROB
When instruction completes, it writes result into ROB entry

When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

Func Unit

Instruction Register _ Reorder
Cache [~ 777777 ’| File Func Unit Buffer

Func Unit
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What’s in a ROB Entry?

\/ | DestReglD

DestRegVal

StoreAddr

StoreData

PC

Valid bits for reg/data
+ control bits

Exc?

Need valid bits to keep track of readiness of the result(s)
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Reorder Buftter: Independent Operations

Results first written to ROB, then to register file at commit
time

F|D|E|E|E|E|E|E|E|E|R|W
F |D|E |R W
F |D|E |R W
F (D |E|R W
F D |E|E|E|E|E|E|E|E|R|W
F (D |E|R W
F |D|E|R W

What if a later operation needs a value in the reorder
buffer?

o Read reorder buffer in parallel with the register file. How?
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Reorder Buffer: How to Access?

A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

Instruction Register
Cache _._._._..:. ....... > Flle
: \ Func Unit
Func Unit
Content Reorder / Func Unit >
Addressable T 2 Buffer
Memory
(searched with bypass path
register ID)




Simplifying Reorder Buffer Access

Idea: Use indirection

Access register file first

o If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

o Mapping of the register to a ROB entry
Access reorder buffer next

What is in a reorder buffer entry?

Control/va

A Exc?
id bits

\/ | DestRegID | DestRegVal | StoreAddr | StoreData | PC/IP

o Can it be simplified further?



Aside: Register Renaming with a Reorder Buffer

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist due to lack of register ID’ s (i.e. names) in
the ISA

The register ID is renamed to the reorder buffer entry that
will hold the register’ s value

o Register ID - ROB entry ID
o Architectural register ID - Physical register ID
o After renaming, ROB entry ID used to refer to the register

This eliminates anti- and output- dependencies
o Gives the illusion that there are a large number of registers
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In-Order Pipeline with Reorder Butfer

Decode (D): Access regdfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

Execute (E): Instructions can complete out-of-order
Completion (R): Write result to reorder buffer

Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

In-order dispatch/execution, out-of-order completion, in-order retirement

E Integer add -
Integer mul
E|E |E |E >
F ID FPmul | ~ R W
E|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|.- >

Load/store
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Reorder Buffer Tradeoffs

Advantages

o Conceptually simple for supporting precise exceptions
o Can eliminate false dependencies

Disadvantages

o Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

CAM or indirection = increased latency and complexity

Other solutions aim to eliminate the disadvantages
o History buffer

a Future file
o Checkpointing

32



Solution II: History Butter (HB)

Idea: Update the register file when instruction completes,
but UNDO UPDATES when an exception occurs

When instruction is decoded, it reserves an HB entry

When the instruction completes, it stores the old value of
its destination in the HB

When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head
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History Butfer

Func Unit
Instruction Register _ History
Cache [777777°7 | File Func Unit Buffer
Func Unit
/i\
Used only on exceptions
Advantage: / g

o Register file contains up-to-date values. History buffer access
not on critical path

Disadvantage:

o Need to read the old value of the destination register

o Need to unwind the history buffer upon an exception >
increased exception/interrupt handling latency
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Solution I1I: Future File (FF) + ROB

Idea: Keep two register files (speculative and architectural)

a Arch reg file: Updated in program order for precise exceptions
Use a reorder buffer to ensure in-order updates

o Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

Future file is used for fast access to latest register values
(speculative state)

o Frontend register file

Architectural file is used for state recovery on exceptions
(architectural state)

o Backend register file

35



Future

File

Arch.
File

| Func Unit

Instruction Future
Cache R > File Func Unit ROB

'bé'téb/E'TééT\'/' Func Unit

Used only on exceptions
Advantage y g
o No need to read the values from the ROB (no CAM or
indirection)

Disadvantage
o Multiple register files

o Need to copy arch. reg. file to future file on an exception

36




In-Order Pipeline with Future File and Reorder Buftfer

Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

Execute (E): Instructions can complete out-of-order
Completion (R): Write result to reorder buffer and future file

Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

In-order dispatch/execution, out-of-order completion, in-order retirement

E Integer add -
Integer mul
E|E |E |E >
F ID FPmul | ~ R W
E|E|E|E|E|E|E|E
E|E|E|E|E|E|E|E|.- >

Load/store
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Checking for and Handling Exceptions in Pipelining

When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

o Recovers architectural state (register file, IP, and memory)
o Flushes all younger instructions in the pipeline

o Saves IP and registers (as specified by the ISA)
Q

Redirects the fetch engine to the exception handling routine
Vectored exceptions

38



Pipelining Issues: Branch Mispredictions

A branch misprediction resembles an “exception”
o Except it is not visible to software

What about branch misprediction recovery?

o Similar to exception handling except can be initiated before
the branch is the oldest instruction

o All three state recovery methods can be used

Difference between exceptions and branch mispredictions?
a Branch mispredictions are much more common

- need fast state recovery to minimize performance impact of
mispredictions

39



How Fast Is State Recovery?

Latency of state recovery affects
o Exception service latency
o Interrupt service latency

o Latency to supply the correct data to instructions fetched after
a branch misprediction

Which ones above need to be fast?

How do the three state maintenance methods fare in terms
of recovery latency?

a Reorder buffer
o History buffer
o Future file

40



Branch State Recovery Actions and Latency

Reorder Buffer
o Wait until branch is the oldest instruction in the machine
o Flush entire pipeline

History buffer

o Undo all instructions after the branch by rewinding from the
tail of the history buffer until the branch & restoring old values
one by one into the register file

o Flush instructions in pipeline younger than the branch

Future file
o Wait until branch is the oldest instruction in the machine
a Copy arch. req. file to future file

o Flush entire pipeline
41



Can We Do Better?

Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

Idea: Checkpoint the frontend register state at the time a
branch is fetched and keep the checkpointed state updated
with results of instructions older than the branch

Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.
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Checkpointing

When a branch is decoded
o Make a copy of the future file and associate it with the branch

When an instruction produces a register value

o All future file checkpoints that are younger than the instruction
are updated with the value

When a branch misprediction is detected

o Restore the checkpointed future file for the mispredicted
branch when the branch misprediction is resolved

o Flush instructions in pipeline younger than the branch
o Deallocate checkpoints younger than the branch

43



Checkpointing

= Advantages?

= Disadvantages?
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Registers versus Memory

So far, we considered mainly registers as part of state
What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Maintaining Speculative Memory State: Stores

Handling out-of-order completion of memory operations

o UNDOing a memory write more difficult than UNDQing a
register write. Why?
o One idea: Keep store address/data in reorder buffer
How does a load instruction find its data?
a Store/write buffer: Similar to reorder buffer, but used only for
store instructions
Program-order list of un-committed store operations
When store is decoded: Allocate a store buffer entry

When store address and data become available: Record in store
buffer entry

When the store is the oldest instruction in the pipeline: Update
the memory address (i.e. cache) with store data
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Out-of-Order Execution
(Dynamic Instruction Scheduling)




An In-order Pipeline

Integer add

Integer mul

E |E |E |E

>E |E |E |E |E |E |E

FP mul

E|E|E|E|E |E|E

7

L] I%

Cache miss

= Problem: A true data dependency stalls dispatch of younger
instructions into functional (execution) units

= Dispatch: Act of sending an instruction to a functional unit
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Can We Do Better?

What do the following two pieces of code have in common
(with respect to execution in the previous design)?

IMUL R3 € R1, R2 LD R3 < R1(0)
ADD R3 € R3,R1 ADD R3 € R3,R1
ADD R1 € R6, R7 ADD R1 € R6, R7
IMUL R5 < RG6, R8 IMUL R5 < R6, R8
ADD R7 € R3,R5 ADD R7 € R3,R5

Answer: First ADD stalls the whole pipeline!
o ADD cannot dispatch because its source registers unavailable
o Later independent instructions cannot get executed

How are the above code portions different?
a Answer: Load latency is variable (unknown until runtime)
o What does this affect? Think compiler vs. microarchitecture

49



Preventing Dispatch Stalls

Multiple ways of doing it

You have already seen THREE:

o 1.

a 2.

o 3.

What are the disadvantages of the above three?

Any other way to prevent dispatch stalls?

o Actually, you have briefly seen the basic idea before

Dataflow: fetch and “fire” an instruction when its inputs are
ready

o Problem: in-order dispatch (scheduling, or execution)
a Solution: out-of-order dispatch (scheduling, or execution)

50



Out-of-order Execution (Dynamic Scheduling)

Idea: Move the dependent instructions out of the way of
independent ones

o Rest areas for dependent instructions: Reservation stations

Monitor the source “values” of each instruction in the
resting area

When all source “values” of an instruction are available,
“fire” (i.e. dispatch) the instruction

o Instructions dispatched in dataflow (not control-flow) order

Benefit:

o Latency tolerance: Allows independent instructions to execute
and complete in the presence of a long latency operation
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In-order vs. Out-of-order Dispatch

In order dispatch + precise exceptions:

F|D|E|E|E|E|R|W
F|D| STALL |E |R|W
F| STALL |[D|E |R |W
F|D|E |E|E|E W
F|D STALL R

Out-of-order dispatch + precise exceptions:

F (D |E

R

W

F (D

16 vs. 12 cycles

A

Y
=

IMUL R3 € R1, R2
ADD R3 € R3,R1
ADD R1 € R6, R7
IMUL R5 € R6, R8
ADD R7 € R3,R5
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Enabling OoO Execution

1.

Need to link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

. Need to buffer instructions until they are ready to execute

o Insert instruction into reservation stations after renaming

. Instructions need to keep track of readiness of source values

o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

. When all source values of an instruction are ready, need to

dispatch the instruction to its functional unit (FU)
o Instruction wakes up if all sources are ready
o If multiple instructions are awake, need to select one per FU
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Tomasulo’s Algorithm

Oo00 with register renaming invented by Robert Tomasulo
o Used in IBM 360/91 Floating Point Units

o Read: Tomasulo, “An Efficient Algorithm for Exploiting Multiple
Arithmetic Units,” IBM Journal of R&D, Jan. 1967.

What is the major difference today?

o Precise exceptions: IBM 360/91 did NOT have this

a Patt, Hwu, Shebanow, “HPS, a new microarchitecture: rationale and
introduction,” MICRO 1985.

o Patt et al., “Critical issues regarding HPS, a high performance
microarchitecture,” MICRO 1985.

Variants used in most high-performance processors

o Initially in Intel Pentium Pro, AMD K5
o Alpha 21264, MIPS R10000, IBM POWERS5, IBM 7196, Oracle UltraSPARC T4, ARM Cortex A15
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Two Humps in a Modern Pipeline

TAG and VALUE Broadcast Bus

v
S
R
C E Integer add A
H Integer mul O
F D E E |E |E |E IR W
D FP mul o
U >E |E |E |E |E |E |E |E c
. R
E E | E |E |E|E|E|E|E]|.. .~
Load/store
In order out of order In order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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General Organization of an OOQO Processor

1nstr.
cache

pre-
decode

4

floating pt.

e

gister

file

TER!

instr.
buffer

|
=
=
|

decode.
rename,
&dispatch

floating pt.
Instruction
buffers

integer
register

functional units

- memory

interface

Ga

integer/address

instruction
buffers

functional units
and
data cache

i

file

i

re-order and commit

Smith and Sohi, “The Microarchitecture of Superscalar Processors,” Proc. IEEE, Dec.

1995.
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Tomasulo’s Machine: IBM 360/91

: : : FP registers
from memory from instruction unit

load l l

buffers

store buffers

operation bus

reservation
stations

|

to memory

Common data bus
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Register Renaming

Output and anti dependencies are not true dependencies

a WHY? The same register refers to values that have nothing to
do with each other

o They exist because not enough register ID’ s (i.e.
names) in the ISA

The register ID is renamed to the reservation station entry
that will hold the register’ s value

o Register ID - RS entry ID

o Architectural register ID = Physical register ID

o After renaming, RS entry ID used to refer to the register

This eliminates anti- and output- dependencies

o Approximates the performance effect of a large number of
registers even though ISA has a small number
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Tomasulo’s Algorithm: Renaming

Register rename table (register alias table)

tag value valid?

RO 1
R1 1
R2 1
R3 1
R4 1
RS 1
1
1
1
1

R6
R7
R8
R9




Tomasulo s Algorithm

If reservation station available before renaming

o Instruction + renamed operands (source value/tag) inserted into the
reservation station

o Only rename if reservation station is available
Else stall

While in reservation station, each instruction:

o Watches common data bus (CDB) for tag of its sources

o When tag seen, grab value for the source and keep it in the reservation station
o When both operands available, instruction ready to be dispatched

Dispatch instruction to the Functional Unit when instruction is ready

After instruction finishes in the Functional Unit
o Arbitrate for CDB
o Put tagged value onto CDB (tag broadcast)
o Register file is connected to the CDB
Register contains a tag indicating the latest writer to the register

If the tag in the register file matches the broadcast tag, write broadcast value
into register (and set valid bit)

o Reclaim rename tag
no valid copy of tag in system!
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An Exercise

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 < R2, R6 FIDIE |W
R10 €< R8, R9

R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with imprecise
exceptions (no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine imprecise
exceptions (full forwarding)
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Exercise Continued

MUl R),R2,— R3
ADD R3,RY— RS
Ao R2LREL — RTF-
APD  RE,RG — RAQ
Mmul-  R3 RIO = R4
AP RS R 5 RS

| MUL- tnes & oydles
ADD tees 4 oyoles

Huww iy eyotes dobpl wio oldin
e ve e se w, '

o

F D F W
)
o -
Cycles
Z
7
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Exercise Continued

FD12345£6W

FD-=--- - -D1z:u,w
Pocoslne =~ D123 4 W
. | FD123 4 W
ED--- - DJ23556 W
e N D- D1234 W
y/&
Ened"‘k/\ Frvedone. w’ Sancbcaralms
3| oycles
FD123Le€ 6 W
FD e 3Ly W
F D4 23 -1l
F D123 4L W
E D 9 zsgweuu
F D g2l

2 s-cydc_g
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Exercise Continued

MUL R3 € R1,R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 ¢ R7, R10
ADD R5 € R5,R11

TMO§JO'S Glg ot _;—Aﬂl h‘w“""ﬁ

D123 4Ls & w
F D b . WP T
FD123¢4 W
£Fp123 (W
F D 4 23486 W
FD

20 oyeles
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How It Works
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Cycle 4
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Cycle 7
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Cycle 8
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An Exercise, with Precise Exceptions

MUL
ADD
ADD
ADD
MUL
ADD

R3 < R1, R2

R5 < R3, R4

R7 € R2, R6 FIDIE IR |W
R10 < R8, R9

R11 < R7, R10
R5 < R5, R11

Assume ADD (4 cycle execute), MUL (6 cycle execute)
Assume one adder and one multiplier
How many cycles

a

a

in @ non-pipelined machine

in an in-order-dispatch pipelined machine with reorder buffer
(no forwarding and full forwarding)

in an out-of-order dispatch pipelined machine with reorder
buffer (full forwarding)
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Out-of-Order Execution with Precise Exceptions

Idea: Use a reorder buffer to reorder instructions before
committing them to architectural state

An instruction updates the register alias table (essentially a
future file) when it completes execution

An instruction updates the architectural register file when it
is the oldest in the machine and has completed execution
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Out-of-Order Execution with Precise Exceptions

TAG and VALUE Broadcast Bus

v
S
R
C E Integer add A
H Integer mul O
F D E E |E |E |E IR W
D FP mul o
U >E |E |E |E |E |E |E |E c
. R
E E | E |E |E|E|E|E|E]|.. .~
Load/store
In order out of order In order

Hump 1: Reservation stations (scheduling window)

Hump 2: Reordering (reorder buffer, aka instruction window
or active window)
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Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer
o Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready
o Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction
o Broadcast the “tag” when the value is produced

o Instructions compare their “source tags” to the broadcast tag
- if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

o Wakeup and select/schedule the instruction
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Summary ot OOO Execution Concepts

= Register renaming eliminates false dependencies, enables
linking of producer to consumers

= Buffering enables the pipeline to move for independent ops

= Tag broadcast enables communication (of readiness of
produced value) between instructions

= Wakeup and select enables out-of-order dispatch
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OO0 Execution: Restricted Dataflow

An out-of-order engine dynamically builds the dataflow
graph of a piece of the program

o which piece?

The dataflow graph is limited to the instruction window

o Instruction window: all decoded but not yet retired
instructions

Can we do it for the whole program?
Why would we like to?

In other words, how can we have a large instruction
window?

Can we do it efficiently with Tomasulo’s algorithm?
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Datatlow Graph for Our Example

MUL R3 € R1, R2
ADD R5 € R3, R4
ADD R7 € R2,R6
ADD R10 € R8, R9
MUL R11 € R7, R10
ADD RS5 € R5,R11




State of RAT and RS in Cycle 7

end of oydle =

v vehe a - —

Ie-’lt: | L { 7 :~Z‘ ;(l~’| 1| ~ L’
k21| ~ SN c Ht- g 1|~ 179 ~ |lo
L A dpq~oy~y e
b oAl T A ¥
rslo] d | ~ r7
eIl ~ | &
RE || —~ @
Rt ] ~ 1 9
M.O C A
gan] Yy 1=

2 Al £ msindess yereved .
— Ncle whd- hopperd v RS

79



Dataflow Graph
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Restricted Data Flow

An out-of-order machine is a “restricted data flow” machine

o Dataflow-based execution is restricted to the microarchitecture
level

o ISA is still based on von Neumann model (sequential
execution)

Remember the data flow model (at the ISA level):

o Dataflow model: An instruction is fetched and executed in
data flow order

o i.e., when its operands are ready
o i.e., there is no instruction pointer

o Instruction ordering specified by data flow dependence
Each instruction specifies “"who” should receive the result

An instruction can “fire” whenever all operands are received
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Questions to Ponder

Why is 00O execution beneficial?
o What if all operations take single cycle?

a Latency tolerance: OoO execution tolerates the latency of
multi-cycle operations by executing independent operations
concurrently

What if an instruction takes 500 cycles?

o How large of an instruction window do we need to continue
decoding?
o How many cycles of latency can OoO tolerate?

a What limits the latency tolerance scalability of Tomasulo’ s
algorithm?

Active/instruction window size: determined by register file,
scheduling window, reorder buffer
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Registers versus Memory, Revisited

So far, we considered register based value communication
between instructions

What about memory?

What are the fundamental differences between registers
and memory?

o Register dependences known statically — memory
dependences determined dynamically

o Register state is small — memory state is large

o Register state is not visible to other threads/processors —
memory state is shared between threads/processors (in a
shared memory multiprocessor)
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Memory Dependence Handling (I)

Need to obey memory dependences in an out-of-order
machine

o and need to do so while providing high performance

Observation and Problem: Memory address is not known
until a load/store executes

Corollary 1: Renaming memory addresses is difficult

Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine
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Memory Dependence Handling (1)

When do you schedule a load instruction in an OOO engine?

a Problem: A younger load can have its address ready before an
older store’s address is known

o Known as the memory disambiguation problem or the unknown
address problem

Approaches

o Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

o Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

o Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store
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