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Announcements 

 No office hours today for me 

 

 Review Session and Recitation Friday during lecture – 
please bring questions and problems 

 

 Homework 1 and Lab 1 grades posted 

 

 Lab 2 due this Friday (Feb 7) 

 Do not forget the extra credit! 

 Suggestion: Be frugal with your late days 

 

 Homework 2 due next Wednesday (Feb 12) 

 Lab 3 available online (due Feb 21) 
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Readings for Next Few Lectures (I) 

 P&H Chapter 4.9-4.11 

 

 Smith and Sohi, “The Microarchitecture of Superscalar 
Processors,” Proceedings of the IEEE, 1995 

 More advanced pipelining 

 Interrupt and exception handling 

 Out-of-order and superscalar execution concepts 

 

 McFarling, “Combining Branch Predictors,” DEC WRL 
Technical Report, 1993. 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 
1999.  
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Readings for Next Few Lectures (II) 

 Smith and Plezskun, “Implementing Precise Interrupts in 
Pipelined Processors,” IEEE Trans on Computers 1988 
(earlier version in ISCA 1985). 
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Review: More Sophisticated Direction Prediction 

 Compile time (static) 

 Always not taken 

 Always taken 

 BTFN (Backward taken, forward not taken) 

 Profile based (likely direction) 

 Program analysis based  (likely direction) 

 

 Run time (dynamic) 

 Last time prediction (single-bit) 

 Two-bit counter based prediction 

 Two-level prediction (global vs. local) 

 Hybrid 
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Review: Importance of The Branch Problem 

 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution 
latency 
 

 How long does it take to fetch 500 instructions?  

 Assume 1 out of 5 instructions is a branch 

 100% accuracy  
 100 cycles (all instructions fetched on the correct path) 

 No wasted work 

 99% accuracy 
 100 (correct path) + 20 (wrong path) = 120 cycles 

 20% extra instructions fetched 

 98% accuracy 
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles  

 40% extra instructions fetched  

 95% accuracy 
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles 

 100% extra instructions fetched 
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Can We Do Better? 

 Last-time and 2BC predictors exploit only “last-time” 
predictability for a given branch 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed) 

 Local branch correlation 
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Global Branch Correlation (I) 

 Recently executed branch outcomes in the execution path 
is correlated with the outcome of the next branch 

 

 

 

 If first branch not taken, second also not taken 

 

 

 

 If first branch taken, second definitely not taken 
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Global Branch Correlation (II) 

 

 

 

 

 If Y and Z both taken, then X also taken 

 If Y or Z not taken, then X also not taken 
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Global Branch Correlation (III) 

 Eqntott, SPEC 1992 

 

 if (aa==2)   ;; B1 

       aa=0; 

 if (bb==2)   ;; B2 

       bb=0; 

 if (aa!=bb) {      ;; B3 

       …. 

      } 

 

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. bb=0@B3) 
then B3 is certainly taken 
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Capturing Global Branch Correlation 

 Idea: Associate branch outcomes with “global T/NT history” 
of all branches 

 Make a prediction based on the outcome of the branch the 
last time the same global branch history was encountered 

 

 Implementation: 

 Keep track of the “global T/NT history” of all branches in a 
register  Global History Register (GHR) 

 Use GHR to index into a table that recorded the outcome that 
was seen for each GHR value in the recent past  Pattern 

History Table (table of 2-bit counters) 

 

 Global history/branch predictor 

 Uses two levels of history (GHR + history at that GHR) 
11 



Two Level Global Branch Prediction 

 First level: Global branch history register (N bits) 

 The direction of last N branches 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 
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1 1 ….. 1 0 

GHR 

(global 

history 

register) 

00 …. 00 

00 …. 01 

00 …. 10 

11 ….  11 

0 1 

2 3 

index 

Pattern History Table (PHT)  

previous one  

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 



How Does the Global Predictor Work? 

 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 
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Intel Pentium Pro Branch Predictor 

 4-bit global history register 

 Multiple pattern history tables (of 2 bit counters) 

 Which pattern history table to use is determined by lower 
order bits of the branch address 
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Improving Global Predictor Accuracy 

 Idea: Add more context information to the global predictor to take into 
account which branch is being predicted 

 Gshare predictor: GHR hashed with the Branch PC 

+ More context information 

+ Better utilization of PHT    

-- Increases access latency 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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target address 

Review: One-Level Branch Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 
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target address 

Two-Level Global History Branch Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history PC + inst size 

taken? 
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hit? 
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Address of the  

current instruction 
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target address 

Two-Level Gshare Branch Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

Global branch  
history 

XOR 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Which direction earlier 

branches went 

Address of the  

current instruction 



Can We Do Better? 

 Last-time and 2BC predictors exploit only “last-time” 
predictability for a given branch 

 

 Realization 1: A branch’s outcome can be correlated with 
other branches’ outcomes 

 Global branch correlation  

 

 Realization 2: A branch’s outcome can be correlated with 
past outcomes of the same branch (in addition to the 
outcome of the branch “last-time” it was executed) 

 Local branch correlation 
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Local Branch Correlation 

 

 

 

 

 

 

 

 

 

 McFarling, “Combining Branch Predictors,” DEC WRL TR 
1993. 
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Capturing Local Branch Correlation 

 Idea: Have a per-branch history register 

 Associate the predicted outcome of a branch with “T/NT history” 
of the same branch 

 Make a prediction based on the outcome of the branch the 
last time the same local branch history was encountered 

 

 Called the local history/branch predictor 

 Uses two levels of history (Per-branch history register + 
history at that history register value) 

21 



Two Level Local Branch Prediction 

 First level: A set of local history registers (N bits each) 

 Select the history register based on the PC of the branch 

 Second level: Table of saturating counters for each history entry 

 The direction the branch took the last time the same history was 
seen 
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1 1 ….. 1 0 

Local history 

registers 

00 …. 00 

00 …. 01 

00 …. 10 

11 ….  11 

0 1 

2 3 

index 

Pattern History Table (PHT)  

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991. 
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target address 

Two-Level Local History Branch Predictor 

Direction predictor (2-bit counters) 

Cache of Target Addresses (BTB: Branch Target Buffer) 

Program  
Counter 

PC + inst size 

taken? 

Next Fetch 

Address 

hit? 

Address of the  

current instruction 

Which directions earlier instances of *this branch* went 



Hybrid Branch Predictors 

 Idea: Use more than one type of predictor (i.e., multiple 
algorithms) and select the “best” prediction 

 E.g., hybrid of 2-bit counters and global predictor 

 

 Advantages: 

 + Better accuracy: different predictors are better for different branches 

 + Reduced warmup time (faster-warmup predictor used until the 
slower-warmup predictor warms up) 

 

 Disadvantages: 

 -- Need “meta-predictor” or “selector” 

 -- Longer access latency 

 

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993. 
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Alpha 21264 Tournament Predictor 

 

 

 

 

 

 

 

 Minimum branch penalty: 7 cycles 

 Typical branch penalty: 11+ cycles 

 48K bits of target addresses stored in I-cache 

 Predictor tables are reset on a context switch 

 

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999. 
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Branch Prediction Accuracy (Example) 

 Bimodal: table of 2bc indexed by branch address 
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Biased Branches 

 Observation: Many branches are biased in one direction 
(e.g., 99% taken) 

 

 Problem: These branches pollute the branch prediction 
structures  make the prediction of other branches difficult 

by causing “interference” in branch prediction tables and 
history registers 

 

 Solution: Detect such biased branches, and predict them 
with a simpler predictor 

 

 Chang et al., “Branch classification: a new mechanism for improving 
branch predictor performance,” MICRO 1994. 
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Some Other Branch Predictor Types 

 Loop branch detector and predictor 

 Works well for loops with small number of iterations, where 
iteration count is predictable 

 

 Perceptron branch predictor 

 Learns the direction correlations between individual branches 

 Assigns weights to correlations 

 Jimenez and Lin, “Dynamic Branch Prediction with 
Perceptrons,” HPCA 2001. 

 

 Geometric history length predictor 

 

 Your predictor? 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Review: Predicate Combining (not Predicated Execution) 

 Complex predicates are converted into multiple branches 

 if ((a == b) && (c < d) && (a > 5000))  { … } 

 3 conditional branches 

 Problem: This increases the number of control 
dependencies 

 Idea: Combine predicate operations to feed a single branch 
instruction 

 Predicates stored and operated on using condition registers 

 A single branch checks the value of the combined predicate 

+ Fewer branches in code  fewer mipredictions/stalls 

-- Possibly unnecessary work 

 -- If the first predicate is false, no need to compute other predicates  

 Condition registers exist in IBM RS6000 and the POWER architecture 
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D D 

Predication (Predicated Execution) 
 Idea: Compiler converts control dependence into data 

dependence  branch is eliminated 
 Each instruction has a predicate bit set based on the predicate computation 

 Only instructions with TRUE predicates are committed (others turned into NOPs) 
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(normal branch code) 

C B 

D 

A 
T N 

        p1 = (cond) 

        branch p1, TARGET 

       mov b, 1  

       jmp JOIN 

TARGET: 

         mov b, 0 

A 

B 

C 

B 

C 

D 

A 

(predicated code)  

A 

B 

C 

if (cond) { 

      b = 0; 

} 

else { 

      b = 1; 

}          p1 = (cond) 

(!p1) mov  b, 1 

 (p1) mov  b, 0 

add   x, b, 1 add   x, b, 1 



Conditional Move Operations 

 Very limited form of predicated execution 

 

 CMOV R1  R2 

 R1 = (ConditionCode == true) ? R2 : R1 

 Employed in most modern ISAs (x86, Alpha) 
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Review: CMOV Operation 

 Suppose we had a Conditional Move instruction… 

 CMOV condition, R1  R2 

 R1 = (condition == true) ? R2 : R1 

 Employed in most modern ISAs (x86, Alpha) 

 

 Code example with branches vs. CMOVs 

if (a == 5) {b = 4;} else {b = 3;} 

 

CMPEQ condition, a, 5; 

CMOV condition, b  4; 

CMOV !condition, b  3; 
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Predicated Execution (II) 

 Predicated execution can be high performance and energy-
efficient 
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D 
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F 
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Branch Prediction 

Pipeline flush!! 
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Predicated Execution (III) 
 Advantages: 

+ Eliminates mispredictions for hard-to-predict branches 

 + No need for branch prediction for some branches 

 + Good if misprediction cost > useless work due to predication 

+ Enables code optimizations hindered by the control dependency 

    + Can move instructions more freely within predicated code 

 

 Disadvantages: 
-- Causes useless work for branches that are easy to predict 

 -- Reduces performance if misprediction cost < useless work 

     -- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch 
 behavior changes based on input set, program phase, control-flow path. 

-- Additional hardware and ISA support 

-- Cannot eliminate all hard to predict branches  

    -- Loop branches 
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Predicated Execution in Intel Itanium 

 Each instruction can be separately predicated  

 64 one-bit predicate registers 

   each instruction carries a 6-bit predicate field 

 An instruction is effectively a NOP if its predicate is false 
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cmp 

br 

else1 

else2 

br 

then1 

then2 

join1 

join2 

p1 p2 cmp 

join1 

join2 

else1 p2 

then2 p1 

else2 p2 

then1 p1 



Conditional Execution in the ARM ISA 

 Almost all ARM instructions can include an optional 
condition code.  

 

 An instruction with a condition code is executed only if the 
condition code flags in the CPSR meet the specified 
condition.  
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Conditional Execution in ARM ISA 
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Conditional Execution in ARM ISA 
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Conditional Execution in ARM ISA 
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Conditional Execution in ARM ISA 
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Conditional Execution in ARM ISA 

42 



Idealism 

 Wouldn’t it be nice 

 If the branch is eliminated (predicated) only when it would 
actually be mispredicted 

 If the branch were predicted when it would actually be 
correctly predicted 

 

 Wouldn’t it be nice 

 If predication did not require ISA support 
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Improving Predicated Execution 

 Three major limitations of predication 

1. Adaptivity: non-adaptive to branch behavior 

2. Complex CFG: inapplicable to loops/complex control flow graphs 

3. ISA: Requires large ISA changes 

 

 Wish Branches [Kim+, MICRO 2005] 

 Solve 1 and partially 2 (for loops) 

 

 Dynamic Predicated Execution 

 Diverge-Merge Processor [Kim+, MICRO 2006] 

 Solves 1, 2 (partially), 3 
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Wish Branches 

 The compiler generates code (with wish branches) that 

can be executed either as predicated code or non-

predicated code (normal branch code)  

 The hardware decides to execute predicated code or 

normal branch code at run-time based on the confidence of 

branch prediction 

 Easy to predict: normal branch code 

 Hard to predict: predicated code 

 

 Kim et al., “Wish Branches: Enabling Adaptive and 
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro 
Top Picks, Jan/Feb 2006. 
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TARGET: 

    (p1) mov b,0 

TARGET: 

    (1)   mov b,0 

(!p1) mov b,1 

 wish.join !p1 JOIN 

(1) mov b,1 

 wish.join (1)  JOIN 

Low Confidence 
Wish Jump/Join 

        p1 = (cond) 

       branch  p1, TARGET 

C B 

D 

A 
T N 

       mov b, 1  

       jmp JOIN 

TARGET: 

         mov b,0 

normal branch code 

A 

B 

C 

B 

C 

D 

A 

         p1 = (cond) 

 

(!p1) mov  b,1 

 

 (p1) mov  b,0 

predicated code  

A 

B 

C 

wish jump/join code 

B 

A 

C 

D 

wish jump 

        p1=(cond) 

 wish.jump p1 TARGET 

A 

B 

C 

wish join 

D JOIN: 

High Confidence 



Wish Branches vs. Predicated Execution 

 Advantages compared to predicated execution 

 Reduces the overhead of predication 

 Increases the benefits of predicated code by allowing the compiler to 

generate more aggressively-predicated code 

 Makes predicated code less dependent on machine configuration (e.g. 

branch predictor) 

 

 Disadvantages compared to predicated execution 
 Extra branch instructions use machine resources 

 Extra branch instructions increase the contention for branch predictor table 
entries 

 Constrains the compiler’s scope for code optimizations 
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How to Handle Control Dependences 

 Critical to keep the pipeline full with correct sequence of 
dynamic instructions.  

 

 Potential solutions if the instruction is a control-flow 
instruction: 

 

 Stall the pipeline until we know the next fetch address 

 Guess the next fetch address (branch prediction) 

 Employ delayed branching (branch delay slot) 

 Do something else (fine-grained multithreading) 

 Eliminate control-flow instructions (predicated execution) 

 Fetch from both possible paths (if you know the addresses 
of both possible paths) (multipath execution) 
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Multi-Path Execution 
 Idea: Execute both paths after a conditional branch 

 For all branches: Riseman and Foster, “The inhibition of potential parallelism 
by conditional jumps,” IEEE Transactions on Computers, 1972. 

 For a hard-to-predict branch: Use dynamic confidence estimation 

 

 Advantages: 

+ Improves performance if misprediction cost > useless work 

+ No ISA change needed 

 

 Disadvantages: 

-- What happens when the machine encounters another hard-to-predict 
branch? Execute both paths again? 

 -- Paths followed quickly become exponential 

-- Each followed path requires its own context (registers, PC, GHR) 

-- Wasted work (and reduced performance) if paths merge 
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Dual-Path Execution versus Predication 
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Hard to predict 
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D 

E 
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E 
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C 

D 

E 

F 

B 
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Dual-path Predicated Execution 

CFM CFM 


