
18-447

Computer Architecture

Lecture 10: Branch Handling

and Branch Prediction (II)

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2014, 2/5/2014

Announcements

 No office hours today for me

 Review Session and Recitation Friday during lecture –
please bring questions and problems

 Homework 1 and Lab 1 grades posted

 Lab 2 due this Friday (Feb 7)

 Do not forget the extra credit!

 Suggestion: Be frugal with your late days

 Homework 2 due next Wednesday (Feb 12)

 Lab 3 available online (due Feb 21)

2

Readings for Next Few Lectures (I)

 P&H Chapter 4.9-4.11

 Smith and Sohi, “The Microarchitecture of Superscalar
Processors,” Proceedings of the IEEE, 1995

 More advanced pipelining

 Interrupt and exception handling

 Out-of-order and superscalar execution concepts

 McFarling, “Combining Branch Predictors,” DEC WRL
Technical Report, 1993.

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro
1999.

 3

Readings for Next Few Lectures (II)

 Smith and Plezskun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Trans on Computers 1988
(earlier version in ISCA 1985).

4

Review: More Sophisticated Direction Prediction

 Compile time (static)

 Always not taken

 Always taken

 BTFN (Backward taken, forward not taken)

 Profile based (likely direction)

 Program analysis based (likely direction)

 Run time (dynamic)

 Last time prediction (single-bit)

 Two-bit counter based prediction

 Two-level prediction (global vs. local)

 Hybrid

5

Review: Importance of The Branch Problem

 Assume a 5-wide superscalar pipeline with 20-cycle branch resolution
latency

 How long does it take to fetch 500 instructions?

 Assume 1 out of 5 instructions is a branch

 100% accuracy
 100 cycles (all instructions fetched on the correct path)

 No wasted work

 99% accuracy
 100 (correct path) + 20 (wrong path) = 120 cycles

 20% extra instructions fetched

 98% accuracy
 100 (correct path) + 20 * 2 (wrong path) = 140 cycles

 40% extra instructions fetched

 95% accuracy
 100 (correct path) + 20 * 5 (wrong path) = 200 cycles

 100% extra instructions fetched

 6

Can We Do Better?

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

 Local branch correlation

7

Global Branch Correlation (I)

 Recently executed branch outcomes in the execution path
is correlated with the outcome of the next branch

 If first branch not taken, second also not taken

 If first branch taken, second definitely not taken

8

Global Branch Correlation (II)

 If Y and Z both taken, then X also taken

 If Y or Z not taken, then X also not taken

9

Global Branch Correlation (III)

 Eqntott, SPEC 1992

 if (aa==2) ;; B1

 aa=0;

 if (bb==2) ;; B2

 bb=0;

 if (aa!=bb) { ;; B3

 ….

 }

If B1 is not taken (i.e., aa==0@B3) and B2 is not taken (i.e. bb=0@B3)
then B3 is certainly taken

10

Capturing Global Branch Correlation

 Idea: Associate branch outcomes with “global T/NT history”
of all branches

 Make a prediction based on the outcome of the branch the
last time the same global branch history was encountered

 Implementation:

 Keep track of the “global T/NT history” of all branches in a
register  Global History Register (GHR)

 Use GHR to index into a table that recorded the outcome that
was seen for each GHR value in the recent past  Pattern

History Table (table of 2-bit counters)

 Global history/branch predictor

 Uses two levels of history (GHR + history at that GHR)
11

Two Level Global Branch Prediction

 First level: Global branch history register (N bits)

 The direction of last N branches

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

12

1 1 ….. 1 0

GHR

(global

history

register)

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

previous one

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

How Does the Global Predictor Work?

 McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

13

Intel Pentium Pro Branch Predictor

 4-bit global history register

 Multiple pattern history tables (of 2 bit counters)

 Which pattern history table to use is determined by lower
order bits of the branch address

14

Improving Global Predictor Accuracy

 Idea: Add more context information to the global predictor to take into
account which branch is being predicted

 Gshare predictor: GHR hashed with the Branch PC

+ More context information

+ Better utilization of PHT

-- Increases access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 15

16

target address

Review: One-Level Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

17

target address

Two-Level Global History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

18

target address

Two-Level Gshare Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

Global branch
history

XOR

PC + inst size

taken?

Next Fetch

Address

hit?

Which direction earlier

branches went

Address of the

current instruction

Can We Do Better?

 Last-time and 2BC predictors exploit only “last-time”
predictability for a given branch

 Realization 1: A branch’s outcome can be correlated with
other branches’ outcomes

 Global branch correlation

 Realization 2: A branch’s outcome can be correlated with
past outcomes of the same branch (in addition to the
outcome of the branch “last-time” it was executed)

 Local branch correlation

19

Local Branch Correlation

 McFarling, “Combining Branch Predictors,” DEC WRL TR
1993.

20

Capturing Local Branch Correlation

 Idea: Have a per-branch history register

 Associate the predicted outcome of a branch with “T/NT history”
of the same branch

 Make a prediction based on the outcome of the branch the
last time the same local branch history was encountered

 Called the local history/branch predictor

 Uses two levels of history (Per-branch history register +
history at that history register value)

21

Two Level Local Branch Prediction

 First level: A set of local history registers (N bits each)

 Select the history register based on the PC of the branch

 Second level: Table of saturating counters for each history entry

 The direction the branch took the last time the same history was
seen

22

1 1 ….. 1 0

Local history

registers

00 …. 00

00 …. 01

00 …. 10

11 …. 11

0 1

2 3

index

Pattern History Table (PHT)

Yeh and Patt, “Two-Level Adaptive Training Branch Prediction,” MICRO 1991.

23

target address

Two-Level Local History Branch Predictor

Direction predictor (2-bit counters)

Cache of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + inst size

taken?

Next Fetch

Address

hit?

Address of the

current instruction

Which directions earlier instances of *this branch* went

Hybrid Branch Predictors

 Idea: Use more than one type of predictor (i.e., multiple
algorithms) and select the “best” prediction

 E.g., hybrid of 2-bit counters and global predictor

 Advantages:

 + Better accuracy: different predictors are better for different branches

 + Reduced warmup time (faster-warmup predictor used until the
slower-warmup predictor warms up)

 Disadvantages:

 -- Need “meta-predictor” or “selector”

 -- Longer access latency

 McFarling, “Combining Branch Predictors,” DEC WRL Tech Report, 1993.

 24

Alpha 21264 Tournament Predictor

 Minimum branch penalty: 7 cycles

 Typical branch penalty: 11+ cycles

 48K bits of target addresses stored in I-cache

 Predictor tables are reset on a context switch

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro 1999.

 25

Branch Prediction Accuracy (Example)

 Bimodal: table of 2bc indexed by branch address

26

Biased Branches

 Observation: Many branches are biased in one direction
(e.g., 99% taken)

 Problem: These branches pollute the branch prediction
structures  make the prediction of other branches difficult

by causing “interference” in branch prediction tables and
history registers

 Solution: Detect such biased branches, and predict them
with a simpler predictor

 Chang et al., “Branch classification: a new mechanism for improving
branch predictor performance,” MICRO 1994.

27

Some Other Branch Predictor Types

 Loop branch detector and predictor

 Works well for loops with small number of iterations, where
iteration count is predictable

 Perceptron branch predictor

 Learns the direction correlations between individual branches

 Assigns weights to correlations

 Jimenez and Lin, “Dynamic Branch Prediction with
Perceptrons,” HPCA 2001.

 Geometric history length predictor

 Your predictor?

 28

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

29

Review: Predicate Combining (not Predicated Execution)

 Complex predicates are converted into multiple branches

 if ((a == b) && (c < d) && (a > 5000)) { … }

 3 conditional branches

 Problem: This increases the number of control
dependencies

 Idea: Combine predicate operations to feed a single branch
instruction

 Predicates stored and operated on using condition registers

 A single branch checks the value of the combined predicate

+ Fewer branches in code  fewer mipredictions/stalls

-- Possibly unnecessary work

 -- If the first predicate is false, no need to compute other predicates

 Condition registers exist in IBM RS6000 and the POWER architecture

 30

D D

Predication (Predicated Execution)
 Idea: Compiler converts control dependence into data

dependence  branch is eliminated
 Each instruction has a predicate bit set based on the predicate computation

 Only instructions with TRUE predicates are committed (others turned into NOPs)

31

(normal branch code)

C B

D

A
T N

 p1 = (cond)

 branch p1, TARGET

 mov b, 1

 jmp JOIN

TARGET:

 mov b, 0

A

B

C

B

C

D

A

(predicated code)

A

B

C

if (cond) {

 b = 0;

}

else {

 b = 1;

} p1 = (cond)

(!p1) mov b, 1

 (p1) mov b, 0

add x, b, 1 add x, b, 1

Conditional Move Operations

 Very limited form of predicated execution

 CMOV R1  R2

 R1 = (ConditionCode == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

32

Review: CMOV Operation

 Suppose we had a Conditional Move instruction…

 CMOV condition, R1  R2

 R1 = (condition == true) ? R2 : R1

 Employed in most modern ISAs (x86, Alpha)

 Code example with branches vs. CMOVs

if (a == 5) {b = 4;} else {b = 3;}

CMPEQ condition, a, 5;

CMOV condition, b  4;

CMOV !condition, b  3;

33

Predicated Execution (II)

 Predicated execution can be high performance and energy-
efficient

34

Fetch Decode Rename Schedule RegisterRead Execute A

B C

D

A
E

F

Predicated Execution

Branch Prediction

Pipeline flush!!

E D B F

Fetch Decode Rename Schedule RegisterRead Execute

A B A C B A C B D A D C B E A E D C F B A F E D C B A A F B C D E F E D A B C F E A B C D F E D C B A F E D C A B E D C B A F A F B C D E

Predicated Execution (III)
 Advantages:

+ Eliminates mispredictions for hard-to-predict branches

 + No need for branch prediction for some branches

 + Good if misprediction cost > useless work due to predication

+ Enables code optimizations hindered by the control dependency

 + Can move instructions more freely within predicated code

 Disadvantages:
-- Causes useless work for branches that are easy to predict

 -- Reduces performance if misprediction cost < useless work

 -- Adaptivity: Static predication is not adaptive to run-time branch behavior. Branch
 behavior changes based on input set, program phase, control-flow path.

-- Additional hardware and ISA support

-- Cannot eliminate all hard to predict branches

 -- Loop branches

 35

Predicated Execution in Intel Itanium

 Each instruction can be separately predicated

 64 one-bit predicate registers

 each instruction carries a 6-bit predicate field

 An instruction is effectively a NOP if its predicate is false

36

cmp

br

else1

else2

br

then1

then2

join1

join2

p1 p2 cmp

join1

join2

else1 p2

then2 p1

else2 p2

then1 p1

Conditional Execution in the ARM ISA

 Almost all ARM instructions can include an optional
condition code.

 An instruction with a condition code is executed only if the
condition code flags in the CPSR meet the specified
condition.

37

Conditional Execution in ARM ISA

38

Conditional Execution in ARM ISA

39

Conditional Execution in ARM ISA

40

Conditional Execution in ARM ISA

41

Conditional Execution in ARM ISA

42

Idealism

 Wouldn’t it be nice

 If the branch is eliminated (predicated) only when it would
actually be mispredicted

 If the branch were predicted when it would actually be
correctly predicted

 Wouldn’t it be nice

 If predication did not require ISA support

43

Improving Predicated Execution

 Three major limitations of predication

1. Adaptivity: non-adaptive to branch behavior

2. Complex CFG: inapplicable to loops/complex control flow graphs

3. ISA: Requires large ISA changes

 Wish Branches [Kim+, MICRO 2005]

 Solve 1 and partially 2 (for loops)

 Dynamic Predicated Execution

 Diverge-Merge Processor [Kim+, MICRO 2006]

 Solves 1, 2 (partially), 3

44

A

Wish Branches

 The compiler generates code (with wish branches) that

can be executed either as predicated code or non-

predicated code (normal branch code)

 The hardware decides to execute predicated code or

normal branch code at run-time based on the confidence of

branch prediction

 Easy to predict: normal branch code

 Hard to predict: predicated code

 Kim et al., “Wish Branches: Enabling Adaptive and
Aggressive Predicated Execution,” MICRO 2006, IEEE Micro
Top Picks, Jan/Feb 2006.

45

46

TARGET:

 (p1) mov b,0

TARGET:

 (1) mov b,0

(!p1) mov b,1

 wish.join !p1 JOIN

(1) mov b,1

 wish.join (1) JOIN

Low Confidence
Wish Jump/Join

 p1 = (cond)

 branch p1, TARGET

C B

D

A
T N

 mov b, 1

 jmp JOIN

TARGET:

 mov b,0

normal branch code

A

B

C

B

C

D

A

 p1 = (cond)

(!p1) mov b,1

 (p1) mov b,0

predicated code

A

B

C

wish jump/join code

B

A

C

D

wish jump

 p1=(cond)

 wish.jump p1 TARGET

A

B

C

wish join

D JOIN:

High Confidence

Wish Branches vs. Predicated Execution

 Advantages compared to predicated execution

 Reduces the overhead of predication

 Increases the benefits of predicated code by allowing the compiler to

generate more aggressively-predicated code

 Makes predicated code less dependent on machine configuration (e.g.

branch predictor)

 Disadvantages compared to predicated execution
 Extra branch instructions use machine resources

 Extra branch instructions increase the contention for branch predictor table
entries

 Constrains the compiler’s scope for code optimizations

47

How to Handle Control Dependences

 Critical to keep the pipeline full with correct sequence of
dynamic instructions.

 Potential solutions if the instruction is a control-flow
instruction:

 Stall the pipeline until we know the next fetch address

 Guess the next fetch address (branch prediction)

 Employ delayed branching (branch delay slot)

 Do something else (fine-grained multithreading)

 Eliminate control-flow instructions (predicated execution)

 Fetch from both possible paths (if you know the addresses
of both possible paths) (multipath execution)

48

Multi-Path Execution
 Idea: Execute both paths after a conditional branch

 For all branches: Riseman and Foster, “The inhibition of potential parallelism
by conditional jumps,” IEEE Transactions on Computers, 1972.

 For a hard-to-predict branch: Use dynamic confidence estimation

 Advantages:

+ Improves performance if misprediction cost > useless work

+ No ISA change needed

 Disadvantages:

-- What happens when the machine encounters another hard-to-predict
branch? Execute both paths again?

 -- Paths followed quickly become exponential

-- Each followed path requires its own context (registers, PC, GHR)

-- Wasted work (and reduced performance) if paths merge

49

Dual-Path Execution versus Predication

50

Hard to predict

C

D

E

F

B

D

E

F

A

B C

D

E

F

path 1 path 2

C

D

E

F

B

path 1 path 2

Dual-path Predicated Execution

CFM CFM

