
18-447

Computer Architecture

Lecture 11: Precise Exceptions,

State Maintenance, State Recovery

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/12/2014

Announcements

 Homework 2 due Wednesday (Feb 12)

 Lab 3 available online (due Feb 21)

2

Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

3

Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

4

Readings Specifically for Today

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

5

Readings for Friday and next Monday

 Virtual Memory

 P&H Chapter 5.4

 Hamacher et al., Chapter 8.8

6

Lab Late Day Policy Adjustment

 Your total late days have increased to 7

 Each late day beyond all exhausted late days costs you
15% of the full credit of the lab

7

Review: How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

8

Remember: Branch Types

Type Direction at
fetch time

Number of
possible next
fetch addresses?

When is next
fetch address
resolved?

Conditional Unknown 2 Execution (register
dependent)

Unconditional Always taken 1 Decode (PC +
offset)

Call Always taken 1 Decode (PC +
offset)

Return Always taken Many Execution (register
dependent)

Indirect Always taken Many Execution (register
dependent)

9

Different branch types can be handled differently

Call and Return Prediction

 Direct calls are easy to predict

 Always taken, single target

 Call marked in BTB, target predicted by BTB

 Returns are indirect branches

 A function can be called from many points in code

 A return instruction can have many target addresses

 Next instruction after each call point for the same function

 Observation: Usually a return matches a call

 Idea: Use a stack to predict return addresses (Return Address Stack)

 A fetched call: pushes the return (next instruction) address on the stack

 A fetched return: pops the stack and uses the address as its predicted
target

 Accurate most of the time: 8-entry stack > 95% accuracy

10

Call X

…

Call X

…

Call X

…

Return

Return

Return

Indirect Branch Prediction (I)

 Register-indirect branches have multiple targets

 Used to implement

 Switch-case statements

 Virtual function calls

 Jump tables (of function pointers)

 Interface calls

11

TARG A+1

A
T N

a b

A

d

?

Conditional (Direct) Branch Indirect Jump

r

br.cond TARGET R1 = MEM[R2]

branch R1

Indirect Branch Prediction (II)

 No direction prediction needed

 Idea 1: Predict the last resolved target as the next fetch address

+ Simple: Use the BTB to store the target address

-- Inaccurate: 50% accuracy (empirical). Many indirect branches switch
between different targets

 Idea 2: Use history based target prediction

 E.g., Index the BTB with GHR XORed with Indirect Branch PC

 Chang et al., “Target Prediction for Indirect Jumps,” ISCA 1997.

+ More accurate

-- An indirect branch maps to (too) many entries in BTB

-- Conflict misses with other branches (direct or indirect)

-- Inefficient use of space if branch has few target addresses

12

More Ideas on Indirect Branches?

 Virtual Program Counter prediction

 Idea: Use conditional branch prediction structures iteratively
to make an indirect branch prediction

 i.e., devirtualize the indirect branch in hardware

 Curious?

 Kim et al., “VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-Based Dynamic Devirtualization,” ISCA
2007.

13

Issues in Branch Prediction (I)

 Need to identify a branch before it is fetched

 How do we do this?

 BTB hit indicates that the fetched instruction is a branch

 BTB entry contains the “type” of the branch

 What if no BTB?

 Bubble in the pipeline until target address is computed

 E.g., IBM POWER4

14

Issues in Branch Prediction (II)

 Latency: Prediction is latency critical

 Need to generate next fetch address for the next cycle

 Bigger, more complex predictors are more accurate but slower

15

PC + inst size

Next Fetch

Address

BTB target

Return Address Stack target

Indirect Branch Predictor target

Resolved target from Backend

???

Complications in Superscalar Processors

 “Superscalar” processors

 attempt to execute more than 1 instruction-per-cycle

 must fetch multiple instructions per cycle

 Consider a 2-way superscalar fetch scenario

(case 1) Both insts are not taken control flow inst

 nPC = PC + 8

(case 2) One of the insts is a taken control flow inst

 nPC = predicted target addr

 NOTE both instructions could be control-flow; prediction based on
the first one predicted taken

 If the 1st instruction is the predicted taken branch

 nullify 2nd instruction fetched

16

Multiple Instruction Fetch: Concepts

17

Review of Last Few Lectures

 Control dependence handling in pipelined machines

 Delayed branching

 Fine-grained multithreading

 Branch prediction

 Compile time (static)

 Always NT, Always T, Backward T Forward NT, Profile based

 Run time (dynamic)

 Last time predictor

 Hysteresis: 2BC predictor

 Global branch correlation Two-level global predictor

 Local branch correlation Two-level local predictor

 Predicated execution

 Multipath execution

18

Pipelining and Precise Exceptions:

Preserving Sequential Semantics

Multi-Cycle Execution

 Not all instructions take the same amount of time for
“execution”

 Idea: Have multiple different functional units that take
different number of cycles

 Can be pipelined or not pipelined

 Can let independent instructions to start execution on a
different functional unit before a previous long-latency
instruction finishes execution

20

Issues in Pipelining: Multi-Cycle Execute

 Instructions can take different number of cycles in
EXECUTE stage

 Integer ADD versus FP MULtiply

 What is wrong with this picture?

 What if FMUL incurs an exception?

 Sequential semantics of the ISA NOT preserved!

21

F D E W

F D E WE E E E E E EFMUL R4 R1, R2

ADD R3 R1, R2

F D E W

F D E W

F D E W

F D E W

FMUL R2 R5, R6

ADD R4 R5, R6

F D E WE E E E E E E

Exceptions vs. Interrupts
 Cause

 Exceptions: internal to the running thread

 Interrupts: external to the running thread

 When to Handle

 Exceptions: when detected (and known to be non-speculative)

 Interrupts: when convenient

 Except for very high priority ones

 Power failure

 Machine check

 Priority: process (exception), depends (interrupt)

 Handling Context: process (exception), system (interrupt)
22

Precise Exceptions/Interrupts

 The architectural state should be consistent when the
exception/interrupt is ready to be handled

1. All previous instructions should be completely retired.

2. No later instruction should be retired.

Retire = commit = finish execution and update arch. state

23

Why Do We Want Precise Exceptions?

 Semantics of the von Neumann model ISA specifies it

 Remember von Neumann vs. dataflow

 Aids software debugging

 Enables (easy) recovery from exceptions, e.g. page faults

 Enables (easily) restartable processes

 Enables traps into software (e.g., software implemented
opcodes)

24

Ensuring Precise Exceptions in Pipelining

 Idea: Make each operation take the same amount of time

 Downside

 Worst-case instruction latency determines all instructions’ latency

 What about memory operations?

 Each functional unit takes 500 cycles?

25

F D E W

F D E WE E E E E E E

F D E W

F D E W

F D E W

F D E W

F D E W

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

E E E E E E E

FMUL R3 R1, R2

ADD R4 R1, R2

Solutions

 Reorder buffer

 History buffer

 Future register file

 Checkpointing

 Readings

 Smith and Plezskun, “Implementing Precise Interrupts in Pipelined
Processors,” IEEE Trans on Computers 1988 and ISCA 1985.

 Hwu and Patt, “Checkpoint Repair for Out-of-order Execution
Machines,” ISCA 1987.

26

Solution I: Reorder Buffer (ROB)

 Idea: Complete instructions out-of-order, but reorder them
before making results visible to architectural state

 When instruction is decoded it reserves an entry in the ROB

 When instruction completes, it writes result into ROB entry

 When instruction oldest in ROB and it has completed
without exceptions, its result moved to reg. file or memory

27

Register

File

Func Unit

Func Unit

Func Unit

Reorder

Buffer

Instruction

Cache

What’s in a ROB Entry?

 Need valid bits to keep track of readiness of the result(s)

28

V DestRegID DestRegVal StoreAddr StoreData PC
Valid bits for reg/data

+ control bits
Exc?

Reorder Buffer: Independent Operations

 Results first written to ROB, then to register file at commit
time

 What if a later operation needs a value in the reorder
buffer?

 Read reorder buffer in parallel with the register file. How?

29

F D E W

F D E RE E E E E E E

F D E W

F D E R

F D E R

F D E R

F D E RE E E E E E E

W

R

R

W

W

W

W

Reorder Buffer: How to Access?

 A register value can be in the register file, reorder buffer,
(or bypass/forwarding paths)

30

Register

File

Func Unit

Func Unit

Func UnitReorder

Buffer

Instruction

Cache

bypass path

Content

Addressable

Memory

(searched with

register ID)

Simplifying Reorder Buffer Access

 Idea: Use indirection

 Access register file first

 If register not valid, register file stores the ID of the reorder
buffer entry that contains (or will contain) the value of the
register

 Mapping of the register to a ROB entry

 Access reorder buffer next

 Idea: Reducing reorder buffer entry storage

 Can it be simplified further?

31

V DestRegID DestRegVal StoreAddr StoreData PC/IP
Control/val

id bits
Exc?

Aside: Register Renaming with a Reorder Buffer

 Output and anti dependencies are not true dependencies

 WHY? The same register refers to values that have nothing to
do with each other

 They exist due to lack of register ID’s (i.e. names) in
the ISA

 The register ID is renamed to the reorder buffer entry that
will hold the register’s value

 Register ID ROB entry ID

 Architectural register ID Physical register ID

 After renaming, ROB entry ID used to refer to the register

 This eliminates anti- and output- dependencies

 Gives the illusion that there are a large number of registers

32

In-Order Pipeline with Reorder Buffer

 Decode (D): Access regfile/ROB, allocate entry in ROB, check if
instruction can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline and start from
exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

33

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Reorder Buffer Tradeoffs

 Advantages

 Conceptually simple for supporting precise exceptions

 Can eliminate false dependencies

 Disadvantages

 Reorder buffer needs to be accessed to get the results that
are yet to be written to the register file

 CAM or indirection increased latency and complexity

 Other solutions aim to eliminate the disadvantages

 History buffer

 Future file

 Checkpointing

34

Solution II: History Buffer (HB)

 Idea: Update the register file when instruction completes,
but UNDO UPDATES when an exception occurs

 When instruction is decoded, it reserves an HB entry

 When the instruction completes, it stores the old value of
its destination in the HB

 When instruction is oldest and no exceptions/interrupts, the
HB entry discarded

 When instruction is oldest and an exception needs to be
handled, old values in the HB are written back into the
architectural state from tail to head

35

History Buffer

 Advantage:

 Register file contains up-to-date values. History buffer access
not on critical path

 Disadvantage:

 Need to read the old value of the destination register

 Need to unwind the history buffer upon an exception

increased exception/interrupt handling latency

36

Register

File

Func Unit

Func Unit

Func Unit

History

Buffer

Instruction

Cache

Used only on exceptions

Solution III: Future File (FF) + ROB

 Idea: Keep two register files (speculative and architectural)

 Arch reg file: Updated in program order for precise exceptions

 Use a reorder buffer to ensure in-order updates

 Future reg file: Updated as soon as an instruction completes
(if the instruction is the youngest one to write to a register)

 Future file is used for fast access to latest register values
(speculative state)

 Frontend register file

 Architectural file is used for state recovery on exceptions
(architectural state)

 Backend register file

37

Future File

 Advantage

 No need to read the values from the ROB (no CAM or
indirection)

 Disadvantage

 Multiple register files

 Need to copy arch. reg. file to future file on an exception
38

Future

File

Func Unit

Func Unit

Func Unit

Arch.

File
Instruction

Cache

Used only on exceptions

ROB

VData or Tag

In-Order Pipeline with Future File and Reorder Buffer

 Decode (D): Access future file, allocate entry in ROB, check if instruction
can execute, if so dispatch instruction

 Execute (E): Instructions can complete out-of-order

 Completion (R): Write result to reorder buffer and future file

 Retirement/Commit (W): Check for exceptions; if none, write result to
architectural register file or memory; else, flush pipeline, copy
architectural file to future file, and start from exception handler

 In-order dispatch/execution, out-of-order completion, in-order retirement

39

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

Checking for and Handling Exceptions in Pipelining

 When the oldest instruction ready-to-be-retired is detected
to have caused an exception, the control logic

 Recovers architectural state (register file, IP, and memory)

 Flushes all younger instructions in the pipeline

 Saves IP and registers (as specified by the ISA)

 Redirects the fetch engine to the exception handling routine

 Vectored exceptions

40

Pipelining Issues: Branch Mispredictions

 A branch misprediction resembles an “exception”

 Except it is not visible to software

 What about branch misprediction recovery?

 Similar to exception handling except can be initiated before
the branch is the oldest instruction

 All three state recovery methods can be used

 Difference between exceptions and branch mispredictions?

 Branch mispredictions are much more common

 need fast state recovery to minimize performance impact of

mispredictions

41

How Fast Is State Recovery?

 Latency of state recovery affects

 Exception service latency

 Interrupt service latency

 Latency to supply the correct data to instructions fetched after
a branch misprediction

 Which ones above need to be fast?

 How do the three state maintenance methods fare in terms
of recovery latency?

 Reorder buffer

 History buffer

 Future file

42

Branch State Recovery Actions and Latency

 Reorder Buffer

 Wait until branch is the oldest instruction in the machine

 Flush entire pipeline

 History buffer

 Undo all instructions after the branch by rewinding from the
tail of the history buffer until the branch & restoring old values
one by one into the register file

 Flush instructions in pipeline younger than the branch

 Future file

 Wait until branch is the oldest instruction in the machine

 Copy arch. reg. file to future file

 Flush entire pipeline
43

Can We Do Better?

 Goal: Restore the frontend state (future file) such that the
correct next instruction after the branch can execute right
away after the branch misprediction is resolved

 Idea: Checkpoint the frontend register state at the time a
branch is fetched and keep the checkpointed state updated
with results of instructions older than the branch

 Hwu and Patt, “Checkpoint Repair for Out-of-order
Execution Machines,” ISCA 1987.

44

Checkpointing

 When a branch is decoded

 Make a copy of the future file and associate it with the branch

 When an instruction produces a register value

 All future file checkpoints that are younger than the instruction
are updated with the value

 When a branch misprediction is detected

 Restore the checkpointed future file for the mispredicted
branch when the branch misprediction is resolved

 Flush instructions in pipeline younger than the branch

 Deallocate checkpoints younger than the branch

45

Checkpointing

 Advantages?

 Disadvantages?

46

